Welcome to

Qutitash BBYJus NOTES

Electric Potential

- Electrical Potential is a scalar quantity capable of describing the nature of the electric field in the $3 D$ space.

- When a charge $+q$ is moved from point A to B in a region of electric field under the action of an external force, the potential energy change is given by,
$U_{B}-U_{A}=W_{\text {ext }}$ provided $\triangle K E=0$.

- The change in electric potential is defined as the change in potential energy per unit charge.

$$
V_{B}-V_{A}=\frac{U_{B}-U_{A}}{q}
$$

? The kinetic energy of a charged particle decreases by 10 J as it moves from a point at potential 100 V to a point at potential 200 V . Find the charge on the particle.

Solution:

$\Delta K E=-10 J$
From the conservation of mechanical energy principle -
$W_{e x t}+W_{e l}=\Delta K E$

$W_{e l}=\Delta K E=-\Delta U \quad\left(\right.$ Considering $\left.W_{\text {ext }}=0\right)$

$$
-\left(U_{f}-U_{i}\right)=\Delta K E=-q\left(V_{f}-V_{i}\right)
$$

$$
-q(200-100)=-10 J
$$

$$
q=0.10 C
$$

$$
-q\left(V_{f}-V_{i}\right)=-10 J
$$

Electric Potential of a Point Charge

$U_{r}=\frac{Q q}{4 \pi \varepsilon_{0} r}$

$$
\begin{aligned}
& q)^{\infty} \\
& U_{\infty}=0
\end{aligned}
$$

Change in potential energy of the system in moving charge q from $r=\infty$ to $r=r: U_{P}-U_{\infty}=\frac{Q q}{4 \pi \varepsilon_{0} r}$
$\Rightarrow V_{P}(r)=\frac{Q}{4 \pi \varepsilon_{0} r}=$ Electric potential at point P due to charge Q

Point Charge	$\vec{E}(\hat{r})$	$V_{P}(r)$
$+Q$	$\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$	$\frac{Q}{4 \pi \varepsilon_{0} r}$
$-Q$	$\frac{-Q}{4 \pi \varepsilon_{0} r^{2}} \hat{r}$	$\frac{-Q}{4 \pi \varepsilon_{0} r}$

Four electric charges $+q,+q,-q$ and $-q$ are placed at the corners of a square of side $2 L$. The electric potential at point A, midway between the two charges $+q$ and $+q$, is:

Solution:

$$
\begin{aligned}
V_{\text {net }} & =V_{1}+V_{2}+V_{3}+V_{4} \\
& =\frac{k q}{L}+\frac{k q}{L}+\left(-\frac{k q}{\sqrt{5} L}\right)+\left(-\frac{k q}{\sqrt{5} L}\right) \\
& =\frac{2 k q}{L}-\frac{2 k q}{\sqrt{5} L}
\end{aligned}
$$

$$
V_{n e t}=\frac{2 k q}{L}\left(1-\frac{1}{\sqrt{5}}\right)
$$

Electric Dipole

\(\left.\begin{array}{|c|c|c|}\hline Location of P \& \vec{E}(r) \& V(r)

\hline At the axis \& \frac{2 \vec{p}}{4 \pi \varepsilon_{0} r^{3}} \& \frac{p}{4 \pi \varepsilon_{0} r^{2}}

\hline At the equatorial plane \& -\frac{\vec{p}}{4 \pi \varepsilon_{0} r^{3}} \& 0

\hline At any general point \& \frac{p\left(1+3 \cos ^{2} \theta\right)^{\frac{1}{2}}}{4 \pi \varepsilon_{0} r^{3}}

(Magnitude)\end{array}\right]\)| $4 \pi \varepsilon_{0} r^{3}$ |
| :--- |

Two electric dipoles, A, B with respective dipole moments $d_{A}=-4 a q \hat{\imath}$ and $d_{B}=-2 a q \hat{\imath}$ are placed on the x-axis with a separation R, as shown in the figure. The distance from A at which both produce the same potential is

Solution :

