Welcome to

Gravitation

$$
\vec{E}_{g}(x)=-\frac{G M x}{\left(x^{2}+R^{2}\right)^{3 / 2}} \hat{x}
$$

Newton's Law of Gravitation

According to Newton's law of gravitation, "Every particle in the universe attracts every other particle with a force whose magnitude is:

- Directly proportional to the product of their masses $\Rightarrow F_{G} \propto m_{1} m_{2}$
- Inversley proportional to the square of the distance between their centers $\Rightarrow F_{G} \propto \frac{1}{r^{2}}$

$$
F_{G}=\frac{G m_{1} m_{2}}{r^{2}}
$$

G : Universal Gravitational Constant

Properties of Gravitational Force

$$
F_{G}=\frac{G m_{1} m_{2}}{r^{2}}
$$

- Acts along the line joining the two masses.
- Always attractive in nature.
- Always acts as an action-reaction pair.
- Is independent of medium.
- Conservative force in nature.
- Obeys inverse square law $\left[F_{G} \propto \frac{1}{r^{2}}\right]$.
- It is a central force

NOTE: Central force is defined as the force whose magnitude depends only on distance r from a fixed point and is always directed either away or towards that fixed point.

$$
\vec{F}=f(r) \hat{r}
$$

After losing contact with their spacecraft, two astronauts are floating

 in free space where there is no external gravitational force acting on them. Which of the following event will occur eventually?Solution :

a They will keep floating at the same distance between them.

They will move towards each other.They will move away from each other.
d They will become stationary
No external gravitational force is acting on the astronauts.

The only force present is the gravitational force between themselves.
Since the gravitational force is always attractive, they will accelerate individually, and will move towards each other.

Vector form of Gravitational Force

$$
\vec{F}_{21}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r}
$$

$$
\vec{F}_{12}=G \frac{m_{1} m_{2}}{r^{2}} \hat{r}
$$

NOTE: \hat{r} is the unit vector along \vec{r}.

$$
\hat{r}=\frac{\vec{r}}{|\vec{r}|}=\frac{\vec{r}_{2}-\vec{r}_{1}}{\left|\vec{r}_{2}-\vec{r}_{1}\right|}
$$

Universal Gravitational Constant

Cavendish Experiment

Cavendish's Torsion Balance

- Torsion arises in the wire due to gravitational attraction $\mathrm{b} / \mathrm{w} m \& M$.

$$
F=\frac{G m M}{d^{2}}
$$

- At Equilibrium, the magnitude of gravitational torque and restoring torque will be equal.

$$
\Rightarrow F L=\tau \theta \quad(\tau=\text { torsional constant })
$$

$\Rightarrow \frac{G M m}{d^{2}} L=\tau \theta$
$\Rightarrow G=\frac{\tau \theta d^{2}}{M m L}$

$$
G=6.67 \times 10^{-11} \mathrm{~N} \mathrm{~m}^{2} / \mathrm{kg}^{2}
$$

Properties of G

Gravitational constant has the numerical value of gravitational force between two bodies with unit mass separated by a unit distance.

$$
F_{G}=\frac{G m_{1} m_{2}}{r^{2}}=G \quad\left[\text { If } m_{1}=m_{2}=1 \text { unit, } r=1 \text { unit }\right]
$$

- Its value is independent of mass, size, shape etc. of the bodies.
- Its value is medium independent.
- Value of G is so small that gravitational forces are normally smaller unless one or both masses are large.
- Dimensional formula of $G: M^{-1} L^{3} T^{-2}$

Three particles A, B and C, each of mass m, are placed on a line with $A B=B C=d$. Find the net gravitational force on a fourth particle P of same mass, placed at a distance d from the particle B on the perpendicular bisector of the line $A C$.

Solution: Gravitational force on a particle P due to A, B and C:

$$
F_{A}=F_{C}=\frac{G m^{2}}{2 d^{2}} \quad F_{B}=\frac{G m^{2}}{d^{2}}
$$

$$
\therefore F_{n e t}=F_{A} \cos 45^{\circ}+F_{B}+F_{C} \cos 45^{\circ}
$$

$$
F_{n e t}=\frac{G m^{2}}{d^{2}}\left(1+\frac{1}{\sqrt{2}}\right)
$$

(along PB)

NOTE: Net Gravitational force on a given particle is the vector sum of gravitational force exerted by all individual particles around it. This is also known as Superposition Principle.

A particle of mass m is placed at a distance d from one end of a
? uniform rod with length L and mass M as shown in the figure. Find the magnitude of the gravitational force on the particle due to the rod.

Solution : Consider an elementary mass $d m$ of length $d x$ at a distance x from m.

$$
d m=\left(\frac{M}{L}\right) d x
$$

\therefore The gravitational force on m due to $d m$,

$$
d F=\frac{G m(d m)}{x^{2}}=\frac{G m M}{L x^{2}} d x
$$

$$
\Rightarrow F=\int d F=\frac{G m M}{L} \int_{d}^{L+d} \frac{d x}{x^{2}}=\frac{G m M}{L}\left[-\frac{1}{x}\right]_{d}^{L+d}
$$

$\Rightarrow F=\frac{G m M}{L}\left[-\frac{1}{L+d}+\frac{1}{d}\right]$

$$
F=\frac{G m M}{d(L+d)}
$$

Gravitational Field and Field Strength

The region surrounding the mass where other masses experience a gravitational force is known as its gravitational field.

Force experienced by a unit mass placed at a point in a gravitational field gives the field strength.

- Vector quantity
- Units: Newton/kg or $\mathrm{m} / \mathrm{s}^{2}$
- Dimension: $\left[M^{0} L T^{-2}\right]$
- Direction: Along the net Gravitational force on the unit mass
- Near earth's surface the field strength is $9.8 \mathrm{~m} / \mathrm{s}^{2}$

The gravitational field in a region is given by $\vec{E}_{g}=(2 \hat{\imath}+3 \hat{\jmath}) N / k g$. Show
? that no work is done by the gravitational field when a particle is moved on the line $3 y+2 x=5$.

Solution : Gravitational Force on a particle of mass m is,
$\overrightarrow{F_{g}}=2 m \hat{\imath}+3 m \hat{\jmath}$
\Rightarrow Slope, $m_{1}=\frac{3}{2}$

Particle moves along the line

$$
3 y+2 x=5
$$

\Rightarrow Slope, $m_{2}=-\frac{2}{3}$

Condition of Orthogonality:

$$
m_{1} m_{2}=-1
$$

Hence $\overrightarrow{F_{g}} \& \vec{s}$ are perpendicular
$\therefore W=\overrightarrow{F_{g}} \cdot \vec{s}=0$

Gravitational field on the axis of a Ring

$$
\begin{aligned}
E_{g} & =\int d E_{g} \cos \theta=\int \frac{G d m}{r^{2}} \cdot \frac{x}{r} \\
\vec{E}_{g}(x) & =-\frac{G M x}{\left(x^{2}+R^{2}\right)^{\frac{3}{2}}} \hat{x}=-\frac{G M \cos \theta}{r^{2}} \hat{x}
\end{aligned}
$$

Variation in g due to Earth's Rotation

$$
\left|\vec{E}_{g}(x)\right|=\frac{G M x}{\left(x^{2}+R^{2}\right)^{\frac{3}{2}}}
$$

NOTE: Gravitational field due to the ring on its axis has the maximum magnitude at $|x|=\frac{R}{\sqrt{2}}$ and its value is $\frac{2 C M}{3 \sqrt{3} R^{2}}$.
At $x=0: \quad\left|\vec{E}_{g}\right|=0$
At $|x| \ll R: \quad x^{2}+R^{2} \approx R^{2} \Rightarrow\left|\vec{E}_{g}\right|=\frac{G M x}{R^{3}}$
At $|x| \gg R: \quad x^{2}+R^{2} \approx x^{2} \Rightarrow\left|\vec{E}_{g}\right|=\frac{G M}{x^{2}}$

Gravitational Field due to Spherical Shell

Assuming uniform mass distribution,

$$
d m=\frac{M}{4 \pi R^{2}} \times(2 \pi R \sin \theta)(R d \theta)
$$

$$
\Rightarrow d m=\frac{M}{2} \sin \theta d \theta
$$

In $\triangle O A P$, By cosine rule

$$
R^{2}+r^{2}-z^{2}=2 R r \cos \theta
$$

$$
\begin{equation*}
\Rightarrow \frac{z(d z)}{R r}=\sin \theta d \theta \tag{2}
\end{equation*}
$$

And

$$
\begin{equation*}
\frac{r^{2}+z^{2}-R^{2}}{2 r z}=\cos \alpha \tag{3}
\end{equation*}
$$

Field at P due to the ring element:

$$
\begin{align*}
& \overrightarrow{E_{g}}(x)=-\frac{G M \cos \theta}{r^{2}} \hat{x} \\
& d E_{g}=\frac{G M(\cos \alpha)(\sin \theta) d \theta}{2 z^{2}} \tag{1}
\end{align*}
$$

$$
d E_{g}=\frac{\mathrm{GM}}{4 \mathrm{Rr}^{2}}\left[1+\frac{\mathrm{r}^{2}-\mathrm{R}^{2}}{\mathrm{z}^{2}}\right] \mathrm{dz}
$$

Gravitational Field due to Spherical Shell

Case 1: P is outside the shell $(r>R)$

$E_{g}=\frac{G M}{4 R r^{2}} \int_{r-R}^{r+R}\left[1+\frac{\left(r^{2}-R^{2}\right)}{z^{2}}\right] d z \quad \vec{E}_{g}=-\frac{G M}{r^{2}} \hat{r}$

Note: The gravitational field due a uniform spherical shell can be found out by imagining the whole mass as a point mass of same mass, kept at centre

Case 2: P is inside the shell $(r<R)$

$$
\begin{gathered}
E_{g}=\frac{G M}{4 R r^{2}} \int_{R-r}^{R+r}\left[1+\frac{\left(r^{2}-R^{2}\right)}{z^{2}}\right] d z
\end{gathered} \begin{array}{c:c}
z=E_{g}=\frac{G M}{4 R r^{2}}\left[z+\frac{\left(R^{2}-r^{2}\right)}{z}\right] \begin{array}{l}
R+r \\
R-r
\end{array} \\
E_{g}=\frac{G M}{4 R r^{2}}\left[z-\frac{\left(r^{2}-R^{2}\right)}{z}\right] \begin{array}{l}
R+r \\
R-r
\end{array} & E_{g}=\frac{G M}{4 R r^{2}}[2 R-2 R] \\
E_{g}=\text { zero }
\end{array}
$$

Case 1 : Point outside the shell $(r>R)$

$$
\vec{E}_{g}=-\frac{G M}{r^{2}} \hat{r}
$$

Case 2 : Point inside the sphere $(r<R)$

$$
\vec{E}_{g}=\overrightarrow{0}
$$

Case 3 : Point on the sphere $(r=R)$

$$
\vec{E}_{g}=-\frac{G M}{R^{2}} \hat{r}
$$

Four identical particles of mass M are located at the corners of a square of side a. What should be their speed, if each of them
revolves under the influence of other's gravitational field in a square of side a. What should be their speed, if each of them
revolves under the influence of other's gravitational field in a circular orbit circumscribing the square?

Solution :

Net force on B :
$\left(\vec{F}_{B}\right)_{\text {net }}=\vec{F}_{B A}+\vec{F}_{B C}+\vec{F}_{B D}$
As masses are distributed symmetrically about $B D$, net gravitational force on B will be only along $B D$

$$
\begin{aligned}
& \left(F_{B}\right)_{\text {net }}=F_{B D}+F_{B A} \sin 45^{0}+F_{B C} \cos 45^{0} \\
& \left(F_{B}\right)_{\text {net }}=\frac{G M^{2}}{(\sqrt{2} a)^{2}}+\frac{G M^{2}}{a^{2}}\left(\frac{1}{\sqrt{2}}\right)+\frac{G M^{2}}{a^{2}}\left(\frac{1}{\sqrt{2}}\right) \\
& \left(F_{B}\right)_{\text {net }}=\frac{G M^{2}}{a^{2}}\left(\frac{1}{2}+\sqrt{2}\right)
\end{aligned}
$$

Centripetal force is given by,
$F_{c}=\frac{M v^{2}}{r}=\frac{M v^{2}}{\frac{a}{\sqrt{2}}}=\frac{\sqrt{2} M v^{2}}{a}$
But, $F_{c}=\left(F_{B}\right)_{\text {net }}$
$v^{2}=\frac{G M}{a}\left(1+\frac{1}{2 \sqrt{2}}\right)=\frac{G M}{a}(1.35)$

$$
\Rightarrow v=1.16 \sqrt{\frac{G M}{a}}
$$

The direction of the force is towards the center 0 and it acts as a centripetal force

$$
\vec{E}_{g}(x)=-\frac{2 G M}{R^{2}}\left(1-\frac{x}{\sqrt{x^{2}+R^{2}}}\right) \hat{x}
$$

$$
\vec{E}_{g}(x)=-\frac{2 G M}{R^{2}}(1-\cos \theta) \hat{x}
$$

Case 1 : Point outside the sphere $(r>R)$

$$
\vec{E}_{g}=-\frac{G M}{r^{2}} \hat{r}
$$

Case 2 : Point inside the sphere $(r<R)$

$$
\vec{E}_{g}=-\frac{G M r}{R^{3}} \hat{r}
$$

Case 3 : Point on the sphere $(r=R)$

$$
\vec{E}_{g}=-\frac{G M}{R^{2}} \hat{r}
$$

The gravitational field, due to the 'left over' part of a uniform sphere (from which a part as shown has been 'removed out') at a very far off point P, located as shown, would be (nearly)

Solution:

Gravitational field due to remaining part at point $P\left(E_{P}\right)_{n e t}$
$=$ Gravitational field due to complete sphere $\left(E_{P}\right)_{S}-$ Gravitational field due to Mass of the removed part, M^{\prime} : Gravitational field at P :

$$
M^{\prime}=\frac{M}{\frac{4}{3} \pi R^{3}} \times \frac{4}{3} \pi\left(\frac{R}{2}\right)^{3}=\frac{M}{8}
$$

$$
\begin{aligned}
& \left(E_{P}\right)_{\text {net }}=\left(E_{P}\right)_{\text {Sphere }}-\left(E_{P}\right)_{\text {Removed part }} \\
& \left(E_{P}\right)_{\text {net }}=\frac{G M}{x^{2}}-\frac{G \frac{M}{8}}{\left(\frac{R}{2}+x\right)^{2}}=\frac{G M}{x^{2}}-\frac{G M}{8 x^{2}} \quad\left(\because x \gg \frac{R}{2}\right) \quad\left(E_{P}\right)_{\text {net }}=\frac{7 G M}{8 x^{2}}
\end{aligned}
$$

The density of a solid sphere of radius R is given by $\rho=\frac{\rho_{o} R}{r}$ where ρ_{o} is the density at the surface and r denotes the distance from the centre. Find the gravitational field due to this sphere at a distance $2 R$ from its centre.

Solution: Gravitational Field at point P

$$
\begin{gathered}
E_{P}=\frac{G}{4 R^{2}} \int_{0}^{R} d m \\
M=\int_{0}^{R} d m=2 \pi \rho_{o} R^{3} \\
E_{P}=\frac{\pi G \rho_{o} R}{2}
\end{gathered}
$$

Acceleration due to Gravity

(No air resistance)
$m=2 \mathrm{~kg}$

$$
m=0.01 \mathrm{~kg}
$$

g does not depend on the mass of the falling object

目) Variation of g with Height \& Depth

Due to Height

$$
g^{\prime}=g\left(1-\frac{2 h}{R}\right) \quad \int(h \ll R)
$$

$$
g^{\prime}=g\left(1-\frac{d}{R}\right)
$$

(1) Variation of g with r

Case 1: g^{\prime} inside the Earth $(r<R)$

$$
g^{\prime}=g\left(1-\frac{d}{R}\right)=\frac{g(R-d)}{R}=\frac{g r}{R}
$$

Case 2 : g^{\prime} on the Earth $(r=R)$

$$
g^{\prime}=g=\frac{G M}{R^{2}}
$$

Case 3 : g^{\prime} outside the Earth $(r>R)$

$$
g^{\prime}=\frac{G M}{r^{2}}
$$

Find the ratio of the heights from the earth's surface at which the acceleration due to gravity is $0.99 g_{e}$ and $0.64 g_{e}$ respectively. Here g_{e} is the acceleration due to gravity at the surface of the earth.

Solution: Given : At $h_{1} g_{e}^{\prime}=0.99 g_{e}$

$$
\text { At } h_{2} \quad g_{e}^{\prime}=0.64 g_{e}
$$

To Find : Ratio of heights $\left(\frac{h_{1}}{h_{2}}\right)$
Solution:

At $h_{1}, g_{e}^{\prime}=0.99 g_{e}$
$\Rightarrow h_{1} \ll R_{e}$
$0.99 g_{e}=g_{e}\left(1-\frac{2 h_{1}}{R_{e}}\right)$
$\Rightarrow h_{1}=\frac{R_{e}}{200}$

At $h_{2}, \quad g_{e}^{\prime \prime}=0.64 g_{e}$
$\Rightarrow h_{2}$ is comparable with R_{e}

$$
\begin{align*}
& 0.64 g_{e}=\frac{g_{e}}{\left(1+\frac{h_{2}}{R_{e}}\right)^{2}} \\
& \Rightarrow h_{2}=\frac{R_{e}}{4} \tag{2}
\end{align*}
$$

From (1) and (2),

$$
\frac{h_{1}}{h_{2}}=\frac{1}{50}
$$

Acceleration due to gravity for a place at latitude θ is,

$$
g^{\prime}=g-\omega^{2} R \cos ^{2} \theta
$$

Case 1: At poles $\left(\theta=90^{\circ}\right)$

$$
g^{\prime}=g
$$

Case 2: At equator $\left(\theta=0^{\circ}\right)$

$$
g^{\prime}=g-\omega^{2} R
$$

$$
F_{G}=\frac{G M m}{R^{2}}
$$

At what rate should the earth rotate so that the apparent g at the equator becomes zero? What will be the length of the day in this situation? $\left(R=6400 \times 10^{3} \mathrm{~m}, \mathrm{~g}=10 \mathrm{~ms}^{-2}\right)$

Solution :

$$
\begin{aligned}
& \text { At equator, } \theta=0^{\circ} \\
& g_{\text {equator }}^{\prime}=g-\omega^{2} R=0 \\
& \Rightarrow \omega=\sqrt{\frac{g}{R}} \\
& \omega=1.25 \times 10^{-3} \mathrm{rad} \mathrm{~s}
\end{aligned}
$$

Length of the day,

$$
\begin{aligned}
& T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{R}{g}} \\
& T \approx 1.4 \mathrm{hr}
\end{aligned}
$$

Gravitational field at poles

$$
g_{p}=\frac{G M}{R_{p}^{2}}
$$

Gravitational field at the equator

$$
g_{e}=\frac{G M}{R_{e}^{2}}
$$

$$
g_{p}>g_{e}
$$

(0) Gravitational Potential Energy

- The energy possessed or acquired by an object by virtue of its position in the presence of a gravitational field.

- Negative of the work done by the conservative force as the system changes from initial to final configuration is change in Potential Energy.

Change in potential energy,

$$
\Delta U=U_{f}-U_{i}=-\left(W_{\text {conservative forces }}\right)_{i \rightarrow f}
$$

Gravitational Potential Energy

$$
r_{1}=\infty
$$

m_{1} (Fixed)
m_{2}
m_{2}

$$
r_{2}=r
$$

$$
\Delta U=U_{2}-U_{1}=-\int_{1}^{2} \vec{F} \cdot d \vec{r}=-G m_{1} m_{2}\left(\frac{1}{r_{2}}-\frac{1}{r_{1}}\right)
$$

$$
U(r)-U(\infty)=-G m_{1} m_{2}\left(\frac{1}{r}-\frac{1}{\infty}\right)
$$

$$
U(r)=-\frac{G m_{1} m_{2}}{r}
$$

At the pole of the Earth, a body is imparted an initial velocity v_{0} directed vertically upwards. Find the height to which the body will ascend. (Neglect air drag)

Solution: Using the principle of conservation of mechanical energy,
$K_{A}+U_{A}=K_{B}+U_{B}$
$\Rightarrow \frac{1}{2} m v_{0}^{2}-\frac{G M m}{R}=0-\frac{G M m}{R+h}$
$\frac{v_{0}^{2}}{2}=G M\left[\frac{1}{R}-\frac{1}{R+h}\right] \Rightarrow v_{0}^{2}=2 G M\left[\frac{h}{R^{2}+R h}\right]$
$v_{0}^{2}\left(R^{2}+R h\right)=2 G M h \Rightarrow v_{0}^{2} R^{2}=h\left(2 G M-R v_{0}^{2}\right)$
$h=\frac{R^{2} v_{0}^{2}}{2 G M-R v_{0}^{2}}$

Gravitational Potential Difference

- Gravitational potential difference between two points in a gravitational field is defined as the work done by an
external agent in moving a unit mass from the initial point to final point.

$$
\Delta V=V_{B}-V_{A}=\frac{(\text { Work done by External })_{A \rightarrow B}}{\text { Mass }}
$$

目 Gravitational Potential

- Change in gravitational potential between points A and B,

$$
V_{B}-V_{A}=\frac{U_{B}-U_{A}}{m}
$$

- Gravitational potential due to a mass M at distance r is

$$
U_{P}-U_{\infty}=-\frac{G M m}{r}
$$

$$
V(r)=-\frac{G M}{r}
$$

Two bodies of masses m and $4 m$ are placed at a distance r from each other. Find the gravitational potential at a point on the line joining them where the gravitational field is zero.

Solution: Let the gravitational field be zero at the point P located at a distance x from m.

$$
\begin{aligned}
& \therefore \frac{G m}{x^{2}}=\frac{G(4 m)}{(r-x)^{2}} \\
& \Rightarrow \frac{1}{x}=\frac{2}{r-x} \\
& \Rightarrow x=\frac{r}{3}
\end{aligned}
$$

Gravitational potential at P is,

$$
V=-\frac{G m}{\left(\frac{r}{3}\right)}-\frac{4 G m}{\left(\frac{2 r}{3}\right)}=-\frac{9 G m}{r}
$$

Relation b/w Gravitational Field \& Potential

$$
d V=-\vec{E}_{g} \cdot d \vec{r}
$$

$$
\text { If } \vec{E}_{g}=E_{g}(x) \hat{\imath}+E_{g}(y) \hat{\jmath}+E_{g}(z) \hat{k}
$$

$$
\& \quad d \vec{r}=d x \hat{\imath}+d y \hat{\jmath}+d z \hat{k}
$$

$$
d V=-E_{g}(x) d x-E_{g}(y) d y-E_{g}(z) d z
$$

$$
\int_{V_{1}}^{V_{2}} d V=-\int_{r_{1}}^{r_{2}} \vec{E}_{g} \cdot d \vec{r}
$$

If potential function in a $3 D$ space is given as: $\quad V=f(x, y, z)$
Then, the gravitational field component
along x - direction: $E_{g}(x)=-\frac{\partial V}{\partial x}$
along y - direction: $\quad E_{g}(y)=-\frac{\partial V}{\partial y}$
along z - direction: $\quad E_{g}(z)=-\frac{\partial V}{\partial z}$

$$
\vec{E}_{g}=-\frac{\partial V}{\partial x} \hat{\imath}-\frac{\partial V}{\partial y} \hat{\jmath}-\frac{\partial V}{\partial z} \hat{k}
$$

$$
V_{P}=-\frac{G M}{\sqrt{R^{2}+x^{2}}}
$$

$$
\vec{E}_{g}=-\frac{\partial V}{\partial x} \hat{\imath}
$$

$$
\Rightarrow \vec{E}_{g}=-\frac{\partial}{\partial x}\left(-\frac{G M}{\sqrt{R^{2}+x^{2}}}\right) \hat{\imath}
$$

$$
\vec{E}_{g}=-\frac{G M x}{\left(R^{2}+x^{2}\right)^{3 / 2}} \hat{\imath}
$$

A uniform circular ring of mass M and radius R is placed in $y z$ plane with centre at origin. A particle of mass m is released from rest at a point $x=2 R$. Find the speed with which it will pass through the centre of ring.

Solution :

Applying mechanical energy conservation,
$K_{A}+U_{A}=K_{O}+U_{O}$
$K_{O}=U_{A}-U_{O}=m\left(V_{A}-V_{O}\right)$
$\frac{1}{2} m v^{2}=m\left[-\frac{G M}{\sqrt{5} R}-\left(-\frac{G M}{R}\right)\right]$
$v^{2}=\frac{2 G M}{R}\left[1-\frac{1}{\sqrt{5}}\right]$
$v=\left[\frac{2(\sqrt{5}-1) G M}{\sqrt{5} R}\right]^{1 / 2}$

$$
V_{O}=-\frac{G M}{R} \quad V_{A}=-\frac{G M}{\sqrt{5} R}
$$

Potential due to a Uniform Thin Spherical Shell

To find potential due to the shell, we can divide the shell into multiple small ring elements.

In $\triangle O A P, R^{2}+r^{2}-z^{2}=2 R r \cos \theta$
Differentiating and solving, $\frac{Z}{R r} d z=\sin \theta d \theta$

$$
\begin{gathered}
d m=\frac{M}{4 \pi R^{2}} \times(2 \pi R \sin \theta)(R d \theta) \\
d m=\frac{M}{2} \sin \theta(d \theta) \\
d V=-\frac{G d m}{z}=-\frac{G M}{2} \frac{\sin \theta}{z} d \theta
\end{gathered}
$$

$$
d V=-\frac{G M}{2 R r} d z
$$

Potential due to a Uniform Thin Spherical Shell

Case 1: P is outside the shell $(r>R)$

$$
V=-\frac{G M}{r}
$$

Case 2: P is at the surface of shell ($r=R$)

$$
V=-\frac{G M}{R}
$$

Case 3: P is inside the shell $(r<R)$

$$
V=-\frac{G M}{R}
$$

Case 1: Potential at an External Point $(r>R)$

$$
V=-\frac{G M}{r}
$$

Case 2: Potential at the surface $(r=R)$

$$
V=-\frac{G M}{R}
$$

Case 3: Potential at an Internal Point ($r<R$)

$$
V=-\frac{G M}{2 R^{3}}\left(3 R^{2}-r^{2}\right)
$$

A uniform ring of mass M_{1} and a uniform solid sphere of mass M_{2} are separated by a distance $\sqrt{3} R$. Imagine that a small object of mass m is displaced from A to B. Find the work done by the gravitational force.

Solution:
At A :
$V_{A}=\left(V_{A}\right)_{\text {Due to Ring }}+\left(V_{A}\right)_{\text {Due to solid sphere }}$
$V_{A}=-\frac{G M_{1}}{R}-\frac{G M_{2}}{\sqrt{3} R}$
At B :
$V_{B}=\left(V_{B}\right)_{\text {Due to Ring }}+\left(V_{B}\right)_{\text {Due to solid sphere }}$
$V_{B}=-\frac{G M_{1}}{2 R}-\frac{3 G M_{2}}{2 R}$
$W_{g}=-\Delta U=-m\left(V_{B}-V_{A}\right)$
$\Rightarrow W=\frac{G m}{R}\left(-\frac{M_{1}}{2}+M_{2}\left(\frac{3}{2}-\frac{1}{\sqrt{3}}\right)\right)$

$$
m\left(V_{B}-V_{A}\right)=U_{B}-U_{A}=-W_{\text {conservative }}
$$

- Inertial mass: It is a measure of an object's resistance to acceleration when a force is applied.

$$
m_{i}=\frac{F}{a}
$$

- Gravitational mass: It is determined by the strength of the gravitational force experienced by a body in the gravitational field.

$$
m_{g}=\frac{F_{g} R^{2}}{G M}
$$

$$
m_{g}=\frac{F_{g}}{E_{g}}
$$

$E_{g}=$ Gravitational field
strength

- Perihelion \& Aphelion are the closest \& farthest points of approach.
- The separation velocity is zero at these points or the entire velocity is perpendicular to the line joining the Sun \& Planet.

目) Kepler's 2nd Law : Law of Areas

$$
\text { If } t_{1}=t_{2}, A_{1}=A_{2}
$$

$$
\begin{aligned}
& \Rightarrow d A=\frac{r v}{2} d t \sin \theta \\
& \Rightarrow \frac{d A}{d t}=\frac{r v}{2} \sin \theta \\
& \frac{d A}{d t}=\frac{r v}{2} \sin \theta \times \frac{m}{m} \\
& \Rightarrow \frac{d A}{d t}=\frac{m v r \sin \theta}{2 m}=\frac{L}{2 m} \\
& \Rightarrow \frac{d A}{d t}=\frac{L}{2 m}=\text { constant } \\
& \left.\quad \because \because \frac{d A}{d t}=\text { constant }\right]
\end{aligned}
$$

$$
\Rightarrow L=\text { constant }
$$

$$
[\because 2 m=\text { constant }]
$$

\Rightarrow Angular
momentum of the
system remains
sweeps out equal areas in equal intervals of time.

- Areal velocity $\left(\frac{d A}{d t}\right)$ remains constant.

$$
\frac{A_{1}}{t_{1}}=\frac{A_{2}}{t_{7}}
$$

$$
d A \approx \operatorname{Area}\left(\triangle S P P^{\prime}\right)
$$

θ - Instantaneous angle between \vec{v} and \vec{r}
Area swept by the radius vector,

$$
\Rightarrow d A \approx \frac{1}{2}(r)[(v d t) \sin (\pi-\theta)]\left[\because A(\Delta)=\frac{1}{2} b h\right]
$$

conserved.

The earth moves around the sun in an elliptical orbit as shown in the figure. The ratio $\frac{O A}{O B}=x$. The ratio of the speed of the earth at B to that at A is

Solution: Given: $\quad \frac{O A}{O B}=x$

Using the conservation of angular momentum,

$$
\begin{aligned}
& m v r=\text { constant } \\
\Rightarrow & m v_{A} r_{A}=m v_{B} r_{B} \\
\Rightarrow & \frac{v_{B}}{v_{A}}=\frac{r_{A}}{r_{B}}=\frac{O A}{O B}=x
\end{aligned}
$$

$$
\frac{v_{B}}{v_{A}}=x
$$

Law states that the square of the planet's time period of revolution is directly proportional to the cube of semi-major axis length of its orbit.

$$
\frac{T^{2}}{a^{3}}=\text { constant } \left\lvert\, \begin{aligned}
& T-\text { Time period of revolution } \\
& a-\text { Semi-major axis length of the orbit }
\end{aligned}\right.
$$

NOTE: This is true for a planet - satellite system as well.

The time period of a satellite of the earth is $5 h$. If the separation between the earth and the satellite is increased to four times the previous value, the new time period will become

Solution: Given: $T_{1}=5 h, \quad R_{2}=4 R_{1}$

To find: T_{2}

According to Kepler's third law,
$T^{2} \propto R^{3}$
$\Rightarrow\left(\frac{T_{1}}{T_{2}}\right)^{2}=\left(\frac{R_{1}}{R_{2}}\right)^{3}$
$\Rightarrow T_{2}=8 \times T_{1}=40 h$

$$
T_{2}=40 h
$$

b$80 h$
$\Rightarrow\left(\frac{T_{1}}{T_{2}}\right)=\left(\frac{R_{1}}{R_{2}}\right)^{\frac{3}{2}}=\left(\frac{1}{4}\right)^{3 / 2}$

Circular Orbits

- Since semi-major axis \& semi-minor axis are equal, the planet performs uniform circular motion about the Sun.
- Gravitational Force $\left(F_{G}\right)$ provides the necessary Centripetal Force $\left(F_{c}\right)$.

$$
\Rightarrow \frac{G M m}{r^{2}}=\frac{m v^{2}}{r}
$$

\therefore Orbital Speed, $v=\sqrt{\frac{G M}{r}}$

NOTE: Since $M \gg m$, we consider the Sun as an inertial frame of reference

- Time period (T): Time taken for completing one revolution.

$$
T=\frac{2 \pi r}{v} \quad O R \quad T^{2}=\frac{4 \pi^{2}}{G M} r^{3}
$$

- Total Energy of planet is,

$$
E=-K=\frac{U}{2}=-\frac{G M m}{2 r}
$$

$$
\begin{array}{r}
K=\frac{G M m}{2 r} U= \\
E=-\frac{G M m}{2 r}
\end{array}
$$

- Binding Energy for an object in orbit is,

$$
\text { B. } E=|E|
$$

A 400 kg satellite is in a circular orbit of radius $2 R_{E}$ about the Earth.
3 How much energy is required to transfer it to a circular orbit of radius $4 R_{E}$? $\left[M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6.4 \times 10^{6} \mathrm{~m}\right]$

Solution

Given: $m=400 \mathrm{~kg}, M_{E}=6 \times 10^{24} \mathrm{~kg}, R_{E}=6.4 \times 10^{6} \mathrm{~m}$
Energy required to transfer the satellite from $2 R_{E}$ to $4 R_{E}$,

$$
\begin{aligned}
E & =E_{f}-E_{i} \\
& =\left(-\frac{G M m}{2 r_{2}}\right)-\left(-\frac{G M m}{2 r_{1}}\right) \\
& =\left(-\frac{G M m}{8 R_{E}}\right)-\left(-\frac{G M m}{4 R_{E}}\right)=\frac{G M m}{8 R_{E}} \\
& =\frac{6.64 \times 10^{-11} \times 6 \times 10^{24} \times 400}{8 \times 6.4 \times 10^{6}} \quad E=3.13 \times 10^{9} \mathrm{~J}
\end{aligned}
$$

- For a satellite orbiting very close to Earth $(r \approx R)$.

Orbital speed, $\quad v=\sqrt{\frac{G M}{r}} \approx 7.9 \mathrm{~km} / \mathrm{s}$

Time period,

$$
T=\frac{2 \pi R}{v} \approx 84.6 \text { minutes }
$$

Total energy, $\quad E \approx-\frac{G M m}{2 R}$

- For Geostationary satellites,
$\left(\omega_{\text {satellite }}\right)_{\text {revolution }}=\left(\omega_{\text {earth }}\right)_{\text {rotation }}$

Geostationary radius,

$$
r \approx 4.2 \times 10^{4} \mathrm{~km}
$$

Orbital velocity, $\quad v=\sqrt{\frac{G M}{r}} \approx 3.1 \mathrm{~km} / \mathrm{s}$

$$
T=24 h r
$$

- Orbits of these satellites are perpendicular to equator.
- Time period $=2$ to 3 hr .
- Height $=200$ to $1,000 \mathrm{~km}$.
- It is the complete or near-complete absence of the sensation of weight. (free-fall)
- Bodies inside satellite experience weightlessness since the satellite has an acceleration towards the Centre of the earth, which is exactly equal to the gravitational acceleration at that point.

The mean radius of earth is R. Its angular speed about its own axis is ω and the acceleration due to gravity at earth's surface is g. Find the radius of the orbit of a geostationary satellite as a function of $\omega, g \& R$.

Solution : Centripetal force $=$ Gravitational force

$$
\begin{aligned}
& \frac{m(r \omega)^{2}}{r}=\frac{G M m}{r^{2}} \quad(\because v=r \omega) \\
& r^{3}=\frac{G M}{\omega^{2}}=\left[\frac{G M}{R^{2}}\right] \frac{R^{2}}{\omega^{2}} \\
& r^{3}=\frac{g R^{2}}{\omega^{2}} \quad\left(\because g=\frac{G M}{R^{2}}\right)
\end{aligned}
$$

$$
r=\left(\frac{g R^{2}}{\omega^{2}}\right)^{\frac{1}{3}}
$$

Escape Speed

- Escape speed is the minimum speed required by a body to be projected with to overcome the gravitational pull of the earth.

$$
\begin{aligned}
& \frac{1}{2} m u^{2}+\left(-\frac{G M m}{R}\right)=\frac{1}{2} m v^{2}+\left(-\frac{G M m}{R+h}\right) \\
& \text { For } h=\infty, \frac{1}{2} m v^{2} \geq 0 \\
& \frac{1}{2} m u^{2}+\left(-\frac{G M m}{R}\right) \geq 0 \\
& u \geq \sqrt{\frac{2 G M}{R}}
\end{aligned}
$$

A satellite is revolving in a circular orbit at a height h from the Earth's surface (radius of earth $R, h \ll R$). The minimum increase in its orbital velocity required, so that the satellite could escape from the Earth's gravitational field, is close to (Neglect the effect of atmosphere)

Solution : Extra velocity required to escape the gravitational field,

$$
\Delta v=v_{\text {escape }}-v_{\text {orbital }}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2 G M}{R}}-\sqrt{\frac{G M}{R}} \\
& =\sqrt{2 g R}-\sqrt{g R} \quad\left(\because g=\frac{G M}{R^{2}}\right)
\end{aligned}
$$

$$
\text { (a) } \sqrt{2 g R}
$$

(C) $\sqrt{g R}$

$$
\Delta v=\sqrt{g R}(\sqrt{2}-1)
$$

(b) $\sqrt{g R / 2}$
d $\sqrt{g R}(\sqrt{2}-1)$

- Case 1: If $v=0$, then path is a straight line joining $A O$.
- Case 2: If $0<v<v_{0}$, then path is ellipse.
- Case 3: If $v=v_{0}$, then path is a circle with 0 as centre.
- Case 4: If $v_{0}<v<v_{e}$, then path is ellipse.
- Case 5: If $v=v_{e}$, then path is parabola.
- Case 6: If $v>v_{e}$, then path is hyperbola.

The minimum and maximum distance of a satellite from the center of the earth are $2 R$ and $4 R$, respectively, where R is the radius of earth and M is the mass of the earth.
Find
a) Minimum \& Maximum Speed.
b) Radius of curvature at the point of minimum distance of separation.

Solution:

$$
\begin{align*}
& L_{P}=L_{A} \\
\Rightarrow & m v_{P} r_{P}=m v_{A} r_{A} \\
\Rightarrow & v_{P}(2 R)=v_{A}(4 R) \\
\Rightarrow & v_{P}=2 v_{A} \tag{1}
\end{align*}
$$

$$
v_{A}^{2}=v_{P}^{2}-\frac{G M}{2 R}
$$

(2)
$\Rightarrow \frac{1}{2} m v_{A}^{2}-\frac{G M m}{4 R}=\frac{1}{2} m v_{P}^{2}-\frac{G M m}{2 R}$

$$
v_{A}^{2}=4 v_{A}^{2}-\frac{G M}{2 R}
$$

$\Rightarrow \frac{v_{A}^{2}}{2}=\frac{v_{P}^{2}}{2}-\frac{G M}{4 R}$
$\Rightarrow v_{A}^{2}=v_{P}^{2}-\frac{G M}{2 R}$

$$
v_{A}=\sqrt{\frac{G M}{6 R}}, v_{P}=2 \sqrt{\frac{G M}{6 R}}
$$

$$
\begin{gathered}
\sum \vec{F}_{c}=m \vec{a}_{c} \\
\frac{G M m}{(2 F)^{2}}=\frac{m v_{P}^{2}}{r_{P}}
\end{gathered}
$$

b)

$$
\begin{equation*}
r_{P}=\frac{8 R}{3} \quad\left(\because v_{P}=2 \sqrt{\frac{G M}{6 R}}\right) \tag{2}
\end{equation*}
$$

A particle is projected vertically upwards from the surface of the Earth(radius R_{e}) with a speed equal to one fourth of escape $\operatorname{speed}\left(v_{e}\right)$.What is the maximum height attained by it above the surface of the Earth?

Solution: From the principle of conservation of mechanical energy,

$$
\begin{aligned}
& K_{A}+U_{A}=K_{B}+U_{B} \\
& \Rightarrow \frac{1}{2} m v_{A}^{2}-\frac{G M m}{R_{e}}=\frac{1}{2} m(0)^{2}-\frac{G M m}{R} \\
& \Rightarrow \frac{1}{2} m \times \frac{1}{16}\left(\frac{2 G M}{R_{e}}\right)=\frac{G M m}{R_{e}}-\frac{G M m}{R}\left(\because v_{A}=\frac{1}{4} v_{e}=\frac{1}{4} \sqrt{\frac{2 G M}{R_{e}}}\right) \\
& \Rightarrow R=\frac{16}{15} R_{e}
\end{aligned}
$$

(a) $\frac{16}{15} R_{e}$
(b) $\frac{4}{15} R_{e}$

$$
\Rightarrow h=R-R_{e} \Rightarrow \quad h=\frac{R_{e}}{15}
$$

There is a crater of depth $\frac{R}{100}$ on the surface of the moon (radius R). A projectile is fired vertically upward from the crater with velocity, which is equal to the escape velocity v from the surface of the moon. Find the maximum height attained by the projectile.
Solution
The projectile is fired from A with velocity v equal to escape velocity on surface of moon

$$
v_{A}=v=\sqrt{\frac{2 G M}{R}}
$$

From the Conservation of mechanical Energy,

$$
\begin{aligned}
& K_{A}+U_{A}=K_{B}+U_{B} \\
& \Rightarrow \frac{1}{2} m v_{A}^{2}-\frac{1}{2} m(0)^{2}=m\left(V_{B}-V_{A}\right)
\end{aligned}
$$

Considering moon to be a uniform solid sphere

$$
\begin{aligned}
& \Rightarrow \frac{v_{A}^{2}}{2}=\frac{2 G M}{2 R}=-\frac{G M}{R+h}-\left[-\frac{G M}{R^{3}}\left(1.5 R^{2}-0.5\left(R-\frac{R}{100}\right)^{2}\right)\right] \because v_{A}=v=\sqrt{\frac{2 G M}{R}} \\
& \Rightarrow \frac{1}{R}=-\frac{1}{R+h}+\frac{3}{2 R}-\frac{1}{2 R}\left(\frac{99}{100}\right)^{2}
\end{aligned}
$$

$$
R+h=2 R \times \frac{10000}{10000-9801} \approx 100.5 R \quad \Rightarrow h \approx 99.5 R
$$

Solution: Body will reach the smaller sphere when it crosses point P.

$$
\begin{aligned}
& \frac{G M}{x^{2}}=\frac{G(16 M)}{(10 a-x)^{2}} \\
& x=2 a \Rightarrow r_{1}=2 a, r_{2}=8 a
\end{aligned}
$$

From the principle of conservation of mechanical energy,

$$
\frac{1}{2} m v_{\min }^{2}+\left[-\frac{G(M) m}{8 a}-\frac{G(16 M) m}{2 a}\right]=0+\left[-\frac{G(M) m}{2 a}-\frac{G(16 M) m}{8 a}\right]
$$

$$
v_{\min }=\frac{3 \sqrt{5}}{2} \sqrt{\frac{G M}{a}}
$$

A system of binary stars of masses m_{A} and m_{B} are moving in

 concentric circular orbits of radii r_{A} and r_{B} respectively. If T_{A} and T_{B} are their time periods respectively then,Solution : When both are stars are farthest from each other, the gravitational force on one star due to the other is equal to centripetal force.

$$
F_{g}=F_{C}=m r \omega^{2}
$$

$$
\frac{G m_{A} m_{B}}{\left(r_{A}+r_{B}\right)^{2}}=\frac{m_{A} r_{A} 4 \pi^{2}}{T_{A}^{2}}=\frac{m_{B} r_{B} 4 \pi^{2}}{T_{B}^{2}}
$$

The displacement for center of mass C for the
 system of stars will be zero

$$
\begin{gathered}
m_{A} r_{A}=m_{B} r_{B} \\
\Rightarrow T_{A}=T_{B}
\end{gathered}
$$

(a) $\frac{T_{A}}{T_{B}}=\left(\frac{r_{A}}{r_{B}}\right)^{\frac{3}{2}}$
d) $T_{A}=T_{B}$

