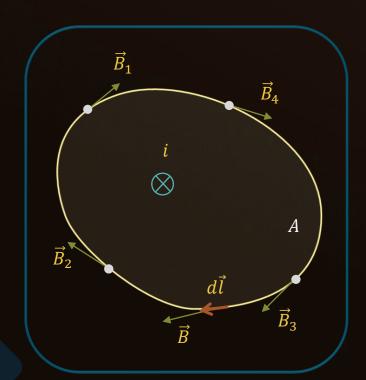


Ampere's Circuital Law



• Line integral or circulation of \vec{B} along the curve

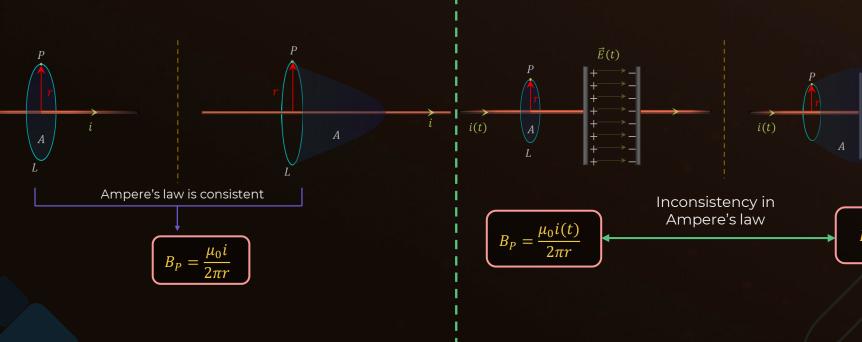
$$\oint \vec{B} \cdot dl = \mu_0 i$$

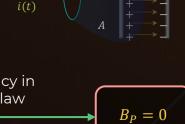
 μ_0 = Permeability of free space

A = Area bounded by the loop

i = Net current intersecting the area

Ampere's Circuital Law





Ampere's Circuital Law

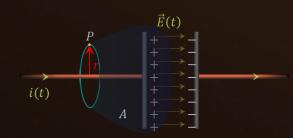
Displacement current :

A fictitious current which is produced due to the change of electric flux with respect to time.

$$i_d = \varepsilon_0 \frac{d\phi_E}{dt}$$

The line integral of magnetic field along a closed loop in free space is equal to μ_0 times the total current (sum of conduction current and displacement current) threading the loop.

$$\oint \vec{B} \cdot d\vec{l} = \mu_o \left[i_c + \frac{\varepsilon_o d\phi_E}{dt} \right] = \mu_o [i_c + i_d]$$

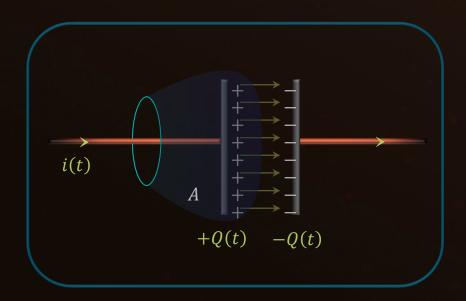


$$\vec{E}(t)$$
 $\vec{E}(t)$
 $\vec{E}(t)$

Conduction current: Current in a conductor due to flow of charge carriers.

?

Show that the displacement current is equal to conduction current during charging of a capacitor.



Assumption:

Area of the plates of the capacitor = A

Instantaneous charge on the plates = Q(t)

Solution:

Electric field between plates of capacitor at any instant t:

$$E(t) = \frac{Q(t)}{A\varepsilon_0}$$

Electric flux of this field passing through the surface between the plates:

$$\phi_E = E(t) \times A = \frac{Q(t)}{\varepsilon_0}$$

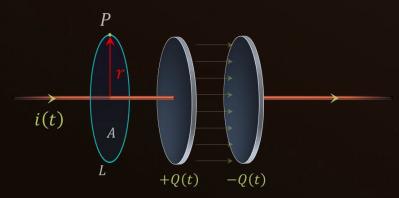
Displacement current:
$$i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \frac{dQ(t)}{dt}$$

Displacement current : $i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \frac{dQ(t)}{dt}$

It is also the rate at which charge is accumulating at positive plate of capacitor through conducting wire.