Electric potential produced at point P by both electric dipoles -

$$
\begin{aligned}
& -\frac{4 a q}{4 \pi \varepsilon_{0} s^{2}}=-\frac{2 a q}{4 \pi \varepsilon_{0}(s-R)^{2}} \\
& \Rightarrow(s-R)^{2}=\frac{s^{2}}{2} \\
& s=\frac{\sqrt{2} R}{\sqrt{2}-1} \quad(\because s>R)
\end{aligned}
$$

$$
V_{o}=\frac{K Q}{R}
$$

展 Relation between Electric Field and Potential

Work done by the electric field
$d W_{e l}=\vec{F}_{e l} \cdot d \vec{r}=q \vec{E} \cdot d \vec{r}$
$d U=-d W_{e l}$
$d U=-q \vec{E} \cdot d \vec{r}$

Change in electric potential
$d V=\frac{d U}{q}=-\vec{E} \cdot d \vec{r}$
$V_{2}-V_{1}=-\int_{\vec{r}_{1}}^{\vec{r}_{2}} \vec{E} \cdot d \vec{r}$

In Cartesian coordinate system
For $V=f(x, y, z)$ corresponding to the
electric field $\vec{E}=E_{x} \hat{\imath}+E_{y} \hat{\jmath}+E_{z} \hat{k}$
$d V=-\vec{E} \cdot d \vec{r}$
$\vec{E}=-\frac{\partial V}{\partial x} \hat{\imath}-\frac{\partial V}{\partial y} \hat{\jmath}-\frac{\partial V}{\partial z} \hat{k}$

? The electric potential existing in space is $V(x, y, z)=A(x y+y z+z x)$
a. Find the expression for the electric field.
b. If A is $10 \mathrm{Vm}^{-2}$, then find the magnitude of the electric field at ($1 \mathrm{~m}, 1 \mathrm{~m}, 1 \mathrm{~m}$)

Solution :

$$
\begin{array}{lc}
E_{x}=-\frac{\partial V}{\partial x}=-A[y+0+z]=-A(y+z) & \vec{E}=-\frac{\partial V}{\partial x} \hat{\imath}-\frac{\partial V}{\partial y} \hat{\jmath}-\frac{\partial V}{\partial z} \hat{k} \\
E_{y}=-\frac{\partial V}{\partial y}=-A[x+z+0]=-A(x+z) & \vec{E}=-A[(y+z) \hat{\imath}+(x+z) \hat{\jmath}+(x+y) \hat{k}] \\
E_{z}=-\frac{\partial V}{\partial z}=-A[0+y+x]=-A(x+y) & |\vec{E}(1,1,1)|=20 \sqrt{3} \mathrm{Vm}^{-1}
\end{array}
$$

?
Find out the potential difference between points A and B.

Solution :

We know : $V_{i}-V_{f}=\int \vec{E} \cdot d \vec{r}$

Displacement : $\vec{r}=(4-1) \hat{\imath}+(6-2) \hat{\jmath}=3 \hat{\imath}+4 \hat{\jmath}$
Electric field : $\vec{E}=E_{0} \cos 45^{\circ} \hat{\imath}+E_{0} \sin 45^{\circ} \hat{\jmath}$

$$
\vec{E}=\frac{E_{0}}{\sqrt{2}}(\hat{\imath}+\hat{\jmath})
$$

As the electric field is uniform,

$$
\begin{aligned}
V_{A}-V_{B} & =\vec{E} \cdot \vec{r} \\
\Rightarrow V_{A}-V_{B} & =\frac{E_{0}}{\sqrt{2}}(\hat{\imath}+\hat{\jmath}) \cdot(3 \hat{\imath}+4 \hat{\jmath})
\end{aligned}
$$

$$
V_{A}-V_{B}=\frac{7 E_{0}}{\sqrt{2}}
$$

- A surface on which potential is same at every point.
- Electric field at any point on an equipotential surface is perpendicular to it. $(\because \vec{E} \cdot d \vec{r}=0)$
- Work done by electrostatic force in moving a charge from one point to the other on such a surface is zero.

Point Charge

Uniform Line Charge

Plane Sheet of Charge

?
Some equipotential surfaces are shown. Find the magnitude of the electric field and the angle it makes with the x-axis.

Solution:

$$
\begin{aligned}
E & =\frac{V_{2}-V_{1}}{d} \\
& =\frac{20-10}{10 \sin 30^{\circ} \times 10^{-2}} \frac{\mathrm{~V}}{\mathrm{~m}} \\
& =\frac{10}{5} \times 100 \frac{\mathrm{~V}}{\mathrm{~m}} \\
E & =200 \mathrm{~V} / \mathrm{m}\left(120^{\circ} \mathrm{w} . r . t . x \text {-axis }\right)
\end{aligned}
$$

- Direction of electric field is from high potential to low potential.
- Electric field vector is perpendicular to the equipotential surface.

