a tritets BBYJU's NOTES

Capacitance

- As the charge on the conductor increases, potential increases thereby electric field strength increases.
- If a very high electric field is applied, phenomenon of dielectric breakdown takes place.
- Local surface charge density of a conductor is inversely proportional to local radius of curvature of the conductor, i.e., $\sigma \propto \frac{1}{r}$
- Maximum capacity of charging depends upon

1. Shape of conductor.
2. Breakdown strength of surrounding medium.

- The potential of the conductor w.r.t the
 reference point is given by,

$$
V=V_{C}-V_{\infty}
$$

- Potential difference is proportional to amount of charge present on an isolated conductor and viceversa.

$$
\boldsymbol{V} \propto \boldsymbol{Q} \Rightarrow \frac{\boldsymbol{Q}}{\boldsymbol{V}}=\text { Constant }=\begin{aligned}
& \text { Capacitance of } \\
& \text { the conductor }
\end{aligned}
$$

- Capacitance of a conductor is defined as its ability to hold charge at a given potential

$$
C=\frac{Q}{V}
$$

- Capacitance is the ratio of the charge stored to the potential at the surface of the conductor.

Two spherical conductors having same potential, but different surface area can store different amounts of charge.

$$
\begin{aligned}
& C_{1}=\frac{q_{1}}{V_{1}} \& C_{2}=\frac{q_{2}}{V_{2}} \\
& \frac{V_{1}}{V_{2}}=\frac{q_{1} / 4 \pi \epsilon_{0} r_{1}}{q_{2} / 4 \pi \epsilon_{0} r_{2}} \Rightarrow \frac{q_{1}}{r_{1}}=\frac{q_{2}}{r_{2}} \Rightarrow q_{1}<q_{2} \quad\left[\because V_{1}=V_{2}\right] \\
& \therefore C_{1}<C_{2}
\end{aligned}
$$

1

- Potential of the charged conductor will be

$$
\boldsymbol{V}_{C}^{\prime}=\boldsymbol{V}_{C}+\left|\boldsymbol{V}_{+}\right|-\left|\boldsymbol{V}_{-}\right|
$$

- $d_{1}<d_{2} \Rightarrow\left|V_{-}\right|>\left|V_{+}\right| \Rightarrow V_{C}^{\prime}<V_{C}$
- Capacitance of the conductor will be,

$$
C^{\prime}=\frac{\boldsymbol{Q}}{\boldsymbol{V}_{\boldsymbol{C}}^{\prime}}
$$

- Potential of the charged conductor will be,

$$
V_{C}^{\prime \prime}=V_{C}-\left|V_{-}\right|
$$

- Capacitance of the conductor will be,

$$
C^{\prime \prime}=\frac{Q}{V_{C}-\left|V_{-}\right|}
$$

Neutral conductor

Capacitor

- A combination of two conductors placed close to each other, having equal and opposite charges is called a CAPACITOR.

Potential of conductor (1) w.r.t conductor (2) is given by, $\boldsymbol{V}=\boldsymbol{V}_{+}-\boldsymbol{V}_{-}$

- The charge on a capacitor having capacitance C is taken as, $\boldsymbol{Q}=C V$.
- The net charge on a capacitor is always zero.

Shape and size of the conductor.
Capacitance of a capacitor depends on:

Conductor 2
$-Q$

Conductor 1
$+Q$

Geometrical placing of conductors.
Medium between conductors.

General 4 step plan:
(1) Assume a charge $+\boldsymbol{Q}$ and $-Q$ on the conductors.
(2) Using Gauss's Law, calculate the electric field between the conductors in $\oint \vec{E} \cdot d \vec{s}=\frac{Q}{\epsilon_{0}}$ terms of charge.

(3) Calculate the potential difference between the conductors using electric field.
(4) Use equation $C=Q / V$

$$
V=-\int \vec{E} \cdot d \vec{r}
$$

$$
\begin{aligned}
& d V=-\vec{E} \cdot d \vec{r}=-\frac{k Q}{r^{2}} d r \Rightarrow \int_{V_{+}}^{V_{-}} d V=k Q \int_{R_{1}}^{R_{2}}-\frac{1}{r^{2}} d r \\
& V=V_{+}-V_{-}=K Q\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]
\end{aligned}
$$

$$
C=\frac{Q}{V}=\frac{4 \pi \epsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}
$$

$\vec{E}\left(r<R_{1}\right)=0$ (Shell theorem)
$\overrightarrow{\boldsymbol{E}}\left(\boldsymbol{r}>\boldsymbol{R}_{2}\right)=\mathbf{0}$ (Net charge of capacitor $=0$)
$\vec{E}\left(\boldsymbol{R}_{1}<r<\boldsymbol{R}_{2}\right)=\frac{k \boldsymbol{Q}}{r^{2}} \hat{r}$ (Gauss's law)

Calculate the capacitance of a spherical capacitor consisting of two concentric spherical shells of radius $\mathbf{0 . 5 0} \mathrm{m}$ and $\mathbf{0 . 6 0} \mathrm{m}$. The material in the space between the two spheres is vacuum.

For a spherical capacitor, capacitance is given by:
$C=\frac{4 \pi \varepsilon_{0} R_{1} R_{2}}{R_{2}-R_{1}}$
$C=\frac{0.5 \times 0.6}{9 \times 10^{9} \times(0.6-0.5)}$
$\therefore C=3.3 \times 10^{-10} F$

Capacitance of Earth

Capacitance of isolated sphere:
$C=\frac{4 \pi \varepsilon_{0}}{\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)}$
$\boldsymbol{R}_{\mathbf{1}}=\boldsymbol{R}$ (Radius of isolated sphere)
$\boldsymbol{R}_{\mathbf{2}} \rightarrow \infty$ (For isolated sphere we can assume the outer sphere is at infinity)

- Earth is an infinite sink of charges.

$$
C=711.4 \mu \frac{\text { coulomb }}{\text { volt }}
$$

- SI unit of capacitance is Farad (F).
- $1 F$ capacitance is very large for practical purposes.

$$
\begin{aligned}
& \mu F\left(10^{-6} F\right) \\
& n F\left(10^{-9} F\right) \\
& p F\left(10^{-12} F\right)
\end{aligned}
$$

For practical purposes we use :

An isolated sphere has a capacitance of 50 pF .
(a) Calculate its radius,
(b) How much charge should be placed on it to raise its potential to $10^{4} \mathrm{~V}$?
(a) Calculate its radius.