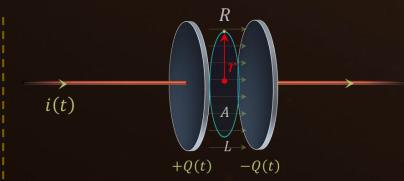
Therefore, conduction current is also equal to $\frac{dQ(t)}{dt}$. Hence,

Finding The Induced Magnetic Field



$$i_c = i(t)$$
 and $i_d = 0$

$$\left(B_P = \frac{\mu_0 i(t)}{2\pi r}\right)$$



$$\phi_E = E \times \pi r^2$$

$$\phi_E = \left(\frac{Q(t)}{\varepsilon_0 \pi R^2}\right) \times \pi r^2$$

$$i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \frac{r^2}{R^2} i(t)$$

$$i_c = 0$$

$$\phi_E = \frac{Q(t)r^2}{\varepsilon_0 R^2}$$

$$B_R = \left(\frac{\mu_0 i(t)}{2\pi R^2}\right) r$$

$$i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \frac{r^2}{R^2} i(t)$$
$$i_c = 0$$

$$B_R = \left(\frac{\mu_0 i(t)}{2\pi R^2}\right) r$$

Calculation of Induced Magnetic Field

-Q(t)

i(t)

Inside the capacitor plates (r > R):

Conduction current, $i_c = 0$

Electric field between the plates of capacitor:

$$E(t) = \frac{Q(t)}{A\varepsilon_0}$$

Electric flux of this field passing through the surface between the plates :

$$\phi_E = E(t) \times A = \frac{Q(t)}{\varepsilon_0}$$

Displacement current : $i_d = \varepsilon_0 \frac{d\phi_E}{dt} = \frac{dQ(t)}{dt} = i(t)$

Apply Ampere-Maxwell Law:

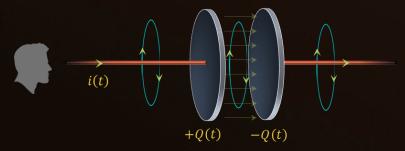
$$\oint \vec{B} \cdot d\vec{l} = \mu_o[i_c + i_d]$$

$$B \times 2\pi r = \mu_o[0 + i(t)]$$

$$B = \frac{\mu_o i(t)}{2\pi r}$$

$$B_{Q'} = \frac{\mu_0 i(t)}{2\pi r}$$

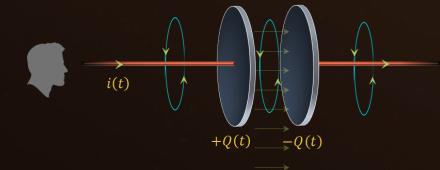
Direction of Induced Magnetic Field



Charging of capacitor

Observer: Induced magnetic field is in clockwise direction.

(Use "Right hand thumb rule")



Discharging of capacitor

Observer: Induced magnetic field is in anti-clockwise direction.

(Use "Right hand thumb rule")

A parallel plate capacitor with circular plates of radius 1 m has a capacitance of 1 nF. At t=0, it is connected for charging in series with a resistor $R=1 M\Omega$ across a 2 V battery. Calculate the magnetic field at a point P, halfway between the centre and the periphery of the plates after $t=10^{-3} s$. Take $q(t)=CV[1-e^{-\frac{t}{7}}]$

Solution:

Instantaneous charge: $q(t) = CV[1 - e^{-\frac{t}{7}}]$

Conduction current at $t = 10^{-3} s$:

$$i_c = \frac{dq(t)}{dt} = \frac{V}{R} \left[e^{-\frac{t}{\tau}} \right] = \frac{V}{R} \left[e^{-\frac{t}{CR}} \right]$$

$$i_c = \frac{2}{10^6} \left[e^{-\frac{10^{-3}}{10^{-9} \times 10^6}} \right] = \frac{2}{10^6} \times \frac{1}{e} = 7.36 \times 10^{-7} A$$

Displacement current is assumed to flow uniformly throughout the volume.