Figure shows lines of constant potential in a region in which an electric field is present. At which point among P, Q, R and S the magnitude of the electric field will be greatest?

Solution:

Relation between electric field and potential :

$$
E=-\frac{d V}{d r}
$$

Here, difference in potential between equipotential surfaces is constant (10 V).

For equipotential surfaces, this relation can be written as :

$$
E \propto \frac{1}{d r}
$$

So, magnitude of the electric field will be greatest where spacing between equipotential surfaces will be less.

The magnitude of electric field will be greatest at point R.

10 V
?
Consider the situation given in the figure. The work done in taking a point charge from P to A is W_{A}, from P to B is W_{B}, and from P to C is W_{C}. Find the relation between W_{A}, W_{B}, W_{C}.

Solution:

- Equipotential surface of a point charge is a sphere.
- Potential of each point A, B and C is same.

$$
W_{12}=q \int \vec{E} \cdot d \vec{r}=q\left(V_{1}-V_{2}\right)
$$

- Work done to go from point P to point A, B and C through individual paths will also be same.

Electric Potential due to Uniformly Charged Ring

- Electric potential at point P due to a charge element $d q$:

$$
d V=\frac{k d q}{\sqrt{x^{2}+R^{2}}}
$$

- Net electric potential at point P due to whole ring :

$$
\begin{aligned}
& V=\int d V \\
& V=\int \frac{k d q}{\sqrt{x^{2}+R^{2}}} \\
& V=\frac{k Q}{\sqrt{x^{2}+R^{2}}}
\end{aligned}
$$

目 Electric Field due to Uniformly Charged Ring

- Electric potential at point P on the axis of uniformly charged ring:

$$
V=\frac{k Q}{\sqrt{x^{2}+R^{2}}}
$$

- $\quad V$ varies with x only. So, the electric field at P :
$\vec{E}=-\frac{d V}{d x} \hat{x}$
$\vec{E}=-\frac{d}{d x}\left(\frac{k Q}{\sqrt{x^{2}+R^{2}}}\right) \hat{x}$
$\vec{E}=(-k Q)\left(-\frac{1}{2}\right)\left(\left(x^{2}+R^{2}\right)^{-\frac{3}{2}}\right)(2 x) \hat{x}$

? A non-conducting ring of radius 0.5 m carries a total charge of $1.11 \times 10^{-10} \mathrm{C}$ distributed non-uniformly on its circumference producing an electric field E everywhere in space. The value of the integral $\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}(l=0$ being the centre of the ring) in volt is \qquad

Solution:

$\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}=\int_{l=\infty}^{l=0} d V \quad \Rightarrow \int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}=V($ centre $)-V($ infinity $)$
If the point at infinity is chosen as reference point, then, $\quad V$ (infinity) $=0$

$$
\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}=V(\text { centre })=\text { Potential at centre of ring }
$$

$$
\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}=V(\text { centre })=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{R}
$$

$$
\int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l}=\frac{\left(9 \times 10^{9}\right)\left(1.11 \times 10^{-10}\right)}{0.5} \quad \Rightarrow \quad \int_{l=\infty}^{l=0}-\vec{E} \cdot d \vec{l} \approx 2 V
$$

A uniformly charged ring of radius $3 a$ and total charge q is placed in $x y$-plane centred at origin. A point charge q is moving towards the ring along the z-axis and has speed v at $z=4 a$. The minimum value of v such that it crosses the origin is

Solution:

JEE MAIN 2019
Potential at any on the axis of the ring at distance z from its centre is,
$V_{P}=\frac{k q}{\sqrt{R^{2}+z^{2}}}=\frac{k q}{\sqrt{(3 a)^{2}+(4 a)^{2}}}=\frac{k q}{5 a}$
Potential at the centre of the ring is,
$V_{C}=\frac{k q}{\sqrt{R^{2}+z^{2}}}=\frac{k q}{\sqrt{(3 a)^{2}+(0)^{2}}}=\frac{k q}{3 a}$
Energy required to move the point charge from $x=4 a$ to the centre is,

$$
\begin{aligned}
\Delta U & =q \Delta V=q\left(V_{C}-V_{P}\right) \\
\Delta U & =\frac{k q^{2}}{a}\left[\frac{1}{3}-\frac{1}{5}\right] \Rightarrow \Delta U=\frac{2}{15} \frac{k q^{2}}{a}
\end{aligned}
$$