Capacitance of sphere, $C=4 \pi \epsilon_{0} R$
Radius of sphere, $R=\frac{C}{4 \pi \epsilon_{0}}=\left(50 \times 10^{-12}\right) \times\left(9 \times 10^{9}\right) \boldsymbol{m}$

$$
R=45 \times 10^{-2} \mathrm{~m}=45 \mathrm{~cm}
$$

(b) How much charge should be placed on it to
 raise its potential to $\mathbf{1 0}^{\mathbf{4}} \boldsymbol{V}$.

Charge to be placed,

$$
Q=C V=50 \times 10^{-12} \times 10^{4}=5 \times 10^{-7} C=0.5 \mu C
$$

- A capacitor stores energy in a region where electric field exists.
- For a spherical capacitor, electric field exists in region between two concentric spherical shells.
- The general expression of the density of energy stored in an electric field is,

$$
\frac{d U}{d V}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

- Steps to follow to find the energy density

- The expression for energy stored is,

$$
U=\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]=\frac{Q^{2}}{2 C}=\frac{1}{2} C V^{2}
$$

A spherical capacitor with charge Q is made up of two concentric spherical shells of radius 0.50 m and 0.60 m . The outer shell is replaced with a shell of radius 0.80 m . Calculate the percentage change in the energy stored by the capacitor.

Case A:
$R_{1}=0.50 \mathrm{~m}$
$R_{2}=0.60 \mathrm{~m}$
$U=\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right]$
$U_{A}=\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{1}{0.5}-\frac{1}{0.6}\right]=\frac{Q^{2}}{24 \pi \epsilon_{0}}$

Case B:

$$
\begin{aligned}
& R_{1}=0.50 \mathrm{~m} \\
& R_{2}=0.80 \mathrm{~m} \\
& U=\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{1}{R_{1}}-\frac{1}{R_{2}}\right] \\
& U_{B}=\frac{Q^{2}}{8 \pi \varepsilon_{0}}\left[\frac{1}{0.5}-\frac{1}{0.8}\right]=\frac{3 Q^{2}}{32 \pi \epsilon_{0}}
\end{aligned}
$$

Percentage change $=\frac{U_{B}-U_{A}}{U_{A}} \times 100=\frac{\frac{3}{32}-\frac{1}{24}}{\frac{1}{24}} \times 100=125 \%$

居
 Capacitance of a Charged Cylindrical Capacitor

Find $\overrightarrow{\boldsymbol{E}}$

- Electric field in the annular region:

$$
\vec{E}\left(R_{1}<r<R_{2}\right)=\frac{Q}{2 \pi \varepsilon_{0} r l} \hat{l}
$$

- Potential difference:

$$
V=\frac{Q}{2 \pi \varepsilon_{0} l} \ln \left(\frac{R_{2}}{R_{1}}\right)
$$

- Capacitance of a charged cylindrical capacitor:

Get \boldsymbol{C}
$C=\frac{Q}{V}$

$$
C=\frac{2 \pi \varepsilon_{0} l}{\ln \left(\frac{R_{2}}{R_{1}}\right)}
$$

A cylindrical capacitor is constructed using two thin conducting coaxial cylinders of the same length 10 cm and radii 5 mm and 10 mm , respectively.
a) Calculate the capacitance.
b) Another capacitor of same length is constructed with cylinders of radii 8 mm and 16 mm . Calculate the capacitance.

Capacitance of cylindrical capacitor :
Case - a

$$
l=10 \mathrm{~cm}=0.1 \mathrm{~m} \quad R_{2}=10 \mathrm{~mm}
$$

$$
C=\frac{2 \pi \varepsilon_{0} l}{\ln \left(\frac{R_{2}}{R_{1}}\right)}
$$

$$
R_{1}=5 \mathrm{~mm}
$$

$$
C=\frac{2 \pi \times 8.854 \times 10^{-12} \times 0.1}{\ln \left(\frac{10}{5}\right)}
$$

$$
\begin{aligned}
& C \approx 8.03 \times 10^{-12} \\
& \approx 8 p F
\end{aligned}
$$

$$
C=\frac{Q}{V}=\frac{2 \pi \varepsilon_{0} l}{\ln \left(\frac{R_{2}}{R_{1}}\right)}
$$

Case-b
$l=10 \mathrm{~cm}=0.1 \mathrm{mR} R_{2}=16 \mathrm{~mm} R_{1}=8 \mathrm{~mm}$
$\ln \left(\frac{R_{2}}{R_{1}}\right)=\ln \left(\frac{16}{8}\right)=\ln 2 \equiv \ln \left(\frac{10}{5}\right)$
The capacitance will remain same as case -a.
If length l and the ratio $\frac{R_{2}}{R_{1}}$ remains same for two cylindrical capacitors, the capacitance of both the capacitors will be same.

Electric field at a distance $r:|\vec{E}|=\frac{Q}{2 \pi \varepsilon_{0} r l}$
Energy density: $\frac{d U}{d V}=\frac{1}{2} \varepsilon_{0} E^{2}=\frac{Q^{2}}{8 \pi^{2} \varepsilon_{0} r^{2} l^{2}}$
Energy stored from $r=a$ to $r=r$:

$$
\begin{gathered}
U_{r}=\int_{a}^{r} \frac{Q^{2}}{8 \pi^{2} \varepsilon_{0} r^{2} l^{2}}(2 \pi r l) d r \\
U_{r}=\frac{Q^{2}}{4 \pi \varepsilon_{0} l} \ln \left(\frac{r}{a}\right)
\end{gathered}
$$

Total energy stored : $U_{\text {total }}=\frac{Q^{2}}{4 \pi \varepsilon_{0} l} \ln \left(\frac{b}{a}\right)$
Given :

$$
\begin{gathered}
\frac{U_{r}}{U_{\text {total }}}=\frac{1}{2} \\
\ln \left(\frac{r}{a}\right)=\frac{1}{2} \ln \left(\frac{b}{a}\right) \\
\frac{r}{a}=\sqrt{\frac{b}{a}} \\
r=\sqrt{a b}
\end{gathered}
$$

Parallel Plate Capacitor

- When two parallel plates are connected across a battery, the plates are charged, and an electric field is established between them. This setup is known as the parallel plate capacitor.
- For a parallel plate capacitor, the charge given on the plates redistributes itself in such a way that it exists only on the sides of the plates facing each other.
- Separation (d) between them is small.
- Equal and opposite charges appear on the facing surfaces.
- Charge on a capacitor means the magnitude of charge on either of the plates.
- Symbolic representation of capacitor in an electrical circuit:

(B)

Electric Field in Parallel Plate Capacitor

Electric field exists only between the plates of the capacitor and the magnitude of such net electric field is,

$$
\left|E_{i n}\right|=\frac{Q}{A \varepsilon_{0}}
$$

- FRINGING is the bending of the electric field lines near the edge of the parallel plates.
- In this chapter, fringing of the electric field at the edges of the plates is neglected.