Displacement current = Conduction current

Displacement current through the reddish patch:

$$i'_d = \frac{i_d}{\pi r^2} \times \pi \left(\frac{r}{2}\right)^2 = \frac{i_d}{4} = \frac{i_c}{4} = 1.84 \times 10^{-7} A$$

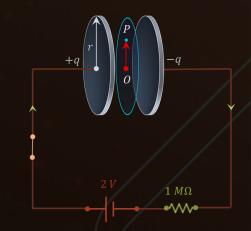
$$B.\,2\pi\,\frac{r}{2} = \mu_0(i_c + i_d')$$

Conduction current between the plates is zero.

$$B.\pi r = \mu_0 i_d'$$

$$B = \frac{\mu_0 i_d'}{\pi r} = \frac{4\pi \times 10^{-7} \times 1.84 \times 10^{-7}}{\pi \times 1}$$

$$B = 0.74 \times 10^{-13} T$$



A parallel plate capacitor consists of two circular plates of radius $R = 0.1 \, m$. They are separated by a distance $d = 0.5 \, mm$. If electric field between the capacitor plates changes as $\frac{dE}{dt} = 5 \times 10^{13} \, \frac{V}{m \times s}$, find the displacement current between the plates.

Given:

Radius of the circular plates of capacitor: R = 0.1 m

Rate of change of electric field: $\frac{dE}{dt} = 5 \times 10^{13} \frac{V}{m \times s}$

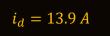
Solution:

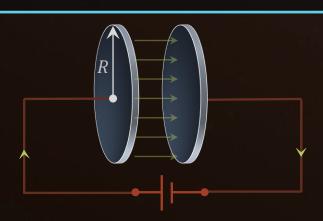
Displacement current : $i_d = \varepsilon_0 \frac{d\phi_E}{dt}$

$$i_d = \varepsilon_0 \frac{d}{dt} (E \times \pi R^2)$$

$$i_d = \varepsilon_0 \pi R^2 \frac{dE}{dt}$$

$$i_d = 8.854 \times 10^{-12} \times \pi \times (0.1)^2 \times 5 \times 10^{13}$$





In charging a parallel plate capacitor of capacity $10~\mu F$, it takes 0.5~s to reach potential difference of 50~V. If plate area of the capacitor is $10\times 10^{-12}~m^2$, then find:

- (a) Average conduction current during that time.
- (b) Average displacement current during that time.
- (c) Rate of change of electric field during that time.

Given:

$$\frac{\Delta V}{\Delta t} = 100 \, V/s$$

Area,
$$S = 10 \times 10^{-2} m^2$$

Solution:

(a) Charge on a capacitor,

$$Q = CV$$

Average conduction current,

$$(i_c)_{av} = \frac{\Delta Q}{\Delta t} = C\left(\frac{\Delta V}{\Delta t}\right)$$

$$(i_c)_{av} = 10 \times 10^{-6} \times 100 \ A$$

$$(i_c)_{av} = 10^{-3} A$$

(b) Displacement current,

$$i_d = \varepsilon_o \frac{d\phi_E}{dt}$$

Electric Flux:
$$\phi_E = \frac{Q}{S\varepsilon_o}.S = \frac{Q}{\varepsilon_o}$$

Average displacement current,

$$(i_d)_{av} = \varepsilon_o \frac{\Delta \phi_E}{\Delta t} = \frac{\Delta Q}{\Delta t} = (i_c)_{av}$$

$$(i_d)_{av} = 10^{-3} A$$

(c) Electric field:
$$E = \frac{Q}{S\varepsilon_0}$$

Rate of change of electric field:

$$\frac{\Delta E}{\Delta t} = \frac{1}{S\varepsilon_o} \frac{\Delta Q}{\Delta t} = \frac{(i_c)_{av}}{S\varepsilon_o}$$

$$\frac{\Delta E}{\Delta t} = \frac{10^{-3}}{10 \times 10^{-12} \times 8.854 \times 10^{-12}}$$

$$\frac{dE}{dt} = 1.1 \times 10^{19} \frac{V}{m \times s}$$

Maxwell's Equations

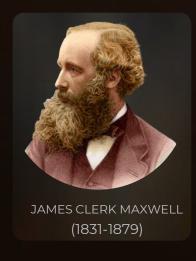
Unification of theories of electricity & magnetism when fields are varying with time.