The particle will able to cross the centre of the ring, if,

$$
\Delta U \leq \frac{1}{2} m v^{2}
$$

So, minimum energy required is,
$\frac{1}{2} m v^{2}=\frac{2}{15} \frac{k q^{2}}{a}$
$v^{2}=\frac{2}{m}\left(\frac{2}{15} \frac{q^{2}}{4 \pi \varepsilon_{0} a}\right)$
$v=\sqrt{\frac{2}{m}}\left(\frac{2}{15} \frac{q^{2}}{4 \pi \varepsilon_{0} a}\right)^{1 / 2}$

E Electric Potential due to Uniformly Charged Disc

- Due to symmetry, a disc can be thought of as a collection of concentric rings.
- Surface charge density: $\quad \sigma=\frac{Q}{\pi R^{2}}$
- Electric potential at point P due to a elementary charged ring of charge $d q$, radius r and thickness $d r$:

$$
d V=\frac{k(\sigma \times 2 \pi r d r)}{\sqrt{x^{2}+r^{2}}}
$$

- Electric potential at point P due to whole disc :

$$
V=\int_{0}^{R} \frac{k(\sigma \times 2 \pi r d r)}{\sqrt{x^{2}+r^{2}}}=\frac{\sigma}{2 \varepsilon_{0}} \int_{0}^{R} \frac{r d r}{\sqrt{x^{2}+r^{2}}}
$$

$$
V(x)=\frac{\sigma}{2 \varepsilon_{0}}\left[\left(x^{2}+R^{2}\right)^{\frac{1}{2}}-x\right]
$$

- Electric potential at point P on the axis of uniformly charged disc :

$$
V(x)=\frac{\sigma}{2 \varepsilon_{0}}\left[\left(x^{2}+R^{2}\right)^{\frac{1}{2}}-x\right]
$$

- $\quad V$ varies with x only. So, the electric field at P :

$$
\begin{aligned}
& \vec{E}=-\frac{d V}{d x} \hat{x} \\
& \vec{E}=\left(-\frac{\sigma}{2 \varepsilon_{0}}\right)\left[\left\{\left(\frac{1}{2}\right)\left(\left(x^{2}+R^{2}\right)^{-\frac{1}{2}}\right)(2 x)\right\}-1\right] \hat{x}
\end{aligned}
$$

$$
\vec{E}=\frac{\sigma}{2 \varepsilon_{0}}\left[1-\frac{x}{\left(x^{2}+R^{2}\right)^{\frac{1}{2}}}\right] \hat{x}
$$

?
A point charge q_{1} is fixed and a point charge q_{2} of mass m at infinity starts moving towards q_{1} with velocity v_{0} as shown in figure. Find the minimum separation distance between the two charges.

Solution:

(Fixed)

$$
v=0
$$

Using Principle of Conservation of Mechanical Energy,

$$
\begin{gathered}
U_{i}+K_{i}=U_{f}+K_{f} \\
\Rightarrow 0+\frac{1}{2} m v_{0}^{2}=\frac{k q_{1} q_{2}}{r_{\min }}+0 \quad r_{\min }=\frac{2 k q_{1} q_{2}}{m v_{0}^{2}}
\end{gathered}
$$

Excess charge given to an isolated conductor redistributes itself on the conductor's surface in order to minimize the potential energy and maximize stability.

When an isolated conductor is placed in an external electric field, internal division of charges occurs, resulting an internal Electric Field $\left(\vec{E}_{i}\right)$ in the direction opposite to external Field (\vec{E}). This phenomenon is call Polarisation of charges.

冨 Conductor under Electrostatic Steady State Conditions

Net electric field inside a conductor is zero.

$$
\left(\vec{E}_{n e t}=\vec{E}_{i}+\vec{E}=\overrightarrow{0}\right)
$$

Conductor is an equipotential body under electrostatic conditions.

$$
(d V=\vec{E} \cdot d \vec{r}=0)
$$

- For $\vec{E}_{t}($ tangetial component of $E) \neq 0$, the charge will start moving along the boundary of conductor, which means the conditions of electrostatic steady state are no longer satisfied.
- Hence, the net electric field at the surface of the conductor is always perpendicular to the surface.

