
Euler’s Equation of Motion
Euler's Equation of Motion is a fundamental principle in fluid dynamics that describes the
behavior of a fluid as it flows through space. Named after the Swiss mathematician Leonhard
Euler, who first derived it in the 18th century, this equation provides a mathematical
representation of the relationship between the pressure, velocity, and density of a fluid. It serves
as a powerful tool in analyzing and predicting the motion of fluids, whether in the context of
aerodynamics, hydrodynamics, or other branches of fluid mechanics. Euler's Equation of Motion
forms the basis for understanding the fundamental principles behind the flight of airplanes, the
behavior of water in rivers, and a wide range of phenomena occurring in various engineering
applications.
In the realm of fluid dynamics, Euler's Equation of Motion stands as a cornerstone equation that
captures the essence of fluid behavior. At its core, this equation embodies the principle of
conservation of momentum, providing a concise mathematical description of the dynamic forces
acting on a fluid. Euler's Equation of Motion enables the analysis of complex fluid flows, taking
into account factors such as pressure variations, acceleration, and inertial effects. By studying
the solutions to this equation, engineers and scientists gain insights into the underlying
mechanics of fluid motion, allowing them to design efficient airfoils, optimize water transport
systems, and tackle a multitude of challenges in fields ranging from aerospace engineering to
environmental science.

Assumptions in Euler's Equation of Motion
Euler's Equation of Motion makes several assumptions to simplify the analysis of fluid flow.
These assumptions are as follows:
1 - Inviscid Flow: Euler's Equation assumes that the fluid being studied is inviscid, meaning
that it has no internal friction or viscosity. This assumption implies that there are no shear forces
within the fluid and that the flow is frictionless. While this assumption neglects the effects of
viscosity, it allows for a simpler mathematical treatment of the fluid dynamics problem.
2 - Steady Flow: Euler's Equation assumes that the fluid flow is steady, meaning that the
velocity at any given point does not change with time. This assumption is useful for analyzing
fluid flow problems that have reached a stable state, where the flow characteristics remain
constant over time. In reality, many fluid flows are unsteady, but by assuming steadiness, Euler's
Equation provides a starting point for understanding the basic principles of fluid motion.
3 - Incompressible Flow: Another assumption made in Euler's Equation is that the fluid being
analyzed is incompressible. Incompressible flow implies that the density of the fluid remains
constant throughout the flow field. While this assumption is not valid for compressible fluids
such as gases at high speeds, it is often a reasonable approximation for liquids and low-speed
flows of gases.
4 - Conservative Forces: Euler's Equation assumes that the forces acting on the fluid are
conservative. This assumption implies that the potential energy of the fluid does not change



within the flow field. It allows for the conservation of mechanical energy and simplifies the
mathematical formulation of the equation.

Derive Euler's Equation of Motion
To derive Euler's Equation of Motion, let's consider a small fluid element within a flowing fluid.
We will apply Newton's second law of motion to this fluid element.
Assumptions:

● The fluid flow is inviscid (no internal friction or viscosity).
● The flow is steady (velocity does not change with time).
● The fluid is incompressible (density remains constant).
● Forces acting on the fluid are conservative.

Consider a fluid element with volume ΔV and mass Δm within the fluid flow. The forces acting
on this fluid element are the pressure force, gravity force, and any external body forces.
Pressure Force: The pressure force acting on the fluid element is given by the pressure (P)
multiplied by the surface area (ΔA) of the element. Since pressure acts perpendicular to the
surface, the force can be expressed as -PΔA (negative sign to account for the force direction).
Gravity Force: The gravity force acting on the fluid element is the mass of the element (Δm)
multiplied by the acceleration due to gravity (g). The force can be expressed as Δm * g.
External Body Forces: Any additional external body forces, such as electromagnetic forces or
external applied forces, can be denoted as F_ext.
Applying Newton's second law of motion, we have:
ΣF = -PΔA + Δm * g + F_ext
Using the definition of density (ρ = m/V) and rewriting Δm as ρ * ΔV, we can express the
equation as:
ΣF = -PΔA + ρ * ΔV * g + F_ext
Dividing through by ΔV, and taking the limit as ΔV approaches zero (infinitesimal volume
element), we have:
lim(ΔV->0) (ΣF/ΔV) = -P * lim(ΔV->0) (ΔA/ΔV) + ρ * g + lim(ΔV->0) (F_ext/ΔV)
The first term on the right side can be expressed as -P * (∂A/∂x), where (∂A/∂x) represents the
rate of change of surface area with respect to the coordinate direction x.
Simplifying further, we have:
lim(ΔV->0) (ΣF/ΔV) = -P * (∂A/∂x) + ρ * g + lim(ΔV->0) (F_ext/ΔV)
The left-hand side represents the acceleration of the fluid element (a) and can be expressed as
∂v/∂t, where v is the velocity vector of the fluid element.
Therefore, we have:
∂v/∂t = -P * (∂A/∂x) + ρ * g + F_ext
Using the fact that the velocity vector v can be expressed as v = u * i + v * j + w * k (where u, v,
w are the components of velocity in x, y, z directions respectively), and differentiating with
respect to time, we have:
∂v/∂t = (∂u/∂t) * i + (∂v/∂t) * j + (∂w/∂t) * k
Now, let's focus on the first term on the right-hand side of the equation:
-P * (∂A/∂x) = -P * (∂(Δx * Δy)/∂x) = -P * (Δy * (∂Δx/∂x) + Δx * (∂Δy/∂x))