Gauss's Law for Electrostatics

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q_{in}}{\varepsilon_0}$$

Faraday's law of EMF

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$$



Gauss's law for Magnetism

$$\oint \vec{B} \cdot d\vec{S} = 0$$

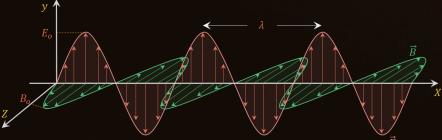
Ampere – Maxwell law

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 i_c + \varepsilon_0 \mu_0 \frac{d\phi_E}{dt}$$

Maxwell's Equations

- Accelerated motion of a charged particle generates EM Waves.
- Accelerated charged particle produces time varying electric field and it produces time varying magnetic field.

- The oscillating E.F. and M.F. are perpendicular to each other.
- The energy associated with the propagating wave comes at the expense of the energy of the source.

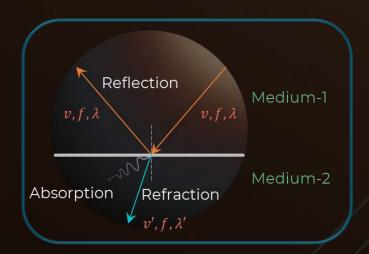


Some Other Sources of Electromagnetic Waves

- An electron orbiting around its nucleus in a stationary orbit does not emit electromagnetic wave. It will emit only during transition from higher energy orbit to lower energy orbit.
- Electromagnetic wave (X-ray) is produced when high speed electron enters into a target of high atomic weight.
- Electromagnetic wave (γ -ray) is produced during de-excitation of nucleus in radioactivity.

Characteristics and Nature of EM Waves

- EM waves do not require medium for their propagation.
- These waves travel with speed of light in vacuum.
- These waves are transverse in nature.
- They carry both energy and momentum.
- They can be reflected, refracted or absorbed.
- Frequency is inherent characteristic of EM waves. When it travels from one medium to another only its speed and wavelength changes.



Summary

$$E = E_y = E_0 \sin \omega \left(t - \frac{x}{c} \right)$$

$$B = B_Z = B_0 \sin \omega \left(t - \frac{x}{c} \right)$$

$$E = E_{y} = E_{0} \sin \omega \left(t - \frac{x}{c} \right)$$

$$B = B_Z = B_0 \sin \omega \left(t - \frac{x}{c} \right)$$

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\phi_B}{dt}$$

$$E_0 = cB_0$$

 $E_{0|}$

$$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$$

 $\oint \vec{B} \cdot d\vec{l} = \varepsilon_0 \mu_0 \frac{d\phi_E}{dt}$

Ampere's Law

Speed of EM Wave in a medium

- Speed of EM Wave in vacuum : $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
- Speed of EM Wave in medium

$$v = \frac{1}{\sqrt{\mu \varepsilon}}$$

$$v = \frac{1}{\sqrt{(\mu_0 \mu_r)(\varepsilon_0 \varepsilon_r)}}$$

$$v = \frac{1}{\sqrt{(\mu_0 \varepsilon_0)(\mu_r \varepsilon_r)}}$$

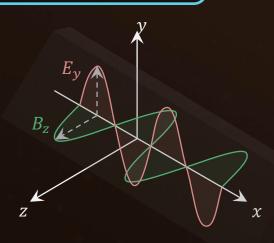
$$v = \frac{c}{\sqrt{\mu_r \varepsilon_r}}$$

 μ : Permeability of the medium

 ε : Permittivity of the medium

 μ_r : Relative permeability of the medium

 ε_r : Relative permittivity of the medium



The magnetic field in a plane electromagnetic wave is given by

$$B_{\nu} = 2 \times 10^{-7} \sin (0.5 \times 10^{3} x + 1.5 \times 10^{11} t) T.$$

- (a) What is the wavelength and frequency of the wave?
- (b) Write an expression for the electric field.