?
A metallic solid sphere is placed in a uniform electric field. The lines of force follow the path(s) shown in figure as

C) 3
(D) 4

- Under electrostatic steady state condition, net electric field in the material of the conductor is zero.
- In accordance with the Uniqueness theorem, Inside the conductor material,

$$
\begin{aligned}
\vec{E}_{q}+\vec{E}_{\text {induced }} & =0 \\
\vec{E}_{\text {surface }} & =0
\end{aligned}
$$

- The charge distribution on the outer surface is unaffected by the movement of the point charge inside the cavity.
- External charge brought near the conductor will only affects the outer surface charge distribution of the conductor.

Shape of Conductor	Charge distribution $\left(S_{1}\right)$	Charge distribution $\left(S_{2}\right)$
S_{2}		
$S_{1} Q_{C}^{q}$	Uniform	Uniform
S_{2}	S_{1} Q_{q} C Non-uniform Uniform	

Shape of Conductor	Charge distribution $\left(S_{1}\right)$	Charge distribution $\left(S_{2}\right)$
S_{2}	Non-uniform	Uniform

Under electrostatic condition, the surface charge density at any point is inversely proportional to its radius of curvature.

$$
\sigma \propto \frac{1}{r}
$$

An elliptical cavity is carved within a perfect conductor. A positive charge q is placed at the centre of the cavity. The points A and B are on the cavity surface as shown in the figure. Then

A electric field near A in the cavity = electric field near B in the cavity.

B) charge density at $A=$ charge density at B
C) potential at $A=$ potential at B

D None of these

Electric Potential

Uniformly Charged Thin Spherical Shell		$\begin{array}{r} V(r) \\ \frac{k Q}{R} \end{array}$	$r=R$	
Solid Conducting Sphere		$\begin{array}{r} V(r) \\ \frac{k Q}{R} \end{array}$	$r=R$	

? A spherical metal shell A of radius R_{A} and a solid metal sphere B of radius $R_{B}\left(<R_{A}\right)$ are kept far apart and each is given charge $+Q$. Now they are connected by a thin metal wire. Then find out;

1. Electric field inside shell A
2. relation between $Q_{A} \& Q_{B}$

$$
\text { 3. } \frac{\sigma_{A}}{\sigma_{B}}
$$

2. relation between $Q_{A} \& Q_{B}$

A

The electric field inside a conducting shell is always zero.

Electric field inside shell $A=0$

When both the shell and sphere are connected by a metal wire, their potentials become equal.

$$
\begin{aligned}
& \Rightarrow V_{A}=V_{B} \\
& \Rightarrow \frac{k Q_{A}}{R_{A}}=\frac{k Q_{B}}{R_{B}} \\
& \Rightarrow \frac{Q_{A}}{Q_{B}}=\frac{R_{A}}{R_{B}}>1 \\
& \Rightarrow Q_{A}>Q_{B}
\end{aligned}
$$

$$
\begin{gathered}
\frac{Q_{A}}{Q_{B}}=\frac{R_{A}}{R_{B}} \\
\Rightarrow \frac{Q_{A}}{4 \pi R_{A}^{2}} \times \frac{4 \pi R_{B}^{2}}{Q_{B}}=\frac{R_{A}}{R_{B}} \times \frac{4 \pi R_{B}^{2}}{4 \pi R_{A}^{2}}
\end{gathered}
$$

$$
\Rightarrow \frac{\sigma_{A}}{\sigma_{B}}=\frac{R_{B}}{R_{A}}
$$

Uniformly Charged Non-Conducting Sphere

| Outside
 the sphere
 $(r>R)$ | $V(r)=\frac{k Q}{r}$ | $V(r)=\frac{\rho R^{3}}{3 \varepsilon_{0} r}$ |
| :--- | :--- | :--- | :--- |,$V_{0}=\frac{\rho R^{2}}{2 \epsilon_{0}}$

?
Consider a uniformly charged non-conducting sphere of radius R. Electric potential at distance $2 R$ from its centre was found to be 20 V . What would be the potential at the centre of the sphere?

Solution:

Electric potential outside the uniformly charged non-conducting sphere is given by,
$V(r)=\frac{\rho R^{3}}{3 \epsilon_{0} r}$ for $r>R$
$\Rightarrow V(r=2 R)=\frac{\rho R^{3}}{3 \epsilon_{0} \times 2 R}=\frac{\rho R^{2}}{6 \epsilon_{0}}$

$$
\begin{aligned}
& \Rightarrow 3 \times V(r=2 R)=V(r=0) \\
& \Rightarrow 3 \times 20=V(r=0)
\end{aligned}
$$

charged non-conducting sphere is given by,

$$
V(r=0)=\frac{\rho R^{2}}{2 \epsilon_{0}}
$$

$$
V(r=0)=60 \mathrm{~V}
$$

冨 Electric Field outside Charged Conductor's surface

We take a small area ds of the conductor of charge density $\sigma_{\text {local }}$,

Take a Gaussian cylindrical surface as shown, Applying Gauss's Theorem,

$$
\begin{aligned}
& \phi_{n e t}=\phi_{1}+\phi_{2}+\phi_{3} \\
& \phi_{1}=E \cdot d s=\frac{\sigma_{l o c a l} \cdot d s}{\varepsilon_{0}} \Rightarrow E=\frac{\sigma_{l o c a l}}{\varepsilon_{0}} \\
& \phi_{2}=0 \quad(E \text { is zero inside the conductor }) \\
& \phi_{3}=0 \quad \text { (} E \text { is parallel to the curved surface) }
\end{aligned}
$$

Thus, Electric field just outside the charged conductor's surface is,

$$
E_{n e t}=\frac{\sigma_{l o c a l}}{\varepsilon_{0}}
$$

冨
 Electric Pressure on a Charged Metal Surface

Let us consider the electric field at points X and Y,

$$
\begin{aligned}
& \text { At } X, \quad \vec{E}_{X}=\vec{E}_{d S}+\vec{E}_{\text {rest }}=\frac{\sigma_{\text {local }}}{\varepsilon_{0}} \hat{n} \\
& \text { At } Y, \vec{E}_{Y}=\vec{E}_{d S}+\vec{E}_{\text {rest }}=\overrightarrow{0}
\end{aligned}
$$

From the two equations,

$$
\vec{E}_{d S}=\frac{\sigma_{\text {local }}}{2 \varepsilon_{0}} \hat{n} \Rightarrow\left|\vec{E}_{\text {rest }}\right|=\left|\vec{E}_{d S}\right|=\frac{\sigma_{\text {local }}}{2 \varepsilon_{0}}
$$

Calculating the force experienced by $d S$,

$$
\begin{aligned}
& (d F)_{d S}=(d q)_{d S} \times E_{\text {rest }} \\
\Rightarrow & (d F)_{d S}=\frac{\left(\sigma_{\text {local }}\right)^{2}}{2 \varepsilon_{0}} d S
\end{aligned}
$$

The pressure experienced by the small section of area $d S$ is,

$$
P_{e}=\frac{\left(\sigma_{\text {local }}\right)^{2}}{2 \varepsilon_{0}}
$$

We know that the electrostatic pressure on the surface of the conductor due to mutual repulsion of the charges is $P_{e}=\frac{\left(\sigma_{\text {local }}\right)^{2}}{2 \varepsilon_{0}}=\frac{1}{2} \varepsilon_{0} E_{n e t}^{2}$

Let $d V$ be the change in volume due to this pressure.

Thus, work done $d W, \quad|d W|=d U=P_{e} d V$

$$
d U=\left(\frac{1}{2} \varepsilon_{0} E_{n e t}^{2}\right) d V
$$

Thus, energy density is, $\frac{d U}{d V}=\left(\frac{1}{2} \varepsilon_{0} E_{n e t}^{2}\right)$

The energy associated with a uniform electric field is,

$$
U=\int d U=\left(\frac{1}{2} \varepsilon_{0} E_{n e t}^{2}\right) V
$$

The energy associated with a non-uniform electric field is,

$$
U=\int d U=\int\left[\frac{1}{2} \varepsilon_{0} E^{2}\right] d V
$$

Self Energy of a Uniform Spherical Shell

The total work required to assemble the charges on the shell will be stored as the potential energy of the shell. This stored energy is known as its self energy

Let's take an initially uncharged thin spherical shell and charge it by bringing charges externally from infinity to the shell.

Electric potential due to the charge q on surface is,

$$
V=\frac{k q}{R}
$$

Total work to assemble Q charge on the shell is,

$$
W_{n e t}=\int d W_{n e t}=\int V d q=\int_{0}^{Q} \frac{k q}{R} d q
$$

Thus, self energy of the uniformly charged spherical shell is,

$$
U_{n e t}=\frac{k Q^{2}}{2 R}
$$

Consider two regions of storing the self energy of the shell: space inside the boundary of the shell, and space outside the boundary

$$
U_{\text {self }}=U_{\text {inside }}+U_{\text {outside }}
$$

Since the electric field inside is zero,

$$
U_{\text {self }}=0+\int \frac{1}{2} \varepsilon_{0} E_{\text {outside }}{ }^{2} d V=\frac{\varepsilon_{0}}{2} \int_{\text {outside }} E^{2} d V
$$

Using a hypothetical shell of radius $r(r>R)$, and thickness $d r$, we get $d V=4 \pi r^{2} d r$

$$
U_{\text {self }}=\frac{\varepsilon_{0}}{2} \int_{R}^{\infty}\left[\frac{Q}{4 \pi \varepsilon_{0} r^{2}}\right]^{2} 4 \pi r^{2} d r
$$

Solving, we get

$$
U_{\text {self }}=\frac{k Q^{2}}{2 R}
$$

Volume Charge density of the sphere is, $\quad \rho=\frac{Q}{\frac{4}{3} \pi R^{3}}=\frac{3 Q}{4 \pi R^{3}}$
Charge contained inside the sphere of radius r is,

$$
q=\frac{4}{3} \pi r^{3} \rho=\frac{4}{3} \pi r^{3} \times \frac{3 Q}{4 \pi R^{3}}=\frac{Q r^{3}}{R^{3}}
$$

Potential at the surface of the considered shell is,

$$
V=\frac{q}{4 \pi \varepsilon_{0} r}=\frac{Q r^{3}}{R^{3}} \times \frac{1}{4 \pi \varepsilon_{0} r}=\frac{Q r^{2}}{4 \pi \varepsilon_{0} R^{3}}
$$

Charge required to increase the radius from r to $r+d r$ is,

$$
d q=\rho \cdot 4 \pi r^{2} d r=\frac{3 Q}{4 \pi R^{3}} \times 4 \pi r^{2} d r=\frac{3 Q}{R^{3}} r^{2} d r
$$

The total work done in assembling the charged sphere of radius R is,

$$
\begin{aligned}
W_{\text {net }} & =\int_{0}^{Q} V d q=\int_{0}^{R} \frac{Q r^{2}}{4 \pi \varepsilon_{0} R^{3}} \times \frac{3 Q}{R^{3}} r^{2} d r \\
& =\frac{3 Q^{2}}{4 \pi \varepsilon_{0} R^{6}} \int_{0}^{R} r^{4} d r=\frac{3 Q^{2}}{20 \pi \varepsilon_{0} R} \\
& U_{\text {self }}=\frac{3 Q^{2}}{20 \pi \varepsilon_{0} R}
\end{aligned}
$$

冨 Induction and Redistribution of Charge

Earthing of Conductors

Electrostatically,

- Earth is an infinite resource and a sink of charges
- Earth's potential is assumed to be zero
i.e. $\quad V_{e}=\frac{k Q}{R_{e}}=0$

Whenever a conductor is grounded, it results in the charge transfer to/from the Earth till its potential becomes zero.

It is not necessary that the charge on the body becomes zero. There are certain cases where the potential of the body becomes zero but the net charge remains non-zero

Thus, after earthing,

$$
V_{\text {conductor }}=V_{\text {earth }}=0
$$

?
There are two uncharged identical metallic spheres of radius a, separated by a distance d. A charged metallic sphere (charge q) of same radius is brought and it touches sphere 1. After some time, it is moved to a far off distance. After this, the sphere 2 is earthed. Find the charge on sphere 2.