E

Capacitance of a Parallel Plate Capacitor

- Potential difference between the plates :

$$
V=\frac{Q}{A \varepsilon_{0}} d
$$

Get \boldsymbol{C}

- Electric field in between the plates :

$$
E=\frac{Q}{A \varepsilon_{0}}
$$

Find \boldsymbol{V}
$V=-\int \vec{E} \cdot d \vec{r}$

- Capacitance:
$C=\frac{Q}{V}$

Energy Stored in a Charged Parallel Plate Capacitor

A capacitor can store energy in the form of electric field.

The expression for electric field,

$$
E=\frac{Q}{A \varepsilon_{0}}
$$

$$
\frac{d U}{d V}=\frac{1}{2} \varepsilon_{0} E^{2}
$$

The expression for energy density,

Substitute the expression for electric field in energy density

Energy stored in the capacitor

$$
d U=\frac{1}{2} \varepsilon_{0}\left(\frac{Q}{A \varepsilon_{0}}\right)^{2} d V
$$

$$
U=\frac{1}{2} \varepsilon_{0}\left(\frac{Q}{A \varepsilon_{0}}\right)^{2}(A d)
$$

$$
U=\frac{Q^{2}}{2 C} \quad \because C=\frac{A \varepsilon_{0}}{d}
$$ separation between its plates is reduced by 10% keeping the voltage of the source unchanged?

Initial separation between plates $=d$
Final separation between plates:

$$
d^{\prime}=d-(10 \% \text { of } d)=\frac{9 d}{10}
$$

Initial energy stored :

$$
U_{i}=\frac{1}{2} C V^{2}=\frac{1}{2}\left(\frac{\varepsilon_{0} A}{d}\right) V^{2}
$$

Final energy stored :

$$
U_{f}=\frac{1}{2} C^{\prime} V^{2}=\frac{1}{2}\left(\frac{\varepsilon_{0} A}{d^{\prime}}\right) V^{2}
$$

Percentage change in energy stored:

$$
\begin{aligned}
& {\left[\frac{U_{f}}{U_{i}}-1\right] \times 100 } \\
= & {\left[\frac{d}{d^{\prime}}-1\right] \times 100 } \\
= & {\left[\frac{10}{9}-1\right] \times 100 }
\end{aligned}
$$

$$
+11.1 \%
$$

The capacitance of a capacitor formed by any two adjacent plates is 50 nF . A charge of $1.0 \mu \mathrm{C}$ is placed on the middle plate.
(a) What will be the charge on the outer surface of the upper plate?
(b) Find the potential difference developed between the upper and the middle plates.

Rule :
Equate the charge on outer surface of top plate with the charge on outer surface of bottom plate

Calculation:

The charge on outer surface of upper plate :
$Q+x=(1-0.5) \mu C \Rightarrow 0.5 \mu C$

The capacitance of a capacitor formed by any two adjacent plates is 50 nF . A charge of $1.0 \mu \mathrm{C}$ is placed on the middle plate.
(a) What will be the charge on the outer surface of the upper plate?
(b) Find the potential difference developed between the upper and the middle plates.

Capacitance between upper and middle plate: $\quad C_{A B}=\frac{(Q / 2)}{V_{A B}}$
Capacitance between middle and lower plate:

$$
C_{B C}=\frac{(Q / 2)}{V_{B C}}
$$

Given: $\boldsymbol{C}_{A B}=\boldsymbol{C}_{\boldsymbol{B} C}=\boldsymbol{C}=\mathbf{5 0} \mathbf{n F}$

$$
Q=1 \mu C
$$

c
$++++++++++++++++$
Potential difference between upper and middle plates:

$$
V_{A B}=\frac{Q}{2 C_{A B}}=\frac{Q}{2 C}=\frac{10^{-6}}{2 \times 50 \times 10^{-9}}=10 \text { Volts } \quad V_{A B}=10 \text { volt }
$$

The battery and its properties

- To get charged and to store energy, a capacitor requires a potential difference to be applied and a battery produces the required potential difference.
- The battery is a device which creates potential difference externally between two points across which it is connected.
- Symbolic representation of a battery in an electrical circuit:

- The terminal at higher potential is called POSITIVE TERMINAL and the one at lower potential is called NEGATIVE TERMINAL.

- Work done by a battery :
$\boldsymbol{W}_{\boldsymbol{b}}=$ (Charge supplied or accepted by the positive terminal
of the battery to the circuit) \times (emf of the battery)
- Battery supplies charge \boldsymbol{Q} to the circuit $\Rightarrow \boldsymbol{W}_{\boldsymbol{b}}=+\boldsymbol{v e}$ The battery is acting as a SOURCE.

- Charge \boldsymbol{Q} enters the positive plate of the battery $\Rightarrow \boldsymbol{W}_{\boldsymbol{b}}=-\boldsymbol{v} \boldsymbol{e}$ The battery is acting as a LOAD.
- Electromotive Force (EMF) :

The EMF of a battery is defined as the work done by the battery in driving a unit charge around a complete circuit.

If at $\boldsymbol{t}=\mathbf{0}$ switch \boldsymbol{S} is closed, then for steady state, find
(a) Charge flow in the circuit $\left(\Delta \boldsymbol{Q}_{0}\right)$.
(b) Final charge on the capacitor (\boldsymbol{Q}).
(c) Heat generated (\boldsymbol{H}).
(a) Before achieving the steady state, the charge flown in the circuit, $\Delta \boldsymbol{Q}_{0}=\boldsymbol{C \varepsilon}$
(b) In steady state, final charge on the capacitor, $\boldsymbol{Q}=\boldsymbol{C} \boldsymbol{\varepsilon}$

$$
U_{\text {source }}=U_{\text {load }}+\text { Heat }
$$

- At $\boldsymbol{t}=\mathbf{0}$, energy stored in capacitor, $\boldsymbol{U}_{\boldsymbol{i}}=\mathbf{0}$
- In steady state, energy stored in capacitor, $\boldsymbol{U}_{f}=\frac{1}{2} \boldsymbol{C} \boldsymbol{\varepsilon}^{2}$
- Net energy stored in capacitor, $\boldsymbol{U}_{\text {load }}=\boldsymbol{U}_{f}-\boldsymbol{U}_{\boldsymbol{i}}=\frac{1}{2} \boldsymbol{C} \boldsymbol{\varepsilon}^{2}$
- Energy supplied by the battery, $\boldsymbol{U}_{\text {source }}=\boldsymbol{C} \boldsymbol{\varepsilon}^{2}$
(c) Heat generated, $H=\boldsymbol{U}_{\text {source }}-\boldsymbol{U}_{\text {load }}=\frac{1}{2} \boldsymbol{C} \varepsilon^{2}$

At steady state

For the circuit given below, if at $t=0$ switch S is closed, then for steady state find
(a) Final charge on the capacitor (Q).
(b) Charge flow in the circuit $\left(\Delta Q_{0}\right)$.
(c) Heat generated (H).

- Before the connection is made with battery, the charge in the capacitor is, $\boldsymbol{Q}^{\prime}=\boldsymbol{C} \boldsymbol{\varepsilon}$
- The capacitor and the battery are connected with opposite polarity.

(a) Charge on the capacitor in steady state, $\boldsymbol{Q}=\mathbf{2 C} \boldsymbol{\varepsilon}$
(b) Charge flown in the circuit, $\Delta Q_{0}=2 C \varepsilon-(-C \varepsilon)=3 C \varepsilon$
- At $\boldsymbol{t}=\mathbf{0}$, energy stored in capacitor, $\boldsymbol{U}_{\boldsymbol{i}}=\frac{1}{2} \boldsymbol{C} \boldsymbol{\varepsilon}^{2}$
- In steady state, energy stored in capacitor, $\boldsymbol{U}_{f}=\mathbf{2 C} \boldsymbol{\varepsilon}^{2}$
- Work done by the battery, $W_{b}=\mathbf{6 C} \varepsilon^{2}$
(c) Heat generated, $\boldsymbol{H}=$?

$$
W_{b}=\left[U_{f}-U_{i}\right]+H \quad \Rightarrow H=6 C \varepsilon^{2}-\frac{3}{2} C \varepsilon^{2}=\frac{9}{2} C \varepsilon^{2}
$$

Suppose $\boldsymbol{Q}_{\boldsymbol{i}}$ and $\boldsymbol{Q}_{\boldsymbol{f}}$ are the initial and final charge on the capacitor, respectively.

- When the capacitor and battery are connected with same polarity, charge flown in the circuit, $\Delta \boldsymbol{Q}_{\mathbf{0}}=\boldsymbol{Q}_{\boldsymbol{f}}-\boldsymbol{Q}_{\boldsymbol{i}}$
- When the capacitor and battery are connected with opposite polarities, charge flown in the circuit, $\Delta \boldsymbol{Q}_{\mathbf{0}}=\boldsymbol{Q}_{\boldsymbol{f}}-\left(-\boldsymbol{Q}_{\boldsymbol{i}}\right)$

居
 Force between Plates of a Parallel Plate Capacitor

The oppositely charged capacitor plates attract one another.
The electric field created by the positively charged plate is,

$$
E_{+}=\frac{\sigma}{2 \epsilon_{0}}
$$

Force on the negative plate is,

$$
F=Q E_{+}=\frac{Q^{2}}{2 A \epsilon_{0}}
$$

A capacitor of capacitance $10 \mu \mathrm{~F}$ is connected to a 20 V cell. The separation between the plates is reduced by half during a slow process.
a) Find the work done by the cell during the process.
b) Find the work done by the external agent during the process.
c) Find the ratio of energy density in electric field between the capacitor plates, before and after the plate separation is changed.

Given:

Initial capacitance $\boldsymbol{C}_{\mathbf{1}}=\mathbf{1 0} \boldsymbol{\mu} \boldsymbol{F}$
Potential difference $V=20 \mathrm{~V}$
Initial charge $Q_{1}=C V=\mathbf{2 0 0} \mu C$
Since distance between the plates is halved,
$C_{2}=2 C=20 \mu F$
Final charge $Q_{2}=C_{2} V=\mathbf{4 0 0} \mu \mathrm{C}$
(a) $W_{\text {cell }}=\Delta Q V=\left(Q_{2}-Q_{1}\right) V$

$$
=200 \times 20=4000 \mu \mathrm{~J}
$$

(b) Change in energy stored in capacitor, $\Delta \boldsymbol{U}=\boldsymbol{U}_{2}-\boldsymbol{U}_{\mathbf{1}}$

$$
\begin{gathered}
=\frac{1}{2}(2 C) V^{2}-\frac{1}{2} C V^{2}=\frac{1}{2} C V^{2}=2000 \mu \mathrm{~J} \\
W_{\text {ext }}+W_{\text {cell }}=\Delta U \Rightarrow W_{\text {ext }}=\Delta U-W_{\text {cell }}=-2000 \mu \mathrm{~J}
\end{gathered}
$$

(c) Electric field between the plates, $\quad \boldsymbol{E}=\frac{\boldsymbol{V}}{\boldsymbol{d}}$

When \boldsymbol{d} is halved, \boldsymbol{E} doubles.
Energy density, $\boldsymbol{u}=\frac{1}{2} \epsilon_{0} E^{2}$
If \boldsymbol{E} doubles, \boldsymbol{u} becomes $\mathbf{4}$ times.

Kirchhoff's Current Law (KCL)

Also known as : (1) Junction Law
(2) Nodal Analysis Principle

The amount of charge flowing into a node is equal to the sum of charge flowing out of it.

- KCL is based on charge conservation principle.
- At a junction :

Incoming charge $=$ Outgoing charge

Kirchhoff's Voltage Law (KVL)

- Also known as : (1) Loop Law
(2) Mesh Analysis Principle
- As one traverses a loop to reach the same point again, the algebraic sum of all the potential drops or gains and emfs encountered along the path is zero.
- KVL is based on the principle of energy conservation.

Kirchhoff's Current Law (KCL)
Kirchhoff's Voltage Law (KVL)

- Sign Convention

$$
\left(V_{B}-V_{A}\right)=\frac{Q_{B}}{C}
$$

Or

$$
\left(V_{A}-V_{B}\right)=\frac{Q_{A}}{C}
$$

Kirchhoff's Current Law (KCL)
Net charge of an isolated system is constant.
$q_{1}^{\prime}+q_{2}^{\prime}+q_{3}^{\prime}=$ constant

B Isolated system C
At junction D,
$\left[q_{1}^{\prime}+q_{2}^{\prime}+q_{3}^{\prime}\right]_{\text {initial }}$
$=\left[q_{1}^{\prime}+q_{2}^{\prime}+q_{3}^{\prime}\right]_{\text {final }}$
Apply KCL at junction D.
$C_{1}\left(V-V_{A}\right)+C_{2}\left(V-V_{B}\right)+C_{3}\left(V-V_{C}\right)=0$
$\Rightarrow \quad V=\frac{C_{1} V_{A}+C_{2} V_{B}+C_{3} V_{C}}{C_{1}+C_{2}+C_{3}}$
Assume potential (\boldsymbol{V}) of chosen junction (\boldsymbol{D}) is maximum.

Kirchhoff's Voltage Law (KVL)

Applying KVL in Clockwise direction Anti Clockwise direction

$$
-\frac{Q}{C_{1}}-\frac{Q}{C_{2}}-\frac{Q}{C_{3}}+\varepsilon=0 \quad-\varepsilon+\frac{Q}{C_{3}}+\frac{Q}{C_{2}}+\frac{Q}{C_{1}}=0
$$

$$
\varepsilon=\left(\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}\right) Q
$$

If at $t=0$ switch S is closed, then for steady state find
(a) Charge flow in the circuit $\left(\Delta Q_{0}\right)$.
(b) Final charge on each capacitor.
(c) Heat generated (H).
(a) Charge flow in the circuit $\left(\Delta \boldsymbol{Q}_{\mathbf{0}}\right)$.

Applying KCL on the isolated system,

$$
\begin{aligned}
& 4[V-20]+3[V-20]+5[V-0]=0 \\
& \Rightarrow \quad V=\frac{35}{3} \text { Volts }
\end{aligned}
$$

Charge flow through the capacitor $\mathbf{5 \mu F}$
$\Rightarrow Q_{5}=\left(\frac{35}{3}-0\right) 5=\frac{175}{3} \mu F$

Charge flow through the capacitor $\mathbf{5 \mu F}$ is same as in the circuit,

$$
\Delta Q_{0}=\frac{175}{3} \mu F
$$

(b) Final Charge on each capacitor.

Charge on capacitor of capacitance $\mathbf{4} \boldsymbol{\mu} \boldsymbol{F}$
$\Rightarrow Q_{4}=\left(20-\frac{35}{3}\right) 4=\frac{100}{3} \mu C$

Charge on capacitor of capacitance $\mathbf{3} \boldsymbol{\mu} \boldsymbol{F}$
$\Rightarrow Q_{3}=\left(20-\frac{35}{3}\right) 3=25 \mu C$

Charge on capacitor of capacitance $\mathbf{5} \boldsymbol{\mu} \boldsymbol{F}$
$\Rightarrow Q_{5}=\left(\frac{35}{3}-0\right) 5=\quad \frac{175}{3} \mu C$
(c) Heat generated (H).

Energy stored in each capacitor,
$\Rightarrow \quad U_{4}=\frac{1}{2}\left(4 \times 10^{-6}\right)\left(20-\frac{35}{3}\right)^{2}=\frac{1250}{9} \mu J$
$\Rightarrow \quad U_{3}=\frac{1}{2}\left(3 \times 10^{-6}\right)\left(20-\frac{35}{3}\right)^{2}=\frac{1875}{18} \mu J$
$\Rightarrow \quad U_{5}=\frac{1}{2}\left(5 \times 10^{-6}\right)\left(\frac{35}{3}-0\right)^{2}=\frac{6125}{18} \mu J$
Work done by battery,
$\Rightarrow \quad W_{b}=\left(\frac{175}{3} \times 10^{-6}\right)(20)=\frac{3500}{3} \mu J$
By energy conservation

$$
W_{b}=U_{3}+U_{4}+U_{5}+H
$$

Heat generated in the Circuit

$$
H=\frac{1750}{3} \mu J
$$

Applying KVL in loop 1
$\Rightarrow-\frac{Q}{2}-\frac{x}{5}+6=0 \Rightarrow 5 Q+2 x=60$

Applying KVL in loop 2
$\Rightarrow-\frac{Q-x}{4}-6+\frac{x}{5}=0 \Rightarrow 5 Q-9 x=-120$

Solving above equations

$$
\left.Q_{2 \mu F}=5.45 \mu C\right) \quad\left(Q_{4 \mu F}=10.9 \mu C\right) \quad \mid \quad Q_{5 \mu F}=16.35 \mu C
$$

Combination of Capacitors

- Charge on each capacitor is same,

$$
Q=C_{1} V_{1}=C_{2} V_{2}=C_{3} V_{3}
$$

$$
V_{1}: V_{2}: V_{3}=\frac{1}{C_{1}}: \frac{1}{C_{2}}: \frac{1}{C_{3}}
$$

- Equivalent Capacitance is given by

$$
\frac{1}{C_{e q}}=\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}}
$$

Parallel Combination

- Potential difference across each capacitor is same.

$$
V=\frac{Q_{1}}{C_{1}}=\frac{Q_{2}}{C_{2}}=\frac{Q_{3}}{C_{3}}
$$

$$
Q_{1}: Q_{2}: Q_{3}=C_{1}: C_{2}: C_{3}
$$

- Equivalent Capacitance is given by

$$
C_{e q}=C_{1}+C_{2}+C_{3}
$$

In the circuit shown below, Find
(a) The equivalent capacitance.
(b) The charge stored in each capacitor.
(c) The potential difference across each capacitor.
(a) The equivalent capacitance.

(c) The potential difference across each capacitor

100 volt

$$
\begin{aligned}
V \propto \frac{1}{C} \Rightarrow \frac{V_{1}}{V_{2}}=\frac{C_{2}}{C_{1}} \quad V_{1}= & \left(\frac{C_{2}}{C_{1}+C_{2}}\right) V=\left(\frac{4}{1+4}\right)(100) \Rightarrow V_{1}=80 \mathrm{~V} \\
& V_{2}=V-V_{1}=100-80 \Rightarrow V_{2}=20 \mathrm{~V}
\end{aligned}
$$

? In the figure shown below, the charge on the left plate of the $10 \mu \mathrm{~F}$ capacitor is $-30 \mu C$. The charge on the right plate of the $6 \mu F$ capacitor is

$$
\boldsymbol{V}_{\text {upper }}=\boldsymbol{V}_{\text {lower }}(\because \text { Parallel connection })
$$

$$
\Rightarrow \frac{x}{6}=\frac{Q-x}{4}
$$

$$
\Rightarrow \frac{x}{6}=\frac{30-x}{4}
$$

$$
\Rightarrow 4 x=180-6 x
$$

$$
x=18 \mu C
$$

Charge supplied to the upper branch -

$$
\begin{aligned}
Q & =2.4 \times 10 \mu C \\
& =24 \mu C
\end{aligned}
$$

Charge on $4 \mu F$ capacitor -

$$
Q=24 \mu C
$$

By substituting the infinite ladder with $\boldsymbol{C}_{\boldsymbol{e q}}$,

$$
\begin{aligned}
& C_{A B}=C+\frac{C \times C_{e q}}{C+C_{e q}}=C_{e q} \\
& C_{e q}^{2}-C\left(C_{e q}\right)-C^{2}=0 \\
& C_{e q}=\frac{C+\sqrt{C^{2}+4 C^{2}}}{2} \quad(\because C \nless 0) \quad C_{e q}=\frac{1+\sqrt{5}}{2} C
\end{aligned}
$$

2) A capacitor is made of a flat plate of area A and a second plate having a stair-like structure as shown. The width and the height of each stair is a. Find the capacitance of the assembly.

Equivalent capacitance of parallel combination,

$$
C_{e q}=C_{1}+C_{2}+C_{3}=\frac{\varepsilon_{0} A}{3 a}+\frac{\varepsilon_{0} A}{6 a}+\frac{\varepsilon_{0} A}{9 a}
$$

$$
C_{e q}=\frac{11 \varepsilon_{0} A}{18 a}
$$

A capacitance of $2 \mu F$ is required in an electrical circuit across a potential difference of 1 kV . A large number of $1 \mu \mathrm{~F}$ capacitors are available which can withstand a potential difference of not more than 300 V . The minimum number of capacitors required to achieve this is

As voltage across a capacitor should not exceed 300 V ,
$n \times 300>1000$
$\boldsymbol{n}_{\text {min }}=4$ (in a branch)
Equivalent capacitance of the network-

$$
\begin{aligned}
C_{e q} & =m \times \frac{C}{n}=2 \\
& =m \times \frac{1}{4}=2 \\
m & =8
\end{aligned}
$$

No. of capacitors required $=m \times n=8 \times 4=32$

Find the equivalent capacitance of network shown below.

Applying KVL for the inner loop,

$$
\begin{aligned}
& -\frac{x}{C}-\frac{(2 x-Q)}{C}+\frac{Q-x}{2 C}=0 \\
& x=\frac{3 Q}{7}
\end{aligned}
$$

Find the charge flowing through the middle capacitor ($4 \mu F$) placed between the points M and N.

$$
x=\frac{3 Q}{5} \quad Q=\frac{200}{7} \mu C
$$

Charge flowing through the middle capacitor

$$
\begin{aligned}
Q_{\text {mid }} & =2 x-Q=\frac{Q}{5} \quad\left(\because x=\frac{3 Q}{5}\right) \\
& =\frac{200}{7} \times \frac{1}{5}
\end{aligned}
$$

$$
Q_{\text {mid }}=\frac{40}{7} \mu C
$$

Balanced Wheatstone Bridge

Condition for a balanced Wheatstone bridge

$$
\begin{aligned}
& \frac{C_{1}}{C_{3}}=\frac{C_{2}}{C_{4}} \\
\Rightarrow V_{M} & =V_{N}
\end{aligned}
$$

Equivalent Capacitance of the circuit -

$$
C_{e q}=\frac{C_{1} C_{2}}{C_{1}+C_{2}}+\frac{C_{3} C_{4}}{C_{3}+C_{4}}
$$

?) What will be the equivalent capacitance of the network between the points A and B ?

$$
\frac{2 \mu F}{4 \mu F}=\frac{4 \mu F}{8 \mu F}=\frac{1}{2}
$$

$$
C_{u p}=\frac{2 \times 4}{2+4}=\frac{4}{3} \mu F
$$

Balanced Wheatstone bridge

$$
C_{m i d}=\frac{4 \times 8}{4+8}=\frac{8}{3} \mu F
$$

Equivalent Capacitance of the circuit between \boldsymbol{A} and B -

$$
\begin{aligned}
C_{e q} & =C_{u p}+C_{m i d}+4 \mu F \\
& =\frac{4}{3}+\frac{8}{3}+4
\end{aligned}
$$

$$
C_{e q}=8 \mu F
$$

At a junction, current/charge will divide itself equally into all branches if and only if the future distribution of branches is also exactly identical till the very end.

$$
C_{e q}=\text { ? }
$$

Twelve capacitors, each having a capacitance C, are connected to form a cube. Find the equivalent capacitance
(a) Along body diagonal
(b) Along an edge
(c) Along face diagonal

(a) Along body diagonal

Applying KVL in the blue loop,
$-\frac{Q}{C} C-\frac{Q}{C}-\frac{Q}{C}+\varepsilon=0$
$\frac{Q}{C}\left[\frac{1}{3}+\frac{1}{6}+\frac{1}{3}\right]=\varepsilon$
Simplifying, we get

$$
C_{\text {bod } y}=\frac{Q}{\varepsilon}=\frac{6 C}{5}
$$

(b) Along an edge

Using KVL on the roof (clockwise),

$$
\begin{aligned}
-\frac{2 y}{C}-\frac{y}{C}+\frac{(x-y)}{C}-\frac{y}{C} & =0 \\
x & =5 y
\end{aligned}
$$

Using KVL on the front wall (clockwise),

$$
\begin{aligned}
-\frac{(x-y)}{C}-\frac{x}{C}+\frac{(Q-2 x)}{C}-\frac{x}{C} & =0 \\
5 x-y & =Q
\end{aligned}
$$

Using KVL on the outside loop (clockwise),

$$
\frac{Q-2 x}{C}+\varepsilon=0 \quad \Rightarrow Q-2 x=C \varepsilon
$$

(b) Along an edge

The three derived relations are,
$x=5 y \quad 5 x-y=Q \quad Q-2 x=C \varepsilon$

Putting value of \boldsymbol{x} in terms of \boldsymbol{Q} in equation,

$$
\begin{aligned}
Q-2 x=C \varepsilon & \Rightarrow Q-2\left[\frac{5 Q}{24}\right]=C \varepsilon \\
& \Rightarrow \frac{7 Q}{12}=C \varepsilon \\
& \Rightarrow \frac{Q}{\varepsilon}=\frac{12}{7} C
\end{aligned}
$$

$$
C_{\text {edge }}=\frac{12}{7} C
$$

(c) Along face diagonal

(c) Along face diagonal

The equivalent capacitance of the network is,

$$
C_{e q}=\frac{C}{3}+C
$$

Simplifying, we get

$$
C_{\text {face }}=\frac{4 C}{3}
$$

What happens when a charged capacitor is connected to an uncharged capacitor?

Using KCL

Applying KCL in the isolated region,

$$
\begin{aligned}
& C[V-0]+2 C[V-0]=[C \varepsilon+0] \\
& C V+2 C V=C \varepsilon \quad \Rightarrow V=\frac{\varepsilon}{3}
\end{aligned}
$$

At $t_{\text {final }}$,

Thus, the charges in capacitor 1 and 2 will be,

$$
Q_{1}=\frac{C \varepsilon}{3}
$$

$$
Q_{2}=\frac{2 C \varepsilon}{3}
$$

Using KVL

Applying KVL on this loop, $-\frac{\boldsymbol{q}}{2 \boldsymbol{C}}-\left[\frac{-\boldsymbol{C}+\boldsymbol{q}}{\boldsymbol{C}}\right]=0$

$$
\begin{gathered}
-q-2(-C \varepsilon+q)=0 \\
q=\frac{2 C \varepsilon}{3}
\end{gathered}
$$

Thus, the charges on either capacitor are,

$$
Q_{1}=\frac{C \varepsilon}{3} \quad Q_{2}=\frac{2 C \varepsilon}{3}
$$

What happens when two charged capacitors of the same polarities are connected?

Using KCL

Applying KCL in the isolated portion,

$$
C[0-V]+2 C[0-V]=[-C \varepsilon-4 C \varepsilon]
$$

At $\boldsymbol{t}_{\text {final }}$,

$$
\text { (1) } c=\frac{5 \varepsilon}{3}
$$

$$
\frac{5 \varepsilon}{3} \frac{2 C}{-T}(2)
$$

D

$$
V=\frac{5 \varepsilon}{3}
$$

Thus, the charges in capacitor 1 and 2 will be,

$$
Q_{1}=\frac{5 C \varepsilon}{3} \quad Q_{2}=\frac{10 C \varepsilon}{3}
$$

Applying KVL in the loop, $-\left[\frac{4 C \varepsilon+q}{2 C}\right]+\left[\frac{C \varepsilon-q}{C}\right]=0$

$$
-4 C \varepsilon-q+2 C \varepsilon-2 q=0
$$

$$
q=-\frac{2 C \varepsilon}{3}
$$

Thus, the charges on either capacitor are,

$$
Q_{1}=\frac{5 C \varepsilon}{3} \quad Q_{2}=\frac{10 C \varepsilon}{3}
$$

Dielectrics

Dielectrics are:

- Non-conducting substances
- Have no free electrons
- Can hold an electrostatic charge while dissipating minimal energy in the form of heat
- Can be polar or non-polar

$\vec{E}_{i n}=\vec{E}_{o}+\vec{E}_{\text {int }} \Rightarrow E_{i n}=E_{o}-E_{i n t}$
Experimentally, $\boldsymbol{E}_{\text {in }}=\frac{\boldsymbol{E}_{\boldsymbol{o}}}{\boldsymbol{K}}$
\boldsymbol{K} is the Dielectric Constant of the medium
But, $\boldsymbol{E}_{\text {in }}<\boldsymbol{E}_{o} \quad \Rightarrow \boldsymbol{K}>\mathbf{1}$

When a dielectric material is placed in an electric field, dipole moment appears in its volume

Dipole moment per unit volume of a dielectric material

$$
\overrightarrow{\boldsymbol{P}}=\frac{\vec{p}}{V}
$$

The charge appearing on the surface of a dielectric when placed in an electric field are not free but bound to an atom/ molecule lying in or near the surface.

$$
|\vec{E}|=\left|\vec{E}_{0}\right|-\left|\vec{E}_{i}\right|, \vec{E}=\frac{\vec{E}_{0}}{K}
$$

Where,

$$
K=\varepsilon_{r}=\frac{\left|\vec{E}_{0}\right|}{|\vec{E}|}
$$

\boldsymbol{K} - Dielectric constant of the medium
ε_{r}-Relative permittivity of the medium

Dielectric constant of conductor:
Electric field inside a conductor is zero. $\overrightarrow{\boldsymbol{E}}=\mathbf{0}$

$$
K=\varepsilon_{r}=\frac{\left|\vec{E}_{0}\right|}{|\vec{E}|} \Rightarrow K=\infty
$$

Before dielectric is inserted,

$$
C_{o}=\frac{\varepsilon_{o} A}{d} \quad E_{o}=\frac{Q}{\varepsilon_{o} A}
$$

After dielectric is inserted,

$$
\begin{aligned}
& E=\frac{E_{o}}{K}=\frac{Q}{K \varepsilon_{o} A} \\
& V=E d=\frac{Q d}{K \varepsilon_{o} A}
\end{aligned}
$$

$$
\Rightarrow \frac{Q}{V}=\frac{K \varepsilon_{o} A}{d}
$$

$$
\Rightarrow C=K\left[\frac{\varepsilon_{o} A}{d}\right]
$$

$$
\Rightarrow C=K C_{o}
$$

If the space between plates of parallel plate capacitor is completely filled with dielectric, its Capacitance increases by \boldsymbol{K} times.

$$
\vec{E}=\frac{\vec{E}_{o}}{\boldsymbol{K}}
$$

But,

$$
\begin{aligned}
& \vec{E}=\vec{E}_{o}+\vec{E}_{b} \\
\Rightarrow & \vec{E}_{o}+\vec{E}_{b}=\frac{\vec{E}_{o}}{K} \\
\Rightarrow & \frac{Q}{A \varepsilon_{o}} \hat{\boldsymbol{\imath}}+\frac{Q_{b}}{A \varepsilon_{o}}(-\hat{\boldsymbol{\imath}})=\frac{Q}{K A \varepsilon_{o}} \hat{\imath} \\
\Rightarrow & Q-Q_{b}=\frac{Q}{K}
\end{aligned}
$$

$$
Q_{b}=Q\left[1-\frac{1}{K}\right]
$$

$$
\begin{aligned}
\frac{1}{C_{e q}} & =\frac{1}{C_{1}}+\frac{1}{C_{2}}+\frac{1}{C_{3}} \\
& =\frac{x}{\varepsilon_{o} A}+\frac{t}{K \varepsilon_{o} A}+\frac{(d-x-t)}{\varepsilon_{o} A} \\
& =\frac{t+K(d-t)}{K \varepsilon_{o} A} \\
\frac{1}{C_{e q}} & =\frac{\frac{t}{K}+(d-t)}{\varepsilon_{o} A} \\
C_{e q} & =\frac{\varepsilon_{o} A}{(d-t)+\frac{t}{K}}
\end{aligned}
$$

The equivalent capacitance ($C_{e q}$) is independent of the position (x) at which the dielectric is placed.

$$
C_{e q}=\frac{\varepsilon_{o} A}{(d-t)+\frac{t}{K}}
$$

$$
K=\infty
$$

$$
C=\frac{\varepsilon_{0} A}{(d-t)+\frac{t}{K}}
$$

$$
C=\frac{\varepsilon_{0} A}{(d-t)+0}
$$

$$
C=\frac{\varepsilon_{0} A}{(d-t)}
$$

A parallel plate capacitor of plate area A \& plate separation d is filled with two different dielectric materials having dielectric constants K_{1} and K_{2} as shown. The capacitance of this capacitor is

Capacitor is formed by two square metal plates of edge a, separated by a distance d. Dielectrics of dielectric constant K_{1} and K_{2} are filled in the gap as shown. Find the capacitance of this capacitor.

$$
\begin{aligned}
& \tan \theta=\frac{d}{a} \\
& d C_{1}=\frac{K_{1} \varepsilon_{o}(a d x)}{(d-x \tan \theta)} \\
& d C_{2}=\frac{K_{2} \varepsilon_{o}(a d x)}{(x \tan \theta)}
\end{aligned}
$$

$$
\frac{1}{d C}=\frac{1}{d C_{1}}+\frac{1}{d C_{2}}
$$

$$
\frac{1}{d C}=\frac{(d-x \tan \theta)}{K_{1} \varepsilon_{0}(a d x)}+\frac{(x \tan \theta)}{K_{2} \varepsilon_{0}(a d x)}
$$

$$
\Rightarrow d C=\frac{K_{1} K_{2} \varepsilon_{o}(a d x)}{K_{2} d+\left(K_{1}-K_{2}\right) x \tan \theta}
$$

$$
\begin{aligned}
\Rightarrow d C & =\frac{K_{1} K_{2} \varepsilon_{o}(a d x)}{K_{2} d+\left(K_{1}-K_{2}\right) x \tan \theta} \\
C & =\int d C \\
& =\frac{K_{1} K_{2} \varepsilon_{o} a^{2}}{d} \int_{0}^{a} \frac{d x}{K_{2} a+\left(K_{1}-K_{2}\right) x} \\
& =\frac{K_{1} K_{2} \varepsilon_{o} a^{2}}{d}\left[\frac{\ln \left[K_{2} a+\left(K_{1}-K_{2}\right) x\right]}{\left(K_{1}-K_{2}\right)}\right]_{0}^{a}
\end{aligned}
$$

$$
C=\frac{\epsilon_{o} a^{2} K_{1} K_{2}}{d\left(K_{1}-K_{2}\right)} \ln \left[\frac{K_{1}}{K_{2}}\right]
$$

CASE 1: Battery is disconnected
CASE 2: Battery remains connected

Before insertion After insertion	$C=\frac{\varepsilon_{0} A}{d}$	$V=\frac{Q}{C}$	$E=\frac{V}{d}$	$Q=C V$	$U=\frac{Q^{2}}{2 C}$
	C	V	E	Q	\boldsymbol{U}
	KC	$\frac{V}{K}$	$\frac{E}{K}$	Q	$\frac{U}{K}$

$C=\frac{\varepsilon_{0} A}{d}$	$V=\frac{Q}{C}$	$E=\frac{V}{d}$	$Q=C V$	$U=\frac{C V^{2}}{2}$
C	V	E	\boldsymbol{Q}	U
$K C$	V	E	$K Q$	$K U$

A parallel-plate capacitor of capacitance $100 \mu F$ is connected to a power supply of 200 V . A dielectric slab of dielectric constant 5 is now inserted in the gap between the plates.
(a) Find the extra charge flown through the power supply and the work done by the supply.
(b) Find the change in the electrostatic energy of the electric field in the capacitor.

a) $\boldsymbol{Q}_{\boldsymbol{i}}=\boldsymbol{Q}, \quad \boldsymbol{Q}_{\boldsymbol{f}}=\boldsymbol{K} \boldsymbol{Q}$
$\therefore Q_{\text {extra }}=(K-1) Q$
$=(K-1) C V$
$=4 \times 100 \times 10^{-6} \times 200$
b) $\boldsymbol{U}_{i}=\boldsymbol{U}=\frac{1}{2} C V^{2}$
$U_{f}=K U=K \times\left[\frac{1}{2} C V^{2}\right]$
$\Rightarrow \Delta U=(k-1)\left[\frac{1}{2} C V^{2}\right]$
$=4 \times \frac{1}{2} \times 10^{-4} \times 4 \times 10^{4}$
$\Delta U=8 J$

$$
\begin{aligned}
W_{\text {batter } y} & =Q_{\text {extra }} \times V \\
& =80 \times 10^{-3} \times 200
\end{aligned}
$$

$$
=16 \mathrm{~J}
$$

The parallel combination of two air filled parallel plate capacitors of capacitance C and $n C$ is connected to a battery of voltage, V. When the capacitors are fully charged, the battery is removed and after that a dielectric material of dielectric constant K is placed between the two plates of the first capacitor. The new potential difference of the combined system is

Before inserting dielectric,

$$
\begin{aligned}
& C_{e q}=C+n C=C(n+1) \\
& Q=C_{e q} V=C V(n+1)
\end{aligned}
$$

After inserting dielectric,

$$
\begin{aligned}
& \therefore V^{\prime}=\frac{q}{C_{e q}}=\frac{C V(n+1)}{C(K+n)} \\
& \Rightarrow V^{\prime}=\frac{(n+1) V}{(K+n)}
\end{aligned}
$$