(a) Given:
$$B_v = 2 \times 10^{-7} \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) T$$

General equation magnetic field of EM wave:

$$B_y = B_0 \sin(kx + \omega t)$$

Therefore,

$$B_0 = 2 \times 10^{-7} T$$
 $\omega = 1.5 \times 10^{11} \ rad/s$ $k = 0.5 \times 10^3 \ m^{-1}$

$$\lambda = \frac{2\pi}{k} = \frac{2 \times 3.14}{0.5 \times 10^3}$$

$$\lambda = 1.26 cm$$

Wavelength of the wave: Frequency of the wave:

$$f = \frac{\omega}{2\pi} = \frac{1.5 \times 10^{11}}{2 \times 3.14}$$

$$f = 23.9 \, GHz$$

EM Waves are transverse wave. So, electric field of the given EM Wave will be along z-axis.

$$E_{\rm z} = E_0 \sin(kx + \omega t)$$

We know:
$$E_0 = cB_0$$

$$E_0 = (3 \times 10^8 \ ms^{-1}) \times (2 \times 10^{-7} \ T)$$

$$E_0 = 60 \, V/m$$

Therefore, the expression of electric field:

$$E_Z = 60 \sin(0.5 \times 10^3 x + 1.5 \times 10^{11} t) V/m$$

A plane electromagnetic wave of frequency 25 MHz travels in free space along the x-direction. At a particular point in space and time, $\vec{E} = 6.3 \,\hat{j} \, V/m$. What is \vec{B} at this point?

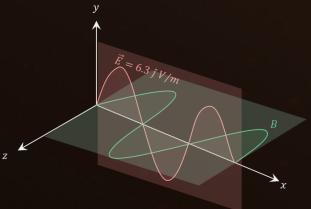
$$E_0 = cB_0$$

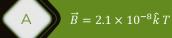
$$B_0 = \frac{E_0}{c}$$

$$B_0 = \frac{6.3}{3 \times 10^8} = 2.1 \times 10^{-8} \ T$$

Since the wave is propagating along $+ve\ x$ -direction, the magnetic field should be along $+ve\ z$ -direction.

This is because $(\vec{E} \times \vec{B})$ should be parallel to the direction of propagation of wave.





$$\vec{B} = 2.1 \times 10^{-8} \hat{j} T$$

$$\vec{B} = 2.1 \times 10^{-8} \hat{k} T$$

$$\vec{B} = 2.1 \times 10^{-10} \hat{j} \, T$$

$$\vec{B} = 6 \times 10^{-8} \hat{k} T$$

Summary

- Energy stored in a unit volume (dV) in any electric/magnetic field is known as Energy density.
- Energy density in electric field: $\frac{1}{2} \varepsilon_o E^2$
- Energy density in magnetic field : $\frac{B^2}{2\mu_0}$
- Average energy density in electric field :

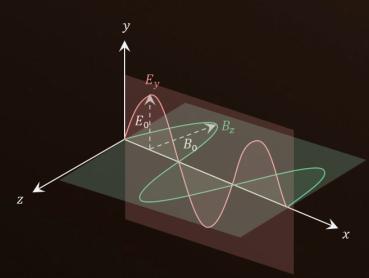
$$(U_E)_{avg} = \frac{1}{T} \int_0^T \frac{1}{2} \varepsilon_o E^2 dt = \frac{\varepsilon_o}{2T} \int_0^T E_0^2 \sin^2(\omega t - kx) dt$$

$$(U_E)_{avg} = \frac{\varepsilon_o}{2T} \times E_0^2 \times \frac{T}{2} \qquad (U_E)_{avg} = \frac{1}{4} \varepsilon_o E_0^2$$

Average energy density in magnetic field :

$$(U_B)_{avg} = \frac{1}{T} \int_0^T \frac{1}{2\mu_0} B^2 dt = \frac{1}{2\mu_0 T} \int_0^T B_0^2 \sin^2(\omega t - kx) dt$$

$$(U_B)_{avg} = \frac{1}{4\mu_0} B_0^2$$



Average energy density of EM Wave :

$$U_{avg} = \frac{1}{4} \varepsilon_o E_0^2 + \frac{1}{4\mu_o} B_0^2$$

Summary

$$E_{0} = cB_{0}$$

$$C = \frac{1}{\sqrt{\mu_{0}\varepsilon_{0}}}$$

$$(U_{E})_{avg} = \frac{1}{4}\varepsilon_{o}E_{0}^{2} = \frac{1}{4} \times \frac{1}{c^{2}\mu_{0}} \times c^{2}B_{0}^{2}$$

$$(U_{E})_{avg} = \frac{1}{4\mu_{o}}B_{0}^{2} = (U_{B})_{avg}$$

Average energy density of EM Wave :

$$U_{avg} = \frac{1}{4} \varepsilon_o E_0^2 + \frac{1}{4\mu_o} B_0^2$$

Or

$$U_{avg} = \frac{1}{2} \varepsilon_o E_0^2 = \frac{1}{2\mu_o} B_0^2$$

A plane electromagnetic wave has frequency 2×10^{10} Hz and its energy density is 1.02×10^{-8} J/m³ in vacuum. The amplitude of the magnetic field of the wave is close to:

Given:

Frequency of EM wave, $f = 2 \times 10^{10} Hz$

Energy density, $U_{avg} = 1.02 \times 10^{-8} j/m^3$

Solution:

Energy density,

$$U_{avg} = \frac{B_0^2}{2\mu_0}$$

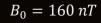
$$B_0 = \sqrt{2 \times \mu_0 \times U_{avg}}$$

$$B_0 = \sqrt{2 \times 4\pi \times 10^{-7} \times 1.02 \times 10^{-8}} \ T$$

$$B_0 = 160 \times 10^{-9} T$$

150~nT

160 nT



180 nT

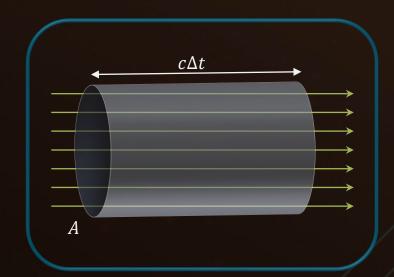
190 nT

Intensity of EM Waves

- The energy crossing per unit area per unit time perpendicular to the direction of propagation of wave is called the intensity of wave.
- Energy passing through cylindrical area A per unit time:

$$\frac{U}{\Delta t} = \frac{1}{2} \varepsilon_o E_o^2 \times A \times c = \frac{B_o^2}{2\mu_o} \times A \times c$$

$$I = \frac{U}{A\Delta t} = \frac{1}{2}\varepsilon_o E_o^2 c = \frac{B_o^2}{2\mu_o} c$$



Intensity due to a Point Source

- The power of the source : P
- Intensity at a distance r due to the source :

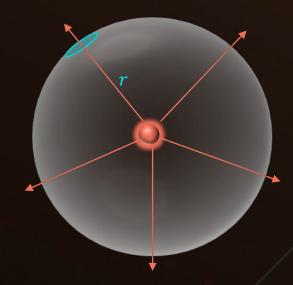
$$I = \frac{E}{A \times t} = \frac{P}{A}$$

$$I = \frac{P}{4\pi r^2}$$

Intensity is inversely proportional to square of r.

So, the intensity due to a point source obeys the inverse square law.

• Unit: $Watt/m^2$ or $\frac{J}{s m^2}$



A 27 mW laser beam has a cross-sectional area of $10 mm^2$. The magnitude of the maximum electric field in this electromagnetic wave is given by :

Given:

Power of laser beam, $P = 27 \text{ mW} = 27 \times 10^{-3} \text{ W}$

Cross-sectional area, $A = 10 \text{ } mm^2 = 10 \times 10^{-6} \text{ } m^2$

Solution:

Intensity of EM wave,

$$I = \frac{Power}{Area} = \frac{1}{2} \varepsilon_0 E_0^2 c$$

$$\frac{27 \times 10^{-3}}{10 \times 10^{-6}} = \frac{1}{2} \times 9 \times 10^{-12} \times E_0^2 \times 3 \times 10^8$$

$$E_0 = \sqrt{2 \times 10^6} \ V/m$$

$$E_0 = 1.414 \times 10^3 \ V/m$$

 $E_0 = 1.4 \, kV/m$

1 kV/m

 $0.7 \ kV/m$

2 kV/m

 $1.4 \; kV/m$

Momentum and Radiation Pressure

- Electromagnetic wave carries energy and momentum with it.
- Momentum of EM waves :