Solution:

Since the sphere 2 is grounded,

$$
\begin{aligned}
& V_{2}=\frac{k\left(\frac{q}{2}\right)}{d}+\frac{k q^{\prime}}{a}=0 \\
& \Rightarrow \frac{q}{2 d}+\frac{q^{\prime}}{a}=0 \\
& q^{\prime}=-\frac{q a}{2 d}
\end{aligned}
$$

? A charge q is distributed uniformly on the surface of a solid sphere of radius R. It is covered by a concentric hollow conducting sphere of radius $2 R$. Find the charges on the inner and outer surfaces of the hollow sphere if it is earthed.

Solution:

Since the shell B is grounded outside,

$$
\begin{aligned}
& V_{B}=\frac{k(+q)}{2 R}+\frac{k(-q)}{2 R}+\frac{k q^{\prime}}{2 R}=0 \\
& \Rightarrow \frac{k q^{\prime}}{2 R}=0 \\
& q^{\prime}=0
\end{aligned}
$$

?
Two concentric shells A and B have radii a and b as shown in the figure. The shell B is given charge q and the shell A is earthed. Find the charge appearing on the outer surface of shell A.

Solution:

Since the shell A is grounded outside,

$$
\begin{aligned}
& V_{A}=\frac{k\left(q_{1}\right)}{a}+\frac{k\left(-q_{1}\right)}{b}+\frac{k\left(q+q_{1}\right)}{b}=0 \\
& \Rightarrow \frac{q_{1}}{a}-\frac{q_{1}}{b}+\frac{q}{b}+\frac{q_{1}}{b}=0 \\
& \Rightarrow q_{1}=-\frac{a}{b} q
\end{aligned}
$$

$$
\left(q_{A}\right)_{\text {outer }}=-\frac{q a}{b}
$$

? Three concentric shells A, B and C have radii a, b and c. The shells A and C are given charges q and $-q$ respectively and shell B is earthed. Find the charges appearing on the outer surface of B and C.

Solution:

Since the shell B is grounded outside,

$$
\begin{aligned}
& \left(V_{n e t}\right)_{B}=\frac{k q}{b}+\frac{k(-q)}{b}+\frac{k q^{\prime}}{b}+\frac{k\left(-q^{\prime}\right)}{c}+\frac{k\left(q^{\prime}-q\right)}{c}=0 \\
& \Rightarrow \frac{q}{b}-\frac{q}{b}+\frac{q^{\prime}}{b}-\frac{q^{\prime}}{c}+\frac{q^{\prime}}{c}-\frac{q}{c}=0 \\
& q^{\prime}=\frac{b}{c} q
\end{aligned}
$$

$$
\left(q_{C}\right)_{\text {outer }}=q^{\prime}-q=q\left(\frac{b}{c}-1\right)
$$

? Three concentric shells A, B and C have radii a, b and c respectively. The shells A and C are connected via a thin conducting wire and shell B is earthed. If the shell A was given charge q at the beginning, find the charge appearing on the outer surface of C.

Solution :

The potentials of shells A and C are the same.

$$
\left(Q_{C}\right)_{o u t}=\frac{q c(b-a)}{a(b-c)}
$$

Van de Graaff Generator

- An arrangement developed to create high voltage (typically few Megavolts).
- Based on the accumulation of charge on the outer sphere due to its lower potential compared to the inner sphere.
- A large spherical shell is held at several meters high above the ground. (Insulated)
- Charge is continuously transferred to the smaller shell by means of a moving belt.
- Over time, larger shell acquires enormous amount of charge until the electrical breakdown.

? The dielectric strength of air is $3 \times 10^{6} \mathrm{~V} \mathrm{~m}^{-1}$. With a sphere of radius 1.5 m , how much electrical potential can be achieved with the Van De Graaff generator?

Solution:

Electric field just outside the sphere is -

$$
E=\frac{k Q}{R^{2}}
$$

Electric potential just outside the sphere is -

$$
\begin{aligned}
& V=\frac{k Q}{R}=E R \\
& \Rightarrow E=\frac{V}{R}
\end{aligned}
$$

The electric field generated by the generator cannot exceed the dielectric strength of air.

$$
\begin{aligned}
& \Rightarrow E=\frac{V}{R}<E_{\max } \\
& \Rightarrow V<R E_{\max } \\
& \Rightarrow V_{\max }=1.5 \times 3 \times 10^{6}
\end{aligned}
$$

$$
V_{\max }=4.5 \times 10^{6} \mathrm{~V}
$$