Using the approximation that the changes in the x and y dimensions of the fluid element are
small, we can write Δx * (∂Δy/∂x) as ∂y, and Δy * (∂Δx/∂x) as ∂x. Therefore, we have:
-P * (∂A/∂x) = -P * (∂y * ∂x) = -P * dA
Substituting this back into the equation and equating the components, we obtain Euler's
Equation of Motion:
∂u/∂t = - (∂P/∂x)/ρ + F_x_ext ∂v/∂t = - (∂P/∂y)/ρ + F_y_ext ∂w/∂t = - (∂P/∂z)/ρ + F_z_ext
Here, (∂P/∂x), (∂P/∂y), and (∂P/∂z) represent the pressure gradients in the x, y, and z directions,
respectively. F_x_ext, F_y_ext, and F_z_ext represent any external body forces acting on the
fluid element in the respective directions.
These equations describe the acceleration of the fluid element in terms of pressure gradients
and external forces. They form the basis of Euler's Equation of Motion, providing insights into
fluid behavior in inviscid, steady, and incompressible flow conditions.

Applications of Euler's Equation of Motion
Euler's Equation of Motion finds wide-ranging applications in various fields of fluid dynamics and
engineering. Here are some notable applications:
Aerodynamics: In the study of aerodynamics, Euler's Equation of Motion is crucial for
understanding and predicting the behavior of aircraft and other flying objects.
Hydrodynamics: In the field of hydrodynamics, Euler's Equation of Motion plays a central role
in analyzing the behavior of water and other liquids in motion.
Ship Design and Marine Engineering: Euler's Equation of Motion is also applicable to the
design and analysis of ships and marine vehicles. By considering the flow of water around a
ship's hull, engineers can utilize Euler's Equation to calculate the hydrodynamic forces and
moments acting on the vessel.
Compressor and Turbine Design: Euler's Equation of Motion is instrumental in the design and
analysis of compressors and turbines, which are key components in gas turbines, jet engines,
and other turbomachinery.
Computational Fluid Dynamics (CFD): Euler's Equation of Motion serves as the foundation for
many numerical methods used in Computational Fluid Dynamics simulations. By discretizing
and solving the equations numerically, engineers and scientists can simulate and analyze
complex fluid flow scenarios.

FAQs
Q1: What are the main assumptions made in Euler's Equation of Motion?
A1: Euler's Equation of Motion assumes inviscid flow (no internal friction or viscosity), steady
flow (velocity does not change with time), incompressible flow (constant density), and
conservative forces (no change in potential energy within the flow field).

Q2: Can Euler's Equation of Motion be applied to compressible flows?
A2: No, Euler's Equation is not valid for compressible flows, where density changes significantly.
It is primarily applicable to incompressible flows, such as those involving liquids and low-speed
flows of gases.



Q3: How does Euler's Equation of Motion relate to the conservation of momentum?
A3: Euler's Equation is derived from Newton's second law of motion and embodies the principle
of conservation of momentum. It describes the acceleration of a fluid element in terms of
pressure gradients and external forces, providing insights into the changes in velocity and flow
behavior.

Q4: What role does Euler's Equation of Motion play in aerodynamics?
A4: Euler's Equation is fundamental to the study of aerodynamics, enabling the analysis of the
flow of air around wings and airfoils. It helps in optimizing aircraft design for lift and drag
reduction, providing insights into the principles of flight and performance prediction.

Q5: How is Euler's Equation of Motion used in Computational Fluid Dynamics (CFD)?
A5: Euler's Equation forms the basis for many numerical methods used in CFD simulations. By
discretizing and solving the equations numerically, CFD allows engineers and scientists to
simulate and analyze complex fluid flow scenarios, aiding in the design and analysis of various
engineering systems and processes.