$$p = \frac{U}{c}$$

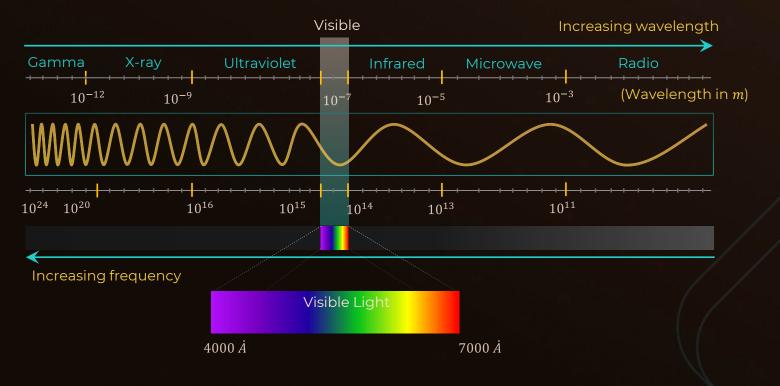
U: Energy carried by EM wave in free space

Radiation pressure is defined as "Force exerted by EM Wave on unit surface area".

Condition	Radiation Pressure
Surface completely absorbs the radiation falling on it	$\frac{I}{c}$
Surface completely reflects the radiation falling on it	$\frac{2I}{c}$

Electromagnetic Spectrum

 The orderly distribution of electromagnetic radiations according to their frequency (or wavelength) is called "Electromagnetic spectrum".



Different Region of Electromagnetic Spectrum

Gamma Rays

- Produced by the disintegration of radioactive atomic nuclei.
- Used in medicine to destroy cancer cells.

Frequency: $10^{19} Hz - 10^{24} Hz$

Wavelength: $< 10^{-11} m$

X - Rays

- Produced due to sudden deceleration of fast-moving electrons when they collide and interact with the target anode.
- Used as a diagnostic tool in medicine to detect fracture of bones and foreign bodies.

Frequency: $10^{16} Hz - 10^{20} Hz$

Wavelength: $10^{-8} m - 10^{-13} m$

Different Region of Electromagnetic Spectrum

Ultraviolet Rays

- Produced by special lamps and very hot bodies (E.g., sun).
- Useful for eye surgery, detect skin disease, water purification etc.

Frequency: $10^{15} Hz - 10^{17} Hz$

Wavelength: $400 \, nm - 1 \, nm$

Visible Rays

- Produced by atomic excitation.
- It is detected by the eyes, photocells and photographic films.

Frequency: $4 \times 10^{14} Hz - 7 \times 10^{14} Hz$

Wavelength: 700 nm - 400 nm

E_O

Different Region of Electromagnetic Spectrum

Infrared Rays

- Produced by hot bodies i.e., vibration of atoms and molecules.
- Used in the remote switches of household electronic system.

Frequency: 10¹² *Hz* - 10¹⁴ *Hz*

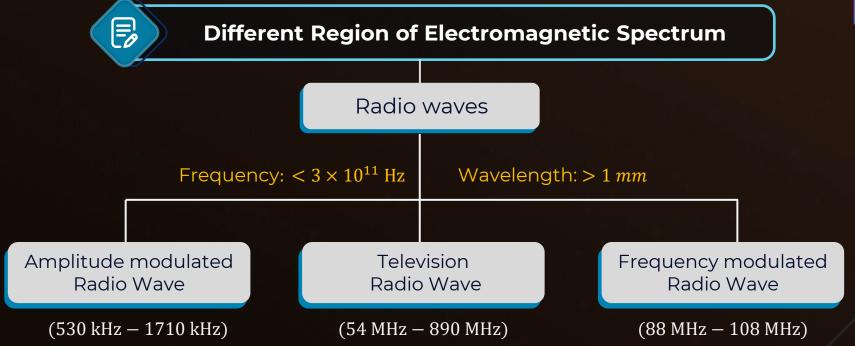
Wavelength: $25 \mu m - 2.5 \mu m$

Microwaves

- Produced by special vacuum tubes. (E.g., Klystrons, Gunn diodes etc.)
- Used in radar system for aircraft navigation and microwave ovens.

Frequency: $3 \times 10^{11} Hz - 10^{13} Hz$

Wavelength: 1 mm - 25 mm



- They are produced by the accelerated motion of charges in conducting wires.
- They are used in radio and television communication system.

Choose the correct option relating wavelength of different parts of electromagnetic wave spectrum:

Solution:

