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Discovery of electron

In 1891, George Johnstone Stoney named the 
fundamental unit of electricity as 'electron'

J. J. Thomson and his team identified electron as a 
particle in 1897

Cathode rays



Discovery of electron

Air at very low pressure

Cathode Anode

To Vacuum 
pump

High voltage 
generator

Discharge tube: Cylindrical hard glass tube fitted with two 
metallic electrodes connected to a battery.



Discovery of electron

Readings of electric current
was observed

Anode end of the tube showed a 
greenish glow on the ZnS screen

Cathode Anode
Observations



Discovery of electron

At high pressure, more number of gas 
molecules are present and so there is 

more obstructions in the paths of 
electrons which prevents electrons from 

reaching the anode.

Why are Gases used under LOW pressure?



Discovery of electron

2. Cathode rays travel in a straight 
line with high velocity

in the absence of electric & 
magnetic fields.

1. Cathode rays move from 
cathode to anode.

3. Cathode rays are more 
efficiently observed with the help 

of a fluorescent or 
phosphorescent material like ZnS.

4. Cathode rays rotate the light 
paddle wheel placed in their 

path. It shows that the particles 
of cathode ray particles are 

material particles which have 
mass and velocity.

Observation and Characteristics



Discovery of electron

Cathode Anode

To Vacuum 
pump

Light paddle wheel

High voltage 
generator



Discovery of electron

Observation and Characteristics

5. Cathode rays are deflected in 
the presence of an electric field.

+

-

Cathode

Anode

6. Cathode rays are deflected in 
the presence of a magnetic field.

Cathode

Anode



Discovery of electron

Conclusions

Cathode rays consist of 
negatively charged particles and 

identified as electrons.



Charge to mass ratio

● Measured the charge (e) to mass 
(m) ratio of an electron.

● Electric & magnetic fields 
were applied perpendicular to 
each other & to the path of 
electrons

In 1897, J.J. Thomson

1.758820 × 1011 C/kg
e
m =

+

-

Cathode
Anode



Charge to mass ratio

Charge to mass ratio is 
the same irrespective of

Nature of
the gas

Electrons are fundamental 
particles

Material of 
Cathode



Discovery of Anode Rays

Discovered by Goldstein

He repeated experiment with a 
discharge tube by using a perforated 

cathode.

Existence of positively charged particles
was shown using anode rays.

Perforated 
Cathode

Anode

Red glow is due to anode 
particles which passes 

through perforated cathode 
and strikes the wall of the 
tube at the cathode side.



Discovery of Anode Rays

Perforated 
Anode Perforated 

Cathode
Red colour 

fluorescence 
observed due 
to Anode rays

Green colour 
fluorescence 
observed due 

to Cathode 
rays



Observations and Characteristics

1. Anode rays possess positive charge

Concluded by their directions of 
deflections in the presence of 

electric & magnetic fields 

2. Anode rays travel in straight lines in 
the absence of both electric and 

magnetic fields.



Observations and Characteristics

Properties of anode rays 
depends on nature of the gas 
taken in the discharge tube

In 1919, Rutherford discovered 
that the smallest and the lightest 
positive ions are obtained from 

hydrogen and called them 
protons

3. e/m ratio of the canal rays is 
different for different gases



James Chadwick

Discovery of Neutrons

Discovered neutrons in 1932

Bombarded a thin sheet of beryllium 
(    Be) with alpha particles (   He2+)9

4
4
2

Named the electrically neutral 
particles emitted as neutrons

Mass of neutrons is slightly greater 
than that of protons



Discovery of Neutrons

He++4
2

Be
9
4

C
12
6 n1

0

Z = 2
A = 4

Z = 4
A = 9

Z = 6
A = 12

q = 0
A = 1

+ +

𝞪 Source

Beryllium Paraffin Wax

Detector and counter 
for protons



Thomson’s Model

Raisin 
pudding 
model

Plum 
pudding 
model

Watermelon 
model



Thomson’s Model

1. An atom has a spherical shape
(radius～10–10 m)

2. Positive charge is uniformly 
distributed throughout the 

sphere

3. Negatively charged electrons 
are embedded in it like raisins in 

a pudding

4. Mass of the atom is assumed to 
be uniformly distributed all over it

Plum Pudding Watermelon



Drawback:
Not consistent with the 

results of later experiments

Thomson’s Model

Electrons are embedded in an 
atom in such a way that

 the most stable electrostatic 
arrangement is achieved.

Positively 
Charged Matter

Negatively 
Charged 
Electrons

Explains the overall 
neutrality of an atom



A stream of high energy 𝞪–particles was
directed at a thin gold foil (thickness ∼ 100 nm)

Rutherford’s Experiment

Radioactive 
Source

ZnS
Screen

Gold Foil



When an 𝞪–particle strikes the screen, a glow 
was produced at that point on the screen

 

Observations of Rutherford’s Experiment



Observations of Rutherford’s Experiment

Electrons

Gold Atoms

Nucleus 



Observations of Rutherford’s Experiment

 1. Most of 
them 

passed 
undeflected

4. Small 
fraction was 
deflected by 
small angles

2.Very small 
fraction was 
deflected by 
large angles

3. Very few 
were 

deflected by 
180° (∼1 in 
20,000)

𝞪–particles



Observation Conclusion

Most 𝞪-particles 
passed through the 

foil without 
deflection.

Few 𝞪-particles
were deflected by 

small angles.

Very few 𝞪-particles
(∼1 of 20,000) 

deflected at 180°.

Presence of large 
empty space
in the atom.

Positive charge is 
concentrated in a
very small region.

Small positively 
charged core at 

the centre.



Nucleus

Atom consists of 
a small positively 
charged core at 
the center which 
carries almost the 

entire mass 
of the atom

It has negligible 
volume 

compared to the 
volume 

of the atom.



Nucleus

   
Both, protons and neutrons present 
in the nucleus are collectively called 

nucleons.

Radius of the atom

Radius of the nucleus

～10–10 
m

～10–15 m

R R0 A=

R = Radius of nucleus of an element

     A = Mass number of element

R0 = 1.11 x 10-15 m to 1.44 x 10-15 m

1
3



Extranuclear part

Nucleus is surrounded by 
revolving electrons.

Electrons and nucleus 
are held together by 
electrostatic forces of 

attraction. FCentripetal

FElectrostatic FCentripetal=



Drawbacks of Rutherford’s Model

It could not explain line spectrum of the H atom.

It could not explain the electronic structure of the atom.

It could not explain stability of the atom.



R.A. Millikan’s Oil drop experiment

Atomizer

Charged metal plate (+)

Charged oil 
droplets

Viewing
microscope

Charged metal
plate (-)

Ionizing
radiation

Light
source

Atomizer

Charged metal plate ( + )

Charged oil droplets

Viewing microscope

Charged metal plate ( - )

Ionizing 
Radiation

Light
source

                                              – 1.602176 × 10–19 CCharge on electron

This experiment was 
conducted to get the 
charge on electron.

Charge on oil droplets 
measured and found to 
be an integral multiple 
of magnitude of charge 

on an electron (e).



Mass of the electron 

1.75882 × 1011 C kg−1

Thomson’s e/m ratio
Charge from 

Millikan’s experiment 

– 1.602176 × 10–19 C

From Thomson’s experiment, e/m ratio 
calculated and from Oil drop experiment, 
charge of electron calculated. Using the 
data from these two experiments, mass 

of the electron was determined.



Subatomic 
Particles

Mass (u)
Absolute 
Mass (kg)

Electron 0.0005 9.1 × 10-31

Proton 1.007 1.6722× 10-27

Neutron 1.008 1.6749 ×10-27

Subatomic Particles

Subatomic 
Particles

Relative 
Charge

Absolute
 Charge (C)

Electron -1 -1.602 x 10-19

Proton +1 1.602 x 10-19

Neutron 0 0



q n (e)=

Quantization of Charge

q n (1.6 x 10-19 C)=
q  n (4.8 x 10-10 esu)=
n = 1 , 2 , 3 ...

The charge can’t have continious range of 
values but only take values in multiple of 

charge on one electron. The magnitude of 
charge on an electron is the smallest unit 

and denoted as “e”. Thus charge on an 
electron is -e and on a proton, it is +e.



F12 F21

Electrostatic Force

=

+q1

F12

r

=
q1 q2

r 2
K

+q2
F21

+q1

F12 -q2

F21

K = = 9 x 109 

Ɛ0 =    Permittivity of vacuum

Ɛ0    8.854 x 10-12 C
Vm

1
 4πƐ0

Nm2

C2

=



Potential Energy

q = Charge of the particle
V = Potential of surface

P.E. q x V=

P.E. = 1
 4πƐ0

q1  q2

   r P.E. = K
q1 q2

   r



        Closest Distance Of Approach

R1

R

1 23

V𝛂m𝛂

When two charged particles of 
similar nature approach each other, 

the repulsion between them 
increases but due to initial kinetic 

energy, the particles come closer to 
each other (Recall the bombarding of 
positively charged alpha particle on 

gold foil where the alpha particle 
approaching positively charged 

nucleus of gold atom). 

Closest distance of 
approach( in alpha particle 
scattering by gold nucleus), 
R = √4KZe2/m𝝰 V𝝰



        Closest Distance Of Approach

R1

R

1 23

V𝛂m𝛂

But at a certain distance between 
them, the relative velocity becomes 
zero and after that due to repulsion, 
the particles starts going away from 
each other. This distance between 
the particles where velocity once 
becomes zero is called Closest 

distance of approach and can easily 
be calculated using conservation of 

energy concept.Closest distance of approach, 
R = √4KZe2/m𝝰 V𝝰



Electromagnetic Waves

Oscillating 
Electric & 

Magnetic field

Electric Field

Magnetic Field



Properties of Electromagnetic Waves

Electric & magnetic field 
oscillate perpendicular to each other

Both oscillate perpendicular to the 
direction of propagation of wave

Do not require any medium for 
propagation

Can travel in vacuum

Propagate at a constant speed i.e. with 
the speed of light (c)

c = 3 x 108 ms-1 (in vaccum)



Characteristics of Electromagnetic waves

Wavelength

Velocity

Frequency

Time Period

Amplitude

Wavenumber



Characteristics of Electromagnetic waves
Crest

AmplitudeWavelengt
h Mean 

position

Velocity of the wave
Trough

Frequency: Number of times a 
wave oscillate from crest to 

trough per second



Characteristics of Electromagnetic waves

Wavelength (λ)

Distance between two 
consecutive crests or troughs

SI unit : m

Frequency (𝛎)

Number of waves passing 
a given point in one second

SI unit : Hertz (Hz), s-1

Related to time period as:

𝛎 = 1 
T



Characteristics of Electromagnetic waves

Velocity (c or v)

Distance travelled by a wave in 
one second SI unit : ms-1

Related to frequency (𝛎) & 
wavelength (λ) as:

c 𝛎 λ=



Characteristics of Electromagnetic waves

Time Period (T)

Time taken to 
complete one oscillation

SI unit : s

Wavenumber (ν)

Number of waves per unit 
length

SI unit :  m-1 

Amplitude (A)

Height of the crest or the 
depth of the trough from the 

mean position
SI unit : m



Characteristics of Electromagnetic waves

𝛎 =
1 
λ

𝛎 c 𝛎=

𝛎 =
1 
T

Consists of radiations 
having 

different wavelength or 
frequency



Electromagnetic Spectrum

  Electromagnetic radiations are 
arranged in the order of

  Decreasing 
frequency

Increasing 
wavelength

or



Electromagnetic Spectrum

Frequency
decreases 

Wavelength 
decreases

Gamma rays

X-rays

Ultraviolet

Visible 

Infrared

Microwave

Radiowave 



Electromagnetic Spectrum

Gamma rays X-rays UV Infrared Microwave Radio wave

High 
frequency

Visible light

Short 
wavelength

Long 
wavelength

Low
 frequency



Electromagnetic wave theory could not explain:

● Black-body radiation

● Photoelectric effect

● Variation of heat capacity of solids with temperature

● Line spectrum of atoms

EM Radiation: Wave or Particle?

Wave nature of the EM radiation explains

Diffraction

Interference



Electromagnetic wave theory could not explain:

● Black-body radiation

● Photoelectric effect

● Variation of heat capacity of solids with temperature

● Line spectrum of atoms

EM Radiation: Wave or Particle?

Electromagnetic wave theory could not explain

Black-body radiation

Photoelectric effect

Variation of heat capacity of 
solids with temperature

Line spectrum of Hydrogen



Continuous vs Discrete

Mass 

= N (mass of 1 water molecule)

Where N ∈ +I

   N (mass of 1 water molecule)Mass

  Where N ∈ + I

=

It seems that mass of water (or any other matter) 
can take any values (suppose we can go till 30 

decimal points) and so we can say that mass has 
continuous range of values. But on microscopic 

level, we can observe that mass of water is 
always an integral multiple of 1 molecule of water. 

i.e., mass is quantized or we can say that 
quantization is a property of matter.



Back to EM waves

Low temperature
Low frequency

Longer wavelength

High temperature
High frequency

Shorter wavelength



Absorbs regardless of the angle 
of incidence

Idealized system 

Absorbs & emits all frequencies

What is a black body?



 Radiatively Black 
Body

Visually Black body

Why the name, Black Body?

vs

A true black body appears black 
because it is not reflecting any 

electromagnetic radiation. 

However, everything you see to 
be black can not ber called as 

blackbody because there could 
be radiation coming out which is 

not in the visible range. 



Wavelength-Intensity relationship
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This graph shows intensity as a 
function of wavelengths emitted from 
a black body. It shows how bright it is 

at what wavelength. It shows 
quantization nature of energy and 

hence favours particle nature of light.



Particle Nature of Radiation

 Planck’s quantum theory explains

Quantisation 
of Energy

Variation of 
intensity with 
wavelength



The smallest packet or bundle of energy 
(quantum of radiation) is called a photon.

This is the smallest quantity of energy that 
can be emitted or absorbed in the 

form of EM radiation.

Planck’s Quantum theory 



Energy (E) of a photon is proportional to its 
frequency (𝝂)

E 𝝂Radiation
∝

Quantum theory of Radiation

E h𝝂= = h

 h  =  Planck’s constant
         =  6.626 × 10-34 Js
  

c
λ

E nh𝝂=

n  =  number of photons
          =  0, 1, 2, 3, …. 
  



One electron volt (eV) 

Energy gained by an electron when
 it is accelerated from rest through

 a potential difference of 1 V



           × )   

Important Conversions

1 eV 1.6 × 10-19 J=

E (eV) = 12,400
λ (Å)

= eV
particle

E (  kJ
  mole

E ( ) 96.48 



Photoelectric Effect

Phenomenon of 
electrons ejection 

When a radiation of sufficient 
frequency falls on the metal 

surface

Photoelectrons 
Electrons are ejected with the 

aid of light



Photoelectric Effect

When radiation of 
sufficient energy falls on 

the metal plate, there 
starts emission of 
electrons called 
photoelectrons.

PhotoelectronsMetal plate



Observations

Electrons are ejected as soon as the beam of light 
of sufficient frequency strikes the metal surface

 Instant transfer
of energy to the
electron when a

photon of sufficient 
frequency strikes the

metal atom



Each metal has a 
characteristic

threshold frequency

Threshold frequency (𝝂O)

Minimum frequency 
required to eject a 

photoelectron from a 
metal surface



Observations

Brightness of light

Intensity of light

Number of electrons ejected or∝



Observations

No electron is ejected, 
regardless of the intensity of light

Even at low light intensities, 
electrons are ejected immediately

𝝂incident < 𝝂0 

𝝂incident > 𝝂0 



Particle nature of light

One photon is absorbed by only one electron in a 
single interaction. Not more than one photon can 

be absorbed by an electron.

If intense beam of light is used, large number of 
photons are available and large number of 

electrons are ejected. This observation shows 
particle nature of light.



Observations

K.E.Ejected electron ∝ 𝝂Incident 

𝝂incident > 𝝂0 When

Transfer of 
energy to the 

electron

K.E. of the 
ejected 
electron

Energy 
possessed by 

the photon



Photoelectric Effect

K.E.Ejected electrons0 ≤ K.E.Max≤

K.E. is independent of
the intensity of radiation

Work function 𝝓=

Striking photon’s 
energy

h𝝂=



Work Function (𝝓)

𝝓 h𝝂0=

𝝓  = W0 = Work function

Minimum energy 
required to eject 

an electron from the 
metal surface



𝝓EPhoton K.E.Max- =

Photoelectric Effect

EIncident 𝝓 K.E.Max

From the Law of Energy 
Conservation

= +

        mevmax
1
2 

h𝝂 h𝝂0= +

me = mass of the electron

vmax = maximum velocity of the electron

2



Photoelectric Effect

       h 
 
λo

       h
c
λ

c

K.E. of the ejected electron is given as

K.E.Max h𝝂 h𝝂0        

K.E.Max

= -

= -



Plotting K.E. vs Frequency

Frequency

K
.E

.

ν0

From the plot of kinetic energy vs 
frequency, it shows linear variation 

according to the equation:  

K.E.Max h𝝂 h𝝂0        = -



Acceleration and Deceleration of Charged Particles

Acceleration:
If a positive charge moves from higher to 
lower potential (like an electron moves 
from cathode to anode) or a negative 
charge moves from lower to higher 

potential. 
Deceleration is just opposite to the 

acceleration.



Minimum opposing potential required to stop the 
photoelectron having the maximum K.E.

eVS K.E.max=

(Vs)Stopping potential



Accelerating potential voltage (V)

Voltage applied to increase the K.E. of 
an emitted electron

Maximum K.E.K.E.Max + eV

eVMinimum K.E.



   Frequency
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Photocurrent v/s Frequency of the Radiation
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For ν > ν0

Photocurrent v/s Frequency of the Radiation

   Intensity



P
ho

to
cu

rr
en

t

Stopping potential

Retarding Potential Collector Plate Potential

I : Intensity

I3
I2
I1

-V0 0

Saturation Current

I3 > I2 > I1

Photocurrent at 
different intensity of 

radiation. Here 
frequency of radiation 

is same. 

Photocurrent vs Collector Plate Potential 
at different intensity of radiation
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Collector Plate PotentialRetarding Potential
0

𝛎3 > 𝛎2 > 𝛎1

Photocurrent at different 
frequencies of radiation. 

Here intensity of radiation 
is same. 

Photocurrent vs Collector Plate Potential 
at different intensity of radiation



Bohr Atomic Model



Postulates

Stationary 
orbits 

Concentric circular orbits around the 
nucleus

These orbits have fixed value of energy

Electrons revolve without radiating 
energy

Energy states / 
levels

Stationary 
orbits

or

L M

n = 1

n = 2

n = 3

K



Angular momentum of the 

electron in these orbits is 

always an integral multiple of 

Quantization of Angular momentum

h
2𝜋

Postulates

mvr
nh 
2π

n = 1, 2, 3...

          Planck’s constanth

          Velocity of electron

          Mass of electron

  Radius of orbitr

=

m

v



Postulates

Electron can jump from lower to higher orbit by 
absorbing energy in the form of photon

n = 3

n = 2

n = 1

f

i

Energy 
Absorbed 

E3 - E2=

Electrons can jump from higher to lower orbit 
by releasing energy in the form of photon

Energy 
Released 

E2 - E1=

Energy (h𝜈) 
absorbed

Energy (h𝜈) 
released



Postulates

Energy change does takes place in a discrete manner

        Initial energy state 

ΔE E    -  E n2 n1

n1

       Final energy staten2

=



Bohr’s Frequency Rule

Frequency (𝝂) of a radiation absorbed 
or 

emitted when a transition occurs

ΔE
            

𝝂

E1 = Energy of lower energy state

E2 = Energy of higher energy state

E2 - E1

hh ==



Bohr’s Atomic Theory

Applicable only 
for single 

electron species 
like

 H, He+, Li2+, Be3+



Mathematical Analysis

Calculating

Radius of Bohr orbit

Time period of an 
electron in Bohr orbit

Velocity of an electron 
in Bohr orbit

Frequency of an 
electron in Bohr orbit

Energy of an electron 
in Bohr orbit



Postulate

FElectrostatic

Electron revolves in a circular orbit

Required centripetal force is provided 
by electrostatic force of attraction



Calculating the radius of Bohr orbit

F Centripetal F Electrostatic

  KZe2

r2

mv2

     r

=

=

Equating both the forces,

 On rearranging,

iv2 KZe2

mr

mv2

     r
  KZe2

r2=

=



Calculating the radius of Bohr orbit

According to Bohr's Postulates,

ii

v

mvr

v2

nh
2π

n2h2

4π2r2m2

nh
2πrm

=

=

=

r

KZe2

mr
n2h2

4π2r2m2

n2h2

4π2mKZe2

=

=

On comparing equation (i) and (ii),



Calculating the radius of Bohr orbit

Putting the value of constants,

rn = Radius of nth Bohr orbit

rn

 n2

Z= 0.529         Å 

n =  Energy level

Z = Atomic number

rn n2

rn
1
Z

∝

∝



mvr
nh
2π

Angular momentum of the electron 
revolving in the nth orbit

Calculation of velocity of an electron 
in Bohr orbit

=

ii

v

r
     n2h2

4π2mKZe2

nh
2π r m i=

=



nh 
2πm

 4π2mKZe2

n2
 h

2

Putting equation (ii) in equation (i),

v

v

2πKZe2

nh

Calculation of velocity of an electron 
in Bohr orbit

×

=

=

vn

Z
n

2.18 x 106 ms-1  =

vn = Velocity of the electron in nth Bohr orbit



Relation between vn, n and Z 

vn Z

vn

1
n

∝

∝



Time period of Revolution (T)

2πrn

  vn

Circumference

Velocity 
T 

 Time period of revolution of an electron in its orbit

= =

        1.5 x 10-16           T n3

Z2
T n3

Z2
s= ∝



Frequency of Revolution (f )

 vn

  2πrn

1

T
f

Frequency of revolution of an electron in its orbit

= =

 6.6 x 1015            Hzf
 Z2

n3= f
Z2

n3∝

Putting the value of constants, rn & vn



P.E.K.E.

Calculation of Energy of an electron

T.E. = +

Kinetic energyK.E.

   Potential 
energy

P.E.

Total energy (T.E.) of an electron revolving in 
a particular orbit

K.E. =

   

     
P.E. =

1
2 mv2

KZe2

   r
_

T.E. = + mv2

   2

   
KZe2

     r
_ 



Calculation of Energy of an electron

=

Centripetal force = Electrostatic force

 mv2

   r

= = mv2

2
  KZe2

    2r
K.E.

  KZe2

    r2



Calculation of Energy of an electron

T.E.    KZe2

     2r

T.E.   =    K.E.    +    P.E.

      P.E.K.E.T.E. = =

=

1
2

   KZe2

      r+    KZe2

     2r=



Calculation of Energy of an electron

Substituting the value of ‘r’ in the equation of T.E. 

= - T.E.
    KZe2

      2
 4𝝿2Ze2mK
     n2h2

 2𝝿2Z2e4mK2

     n2h2= =x

=
T.E.

 2𝝿2me4K2

        h2

Z2

n2=

T.E.     
  KZe2

    2r= 



En

Putting the value of constants we get:

Z2

n2
13.6T.E. eV/atom

Calculation of Energy of an electron

= =

Negative sign of T.E. shows attraction 
between electrons & nucleus.

Electron in an atom is more stable than a 
free electron



Energy of an electron

En
Z2

n2

 En Z 

 Enn  

∝

↑

↑ ↑

↓



Energy of an electron

0ELEK < ENEM << E∞ =

 ↑ 

Distance of electron
from the nucleus

 ↑ 
Energy



Energy of an electron

En

En

Z2

n2
-13.6             eV/atom

Z2

n2 -2.18 x 10-18              J/atom

En
  -1312              kJ/molZ2

n2

En

En

Z2

n2-2.18 x 10-11                erg/atom

-313.6               kcal/molZ2

n2

En

En

Z2

n2-2.18 x 10-11                erg/atom

-313.6               kcal/molZ2

n2



Energy of an electron

0

 ∞n =

T.E. =

0

0K.E. =

P.E. =

At



        13.6   

ΔE

Energy Difference

   ΔE _ 

E
2

E

 Z2                       
n1 

2                             13.6   _  Z2                      
n2 

2                     

=

eV
atom

n2

=

n1

  13.6 Z2 
 1                        
n1 

2                     
ΔE _  1                        

n2 
2                     

ΔE

=

=

eV
atom

J
atom2.18 x 10-18 Z2   

 1                        
n1 

2                     
_  1                        

n2 
2                     



Energy level diagram

n = 1

n = 2

n = 3
n = 4
n = 5

n = ∞

Ground state

Higher 
energy 
states

E = 0



Energy level diagram

n = 1

n = 2

n = 3
n = 4
n = 5

n = ∞

Ground state

E = 0

E1 = -13.6 eV

E3 = -1.51 eV

E2 = -3.4 eV

E4 = -0.85 eV
E5 = -0.54 eV

ΔE = E2- E1 = 10.2 eV

ΔE = E3- E2 = 1.89 eV

ΔE = E4- E3 = 0.66 eV



Definition For Single Electron 
Systems



Ground state (G.S.)

   Lowest energy state of any atom or ion n = 1

 G.S. energy of He+ ion -54.4 eV

 G.S. energy of H-atom -13.6 eV



Excited state

States of atom or ion other than the ground state n ≠ 1

 Second excited staten = 3

 First excited staten = 2

mth excited staten = m + 1



Ionisation energy (I.E.)

       Minimum energy required 
           to move an electron  

from 
n = 1 to n = ∞

 Minimum energy required 
to remove an electron  

from 
n = 1 to n = ∞

  13.6 Z2 
 1                        
n1 

2                     ΔE _  1                        
n2 

2                     =
eV

atom

  13.6 Z2 ΔE = eV
atom

Putting n2 = ∞ & n1 = 1 



Ionisation energy (I.E.)

 54.4 eVI.E.He

I.E.H 13.6 eV

122.4 eVI.E.Li2+

=

=

=

+



Ionisation potential (I.P.)

such that its K.E. = I.E.
Potential difference through 
which a free electron must 
be accelerated from rest

I.P. 13.6 Z2  V= 13.6 VI.P.H =

54.4 VI.P.He+ =



Excitation Energy

1st 

excitation 
energy

Excitation 
energy of 

1st E.S.

Excitation 
energy of 
2nd stateFor H atom

n = 1 to n = 2

10.2 eV

Energy required to 
move an electron from 

n = 1 to  
any other state



Potential difference through 
which an electron must be 
accelerated from rest such 

that its 
K.E. = Excitation energy

Excitation potential

2nd 

excitation
potential

Excitation 
potential 
of 2nd E.S.

Excitation 
potential 

of 3rd 
state

12.09 V

For H atom
n = 1 to n = 3



Binding or Separation energy

Energy required to 
move an electron from any state to 

n = ∞ 

I.E.Atom or Ion
B.E.Ground state =



n = 1

n > 1

From 
n = 1 to n = ∞

Ground State

Excited State

Ionization Energy

Summary

From 
any state to n = ∞

From n = 1 to  
any other state

Binding Energy

Excitation Energy



Spectroscopy

Spectrograph

  
Spectrum

Spectrogram



Spectroscopy

Spectroscopy
Branch of 

science that 
deals with the 

study of 
spectra

Spectrograph/ 
SpectroscopeIns

trument
used to separate  

radiation of 
different 

wavelengths

Spectrogram
Spectrum of 

the given 
radiation



Classification: Based on Origin

Spectra

Emission

Absorption



Emission Spectrum

Spectrum of radiation emitted by a substance

Hydrogen spectrum

Emission
Spectrum

Continuous

Discrete



Continuous Spectrum

Continuous distribution of colours (VIBGYOR) 
such that each colour merges into the next one



Continuous Spectrum

Light Source 

Prism

Screen



Classification: Based on Nature

Line

BandEmission
Spectrum

Discrete

Continuous



Line Spectrum

 Ordered arrangement of lines of a particular 
wavelength separated by dark space

Line spectrum



Emission Spectra

Gas discharging 
tube containing 
hydrogen

Slits Prism

Blue - 
GreenViolet

Blue - 
Violet

41
0

.0
 

nm 43
4.

0
 

nm 48
6

.1 
nm

Gas in Excited 
State in 

Discharge 
Tube at low 

Pressure

Prism

Screen

Light emitted by 
gas



Application of Line Spectrum

Each element has a unique 
line spectrum

Identification of unknown atoms



Band Spectrum

Continuous bands separated by 
some dark space

Molecular spectrum



Classification : Based on Origin

Spectrum

Emission

Absorption



Absorption Spectrum

Prism

White light
source Absorption spectrum

Absorbing
sample

Film or
detector

Gas in 
Ground State

Prism

Screen
The gas in ground state 

absorbs radiation of particular 
wavelengths and rediations of 
remaing wavelength passes 

through the gas which scatter 
through a prism and appears 
as bright lines on the ecreen. 

The dark lines shows the 
missing wavelengths which 
are already absorbed by the 
gas and no more available to 

pass through the prism. 



Absorption Spectrum

Some dark lines in the 
continuous spectrum  

Hydrogen spectrum

Represent absorbed radiations



 Emission Spectral Lines/
De-Excitation Series

Line Spectrum of Hydrogen

Due to de-excitation of electron
 from higher to lower orbit



n = 1

n = 2

n = 3
n = 4
n = 5

n = 6 
,4

n = ∞

13
.6

 e
V

12
.0

9
 e

V

-13.6 eV

-3.4 eV

-1.51 eV
-0.85 eV
-0.54 eV

 0 eV

Energy Level Diagram for H atom

10
.2

 e
V

3.
4 

eV

12
.7

5
 e

V

13
.0

6
 e

V



Rydberg’s Formula

Electron makes transition from n2 to n1

ΔE
J

atom2.18 x 10-18 Z2   
 1                        
n1 

2                     
_  1                        

n2 
2                     

hc
λ= =

2.18 x 10-18 Z2
  
 1                        
n1 

2                     
_  1                        

n2 
2                     

1
λ = m-1

hc



Rydberg’s Formula

109678 x  Z2   
 1                        
n1 

2                     
_  1                        

n2 
2                     

1
λ = cm-1

1.09678  x 107 x  Z2   
 1                        
n1 

2                     
_  1                        

n2 
2                     

1
λ = m-1

        1, 2, 3, ...n1
    n1 + 1, n1 + 2, ...       n2

RH
1.09678 x 107 m-1 1.1 x 107 m-1= ≈

     Rydberg constant    RH



Rydberg’s Formula

      RH Z
2  x                                          

1 
λ

        1, 2, 3, ...n1

    n1 + 1, n1 + 2, ...       n2

For any atom

  
 1                        
n1 

2                     
_  1                        

n2 
2                     =

λ =
   1                        

n2 
2                     

 1                        
n1 

2                     
_ 

912 

Z2

Å



     RH  x                                          
1 
λ

        1, 2, 3, ...n1

    n1 + 1, n1 + 2, ...       n2

Rydberg’s Formula

For H atom

  
 1                        
n1 

2                     
_  1                        

n2 
2                     =



Spectral series of H atom

 Lyman Balmer Paschen

Brackett Pfund Humphrey



Lyman Series 

   RH  x                                          
1 
λ

n1 = 1 (Final state)

n2 = 2, 3, 4 …  
 (Initial states, n2 > 1)

For an electron present in H atom

  
 1                        
1 

2                     
_  1                        

n2 
2                     =

1st spectral series. 
Found in UV region 

by Lyman 



Lyman Series

1st line of 
Lyman series (𝛂 line)

2 → 1

2nd line of 
Lyman series (𝛃 line) 3 → 1

Last line of Lyman 
series (Series limit)  ∞ → 1

Wavelength 
of last line 

n1
2

 RH
=

λLyman

1
 RH

=

n2 = ∞



Lyman Series

13.6 eV10.2 eV

         

 

   (ΔE)Lyman

                  

         

  

 λLyman

   12400

   13.6
Å Å

   12400

   10.2

≤ ≤ 

≤ ≤ 



Shortest 
line

Longest 
line

Lyman Series

                Å 
   12400

   ΔEmin

Longest 
wavelength

         

   λlongest or λmax

                  Å
   12400

   ΔEmax

Shortest 
wavelength

         

   λshortest or λmin

= =

= =

Where, E in eV



Lyman Series

1st spectral line λmax 
 

Last spectral line  λmin 
 

Series limit
Limiting/last line of any spectral series

𝜈last line
RH=Since n2 = ∞



n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Lyman series

Lyman Series

λmax λmin



Balmer Series

Only first 4 lines belongs to visible region

Rest belongs to UV region

For H atom

2nd spectral series 

Found in visible region by Balmer



n1 = 2 (Final state) 

n2 = 3, 4, 5 …  
 (Initial states, n2 > 2)

Balmer Series

 =    RH  x                                          1 
λ

1         1
22       n2

2
_ 



Balmer series

n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Balmer Series

λminλmax 



Paschen Series

n1 = 3 (Final state) 

n2 = 4, 5, 6 …  
 (Initial states, n2 > 3)

 =    RH  x                                          1 
λ

1         1
32       n2

2
_ 

3rd spectral series; Found in IR region by 
Paschen



Paschen series

n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Paschen Series

λmax 

λmin



Brackett Series

n1 = 4 (Final state) 

n2 = 5, 6, 7 …  
 (Initial states, n2 > 4)

 =    RH  x                                          1 
λ

1         1
42       n2

2
_ 

4th spectral series; Found in IR region by 
Brackett



Brackett series

n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Brackett Series

λminλmax 



Pfund Series

n1 = 5 (Final state) 

n2 = 6, 7, 8 …  
 (Initial states, n2 > 5)

 =    RH  x                                          1 
λ

1         1
52       n2

2
_ 

5th spectral series; Found in IR region by 
Pfund



Pfund series

n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Pfund Series

λminλmax 



n1 = 6 (Final state) 

n2 = 7, 8, 9 …  
 (Initial states, n2 > 6)

Humphrey Series

 =    RH  x                                          1 
λ

1         1
62       n2

2
_ 

6th spectral series; Found in IR region by 
Humphrey



Humphrey series
n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Humphrey Series

n = 1

n = 7 λminλmax 



Balmer 
series

Paschen 
series

Brackett 
series

Pfund 
series

n = 1

n = 2

n = 3
n = 4
n = 5
n = 6

n = ∞

Lyman series

Line Spectrum of Hydrogen 

Humphrey 
series

n = 7



Maximum Number of Spectral Lines

Maximum number of lines

=
Maximum number of different 

types of photons



n = 1

n = 2

n = 3
n = 4

4 to 3
4 to 2
4 to 1

3 to 2
3 to 1 2 to 1

Maximum Lines for the transition from 4 to 1



n = 1

n = 2

n = 3
n = 4
n = 5

4 to 3
4 to 2
4 to 1

3 to 2
3 to 1 2 to 1

5 to 4
5 to 3
5 to 2
5 to 1

Maximum Lines for the transition from 5 to 1



(nH - nL+ 1) (nH - nL)

2

(Δn + 1) (Δn)

2=

Maximum Number of Lines

         Higher energy levelnH

          Lower energy levelnL

                   nH - nLΔn

Spectral Lines =



Maximum Number of Lines

nHigher - 1
In Lyman series

(nHigher > 1)

nHigher - 2
In Balmer series

(nHigher > 2)

nHigher - 3
In Paschen series

(nHigher > 3) =

=

=

For transition upto n = 1 or n = nSeries 

For a particular 
series

Spectral 
lines

nHigher - nSeries=



Maximum Number of Lines

nHigher - 4
In Brackett series

(nHigher > 4)

nHigher - 5
In Pfund series

(nHigher > 5)

nHigher - 6
In Humphrey series

(nHigher > 6) =

=

=



n = 1

n = 2

n = 3
n = 4

Example

Number of spectral lines in Lyman series 
from 4th shell                                                                                   =  nH - 1 =  4 - 1   = 3



Example

n = 1

n = 2

n = 3
n = 4

4 to 2 3 to 1 4 to 1

4 to 3
3 to 2
2 to 1

1st Atom 2nd Atom 3rd Atom 4th Atom



Pathway to Quantum Mechanical Model

Dual Nature
of Matter

Heisenberg’s
 Uncertainty Principle

Important 
Developments

These developments shows that electron has sufficient 
wave character and it can not be assumed as a particle 
only. So, its position or trajectory can not be determined 

as shown by Bohr model.



Dual Nature of Matter

Louis de Broglie

de Broglie proposed that particle has dual nature

Wave 
nature

Particle 
nature

Einstein suggested that light has dual nature i.e., 
particle nature as well as wave nature.



de Broglie Hypothesis



de Broglie Hypothesis

Wave 
associated with 

moving 
particles

λ = 
h
p



How             ?  λ = 
h
p



de Broglie Hypothesis

mc2

E = λ

E

Planck’s equation
hc

Einstein’s Mass 
Energy relationship =



de Broglie Hypothesis

mc2

λ

Equating both 

For photon

λ
hc

mc
h

=

=

By same analogy, de Broglie proposed 

λFor matter mv
h=



de Broglie Wavelength (λ)

h
p

h
mv

λ ==

      Momentum
      of particle

p

    Mass 
   of particle 

m

     Velocity
     of particle

v

    Planck’s 
    constant

h 



de Broglie Wavelength (λ)

λ
p

h

p0

λ

=



Relativistic Mass

m = v
c(  )2√ 1 -

mO

       Velocity  
w.r.t. 

     the observer
v

    Dynamic 
    mass 

m

     Velocity
     of light

c

    Rest massmO 



Relativistic Mass

0mO =

mm0 = Χ v
c(  )

2√ 1 -

If  v = c

Rest mass of photon is zero



Davisson and Germer’s Experiment

Experimental verification of 
de Broglie’s prediction 

It was observed that an electron
 beam undergoes diffraction



Wavelength of a ball & an electron!

Cricket ball Electron

m = 150 g
v  =  25 m s-1

λ =                           

                           

    6.626 × 10-34

(150 × 10-3) × 25

λ = 1.767 × 10-34 m

     6.626 × 10-34

(9.1 × 10-31) × 2 × 103

m = 9.1 × 10-31 kg
v  =  2 × 103 m s-1

λ =                           

                            λ = 0.364 × 10-6 m 
   = 364 nm

   h      
  mv       

de Broglie wavelength:  λ =

λ is insignificant.                          

                           

λ is significant.                          

                           



Matter Waves

because its wavelength is 
too short due to larger 

mass.

λ ∝

Wave nature 
can’t be detected

 for macroscopic object

m
1



de Broglie’s Equation & Kinetic Energy

 

Multiplying both sides by m & rearranging

K.E. =

m2v2   2 K.E. × m=

mv      

mv21 
2

   √ 2 K.E. x m=



de Broglie’s Equation & Kinetic Energy

h       

     
λ  = 

Since mv 2 K.E. x m

h
p

h
mv

λ

  2 K.E. × m 

de Broglie 
equation

=    √ 

   √ 

= =



de Broglie’s Equation & Kinetic Energy

A charged particle 
accelerated from rest 

across a potential 
difference of V

| K.E. | | q V |=

   √ 2m × K.E.mv

mv    √ ∴

∵ =

2m × q V=



de Broglie’s Equation & Kinetic Energy

λ

        Wavelength (m) λ

    Mass of charged  
particle (kg)

m

    Charge on a   
      particle (C)

q

    Planck’s 
    constant (Js) 

h 

= h

  √ 2m × q V



Electron as a Wave

r

Nucleus

r

In phase Out of phase

Circumference, 
2πr = nλ

Circumference, 
2πr ≠ nλ

n = Number of waves made
in Bohr’s orbit

An integral number of 
complete wavelengths must 
fit around the circumference 

of the orbit.

Electron exist Electron don’t exist 



Electron as a Wave

From Bohr’s theory,

mvr 

n = Energy level

2𝜋r 

= nh
2𝜋

=

Bohr’s Postulate 
verified

nh
mv

When electrons 
are in phase,



Heisenberg’s Uncertainty Principle (H.U.P.)

 Werner Heisenberg 

Exact position and 
momentum of a 

microscopic particle 
cannot be determined 

simultaneously



Heisenberg’s Uncertainty Principle

● Δx ⇒ Uncertainty in position
● Δp ⇒ Uncertainty in momentum
● Δv ⇒ Uncertainty in velocity
● m ⇒ Mass of the particle

Δx . Δp 4𝜋
h

≥Δx . m . Δv 

        Uncertainty in
      position

Δx

  Mass of
   particle

m

    Uncertainty in
     momentum

Δp

    Uncertainty in 
velocity

Δv 

≥

4𝜋
h



Principle of Optics

If a light (wavelength ‘λ’) is used to locate the         
position of a particle, then

    λ
Minimum error in the 

position measurement (Δx) = +-



Heisenberg’s Uncertainty Principle

Δx λSince =

For accurate 
position

Δx        0 λ       0

For a photon

E λ
hc=

λ        0 E       ∞



Heisenberg’s Uncertainty Principle

High energy photon 
strikes particle

Δp

For accurate momentum Δx

Similarly 



Heisenberg’s Uncertainty Principle

For an electron 

≥Δx . m . Δv 
4𝜋
h

=Δx . Δv 4 × 3.14 × 9.1 × 10-31
 kg

6.626 × 10-34 Js

≅Δx .  Δv 10-4 m2s-1 



Heisenberg’s Uncertainty Principle

If Δx = 10-8 m then Δv =  104 ms-1

Position
High 

accuracy
Δx is small

Velocity Uncertain Δv is large

If Δv = 10-8 ms-1 then Δx =  104 m

Velocity
High 

accuracy
Δv is small

Position Uncertain Δx is large

Conclusion:

Heisenberg’s 
uncertainty 
principle is 

meaningless for 
bigger particles. 



Energy - Time Variant of H.U.P.

Δx . Δp 
4𝜋

Multiplied and divided by Δt

  . Δx . Δt 
Δt
Δp

      = Rate of change in momentum = F
Δt
Δp

h

h
4𝜋

≥

≥



Energy - Time Variant of H.U.P.

F . Δx . Δt 
4𝜋
h

ΔE . Δt
4𝜋
h

 Uncertainty in EnergyΔE

  Uncertainty in TimeΔt

≥

≥



Precise statements of 
position& momentum 

of an electron replaced with 
probability

Significance of the Uncertainty Principle

Forms the basis of 
Quantum Mechanical Model 

of atom

2 Rules out the existence of
definite paths of electrons

3 Introduced concept of probability 
of finding the electrons

1 Not an instrumental error, 
rather conceptual error



Limitations of Bohr Model

1
Could not explain the line spectra of atoms 

containing more than one electron

2
Could not explain the presence of 

doublet i.e. two closely spaced lines



Limitations of Bohr Model

3
Unable to explain the splitting of spectral lines

 in the presence of magnetic field (Zeeman effect) 
and electric field (Stark effect).

4
No conclusion was given for the principle 

of quantisation of angular momentum

5
Unable to explain de Broglie’s concept 
& Heisenberg’s Uncertainty Principle



Quantum Mechanical Model



Schrodinger Wave Equation (SWE)

∂2𝚿
∂x2 +

∂2𝚿
∂y2 +

∂2𝚿
∂z2 +

8𝝅2m
h2  ( E - V ) 𝚿 0 =

● 𝚿 = Amplitude of the electron wave or Wave function

● h  = Planck’s constant 

● x, y, z = Cartesian coordinates

● V = Potential energy of the electron

● E = Total energy of the electron 



Wavefunction

SWE is solved to get values of 𝚿 and
their corresponding energies

A function that contains all the 
dynamical information about a 

system
𝚿

SWE can be solved for H like species 
more easily in 

Spherical polar coordinates 
( r , 𝛳 , ɸ )



Spherical Coordinate System

O

z = r cos𝜃

r sin𝜃

z

x

y

Pl

P
r𝜃

ɸ 

r cos𝜃

 r sin𝜃 cosɸ

 r sin𝜃 sinɸ

z

x

y

 =

 =

 =



Wavefunction

Wave 
function

Radial part of 
wave function

Angular part of 
wave function

𝚿 (r, 𝜃, ɸ) 𝚿 (r) 𝚿 (𝜃, ɸ)

n, l l, ml

 =  ×

When SWE is solved for H like species, the obtained values 
of 𝚿 could be factorized into one containing only ‘r’ and the 

other containing (𝜃, ɸ).



Schrodinger Wave Equation

n l ml
s

✔ ✔ ✔ х

Characterized by a set of quantum numbers

𝚿 corresponds to atomic orbital

First three quantum 
numbers (n, l, m) were 
derived from Schrodinger 
equation. The spin 
quantum number added 
later.



What is an Orbital?

Orbital
3D region 
around the 

nucleus

Probability of
 finding an electron 

is maximum 



What is an Orbital?

Defines the probability 
of finding an electron 

Does not define a 
definite path of 

electrons



Quantum Numbers

Set of four 
numbers required 

to define an 
electron in an 

atom completely

            Principal Quantum Number ( n )1

            Azimuthal Quantum number ( l )2

            Magnetic Quantum Number ( ml )3

            Spin Quantum Number ( s )4



Principal Quantum Number (n)

Proposed by 
Niels Bohr

2
Signifies energy level for single 

electron species

3
Accounts for the main lines in 

the atomic spectrum

1
Designates the shell to which 

the electron belongs



Principal Quantum Number (n)

Describes the size 
of electron wave 

& the total energy 
of the electron

n = 1, 2, 3...

Represented as K, L, M, N,...

 nh
2π

Angular momentum in any 
shell =



Azimuthal Quantum Number (l )

Proposed by 
Sommerfeld

2 Energy of the orbital in 
multielectron species (both n&l) 

3 Accounts for the fine lines in 
atomic spectrum

1

 
Designates the subshell to 
which the electron belongs



Azimuthal Quantum Number (l )

Subsidiary Quantum Number

Orbital Angular momentum Quantum 
Number

Also known as

Describes the 3-D 
shape of the 
orbital or the 

electron cloud

For a given value of Principal Quantum Number (n)

  0 to (n - 1)l
=
=



Boundary Surface Diagram

Encloses the 3D region where probability 
of finding electrons is maximum

Shape : Spherical 

Example



s

f

p

d

Orbital

Classification of Orbitals



Shape of Orbitals

s - orbital
Shape : Spherical

p - orbital
Shape : Dumb bell

Shape : Double 
dumb bell



Probability Density Plots

s orbital p orbital d orbital



Shapes of Orbitals

Orbital

s

Shape

Spherical

p Dumb bell 

d
 

Double dumb bell

f
Leaf like / 

Complicated



Subshell 

Collection of 
similar shaped 

orbitals of same n.



Subshell 

l

0

Subshell

s

1 p 

2
 

d

3 f

Description

Sharp

Principal 
 

Diffused

Fundamental

4 g Generalised



Subshell Representations

n

1

l

0

2 0, 1 

3
 

0, 1, 2

4 0, 1, 2, 3

Subshell 
notation

1s

2s, 2p 
 

3s, 3p, 3d

4s, 4p, 4d, 4f

   Number of subshells in the nth shell



Azimuthal Quantum Number (l )

Orbital angular 
momentum (L)

    l (l + 1)  ħ

Subshell

s

Orbital angular 
momentum

0

p    2  ħ 

d   6  ħ

 ħ = 
h

2π=



Magnetic Quantum Number (ml )

Proposed by 
Linde

2
Describes the orientation of 

orbitals

3 Accounts for the splitting of lines of 
atomic spectrum in magnetic field

1
 Designates the orbital to 

which the electron belongs



Magnetic Quantum Number (ml )

Can have values from - l to + l 
including zero

Each value corresponds to an orbital

For d 
subshel,

l = 2
ml = -2, -1, 0, 1, 2



Magnetic Quantum Number (ml )

Subshell

s

Number of orbitals

1

p 3 (px, py, pz) 

d 5 (dxy, dyz, dzx, dx - y , dz  )
222

f 7

2l + 1
Maximum number of 
orbitals in a subshell =



s - orbital

x

y

z

Shape : Spherical
Non-directional in nature



p - orbital

Shape : Dumb bell
Directional in nature

z

y

x

z

y

x

z

y

x

pz py px



d - orbital

x

y

z

dxy

x

y

z

dxz

x

y

z

dyz

z

x

y

z

y

x
dz dx  -  y

Axial 
d-orbitals

Non axial 
d-orbitals

2

2 2

Shape : Dumb bell
Directional in nature



Maximum number of 
electrons in a subshell 2 (2l + 1)

Remember!

Subshell

l

s

0

Number of electrons 2

p

1

6

d

2

10

f

3

14

=

An orbitals can accommodate maximum of  2 electrons.



Proposed by George Uhlenbeck (left)  
and Samuel Goudsmit (Right)

Spin Quantum Number (s or ms)

Spin of an electron

   s =  + 1
2    s = 

1
2

Presence of two closely spaced lines in 
atomic spectrum



√n(n+2) B.M.

Spin Quantum Number (s)

Spin magnetic 
moment (μ)

n = number of unpaired electron

=



  s(s+1)
Spin angular 
momentum

h
2π

Spin Quantum Number (s)

Maximum Spin 
of an atom (S)

n1
2

Spin 
multiplicity

2 |S| + 1

=

=

=

√



Orbit and Orbital

Orbit

Well defined circular path 
around the nucleus where 

electrons revolve 

Orbital 

3D region around the nucleus 
where electrons are most likely 

to be found

Maximum number of electrons 
in nth orbit is 2n2

Cannot accommodate more 
than two electrons



Orbit and Orbital

Orbit

Not in accordance with 
Heisenberg’s Uncertainty 

Principle

Orbital 

In accordance with 
Heisenberg’s Uncertainty 

Principle

Designated as K, L, M, N, ... Designated as s, p, d, f, ...



Rules for Filling Electrons in Orbitals

Rules 

Aufbau Principle

Hund’s Rule of 
Maximum Multiplicity

Pauli’s Exclusion 
Principle



Aufbau Principle

Electrons are 
filled in various 

orbitals in order of 
their increasing 

energies



Energies of Subshells of H-like Species

1s < 2s = 2p < 3s = 3p = 3d < 4s = 4p = 4d = 4f < …
Order of 
Energy

Energy of single electron species depends only on the 
Principal Quantum Number



Energies of Subshells of H-like Species

4s

3s 3p 3d

2s 2p

1s

En
er

gy
4p 4d 4f

Degenerate Orbitals:
Orbitals that have same 

energy.

Example: In the given 
diagram 3s, 3p and 3d 

are degenerate orbitals.



Energy of Subshells of Multi-electron Species

Different subshells have different energy 
which depends on:

Principal Quantum 
Number

Azimuthal 
Quantum Number



( n + l ) rule or Bohr-Bury’s Rule

             Lower will be 
             energy of subshell

Lower value of 
( n + l )

     Subshell with lower ‘n’ 
      value has lower energy

Two subshells with 
same ( n + l ) value



Comparison of orbital energy

2s1s <

2p2s <

4d5p >

3p2p <

4p3d <



Energies of Subshells of Multi electron Species

En
er

gy

4p

4s
3d

3p

3s

2s
2p

1s



Energies of Subshells of Multi electron Species



H-like v/s Multi-electron species

H-like species Multi-electron species

Energy of a subshell 
depends on ‘n’ only.

Energy of a subshell 
depends on (n + l).

Only attractive forces are 
present between the 

nucleus and the electron.

Electrons experience 
attractive forces towards 

the nucleus as well as 
repulsive forces from other 

electrons. 



One-electron species

n = 2

n = 1

Attraction

There is only attractive 
force here



Multiple-electron species

Outer Electron

Attraction

n = 2

n = 1

Repulsion

Shielding Electron

Attractive Force

Repulsive Force



Pauli’s Exclusion Principle

Wolfgang Pauli

No two electrons 
in an atom can 
have the same 
set of all four 

quantum 
numbers



Pauli’s Exclusion Principle

Restrict the filling of number of electrons 
in an orbital

Wrong

Right



⥮ ⥮

⥮

⥮⥮ ⥮

s2 ⥮

⥮⥮ ⥮

p6

⥮d10

⥮ ⥮ ⥮f14 ⥮ ⥮

Subshell electron capacity



 Friedrich Hund

Hund’s Rule of Maximum Multiplicity



Hund’s Rule of Maximum Multiplicity

No electron pairing takes place 
in

 the orbitals in a subshell

Until each orbital is occupied
 by 1 electron with parallel spin

Hund’s rule is an empirical rule

Determines the lowest energy 
arrangement of electrons



Why Maximum multiplicity? 

 Maximum spin of 
an atom (S)             

1
2

Spin Multiplicity 
(S.M.) 2S + 1             =

S.M.        Stability 

 =

⇒

x n

Spin Multiplicity 
(S.M.) 

Stability           

Electrons with parallel spins

Repel each other 

Have a tendency to stay apart

Atom shrink slightly

Electron-nucleus interaction is 
improved 



Electronic Configuration

Distribution
of electrons in 

orbitals of 
an atom

H

1s1 

He

1s2 

Li

⥮

⥮

1s2 2s1 

↿

↿



C ⥮ ⥮ ↿ ↿

B ⥮ ⥮ ↿

2p2 1s2 2s2 

1s2 2s2 2p1 

Be

1s2 2s2 

⥮ ⥮

   Electronic Configuration of Various Elements

F

1s2 2s2 2p5 

⥮ ⥮ ⥮ ⥮ ↿

O ⥮ ⥮ ↿⥮ ↿

2p4 1s2 2s2 

N ↿ ↿↿

2p3 1s2 2s2 

⥮ ⥮



Ne

2p6 1s2 2s2 

⥮ ⥮ ⥮ ⥮ ⥮

Mg

2p6 1s2 2s2 

Na

⥮ ⥮

⥮ ⥮

⥮ ⥮ ⥮

⥮ ⥮ ⥮ ↿

3s1 

3s2 

⥮

    Electronic Configuration of Various Elements

2p6 1s2 2s2 



Simplified Electronic Configuration

Na

1s2 2s2 2p6

⥮ ⥮ ⥮ ⥮ ⥮ ↿

3s1

 Ne

 Na  Ne

3s1 

Simplified configuration: ↿

Configuration of Sodium:



Electronic Configuration

a)    21Sc            1s2 2s2 2p6 3s2 3p6 4s2 3d1

                                      [Ar] 4s2 3d1 

                                      [Ar] 3d1 4s2 

  

Number of unpaired electrons 1

Total spin
1
2

1
2or

Sc
45

21
Scandium

+ -

3d1

↿

4s2 

⥮



Electronic Configuration

b)    26Fe           1s2 2s2 2p6 3s2 3p6 4s2 3d6

                                      [Ar] 4s2 3d6

                                      [Ar] 3d6 4s2  

  

Number of unpaired electrons 4

Total spin
4
2

4
2or+ -

Fe
56

26
Iron

3d6

⥮ ↿↿ ↿ ↿

4s2 

⥮



Exceptions

          [Ar] 4s2 3d4

 d5 is more stable than d4 configuration

24Cr

           [Ar] 4s1 3d5
24Cr

Not 
Correct

Correct

Cr
52

24



Exceptions

          [Ar] 4s2 3d9
29Cu

           [Ar] 4s1 3d10
29Cu

Cu
63

29

Not 
Correct

Correct

 d10 is more stable than d9 configuration



Half-filled & Fully Filled Orbitals

Exactly half filled & 
fully filled orbitals make the 
configuration more stable

p3, p6, d5, d10, f7 & f14 
configurations are stable

Stability of half filled & fully filled 
orbitals

Symmetry
Exchange 

Energy



Symmetry

Symmetrical 
distribution of 

electrons

Symmetry 
leads to 
stability

 Electrons in 
the same 
subshell

Different 
spatial 

distribution

Equal 
energy

Consequently, their 
shielding of one another is 

relatively small

Electrons are more strongly 
attracted by the nucleus

Have less energy 
and more stability  



Exchange Energy

Tends to exchange their positions

Tends to exchange their
positions and the energy released due to this 

exchange is called exchange energy.

Energy released when two or more 
electrons with the same spin in the 

degenerate orbitals 

Number of exchanges that 
can take place is maximum

When subshell is either half 
filled or fully filled.



Exchange Energy

↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿

↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿ ↿

4 exchange by electron ‘a’ 3 exchange by electron ‘b’

2 exchange by electron ‘c’ 1 exchange by electron ‘d’

a b

c d



Electronic Configuration of Ions

Ions 

Cations

Anions



Electronic Configuration of Cations

Na

1s2 2s2 2p6 

⥮ ⥮ ⥮ ⥮

Na+

1s2 2s2 2p6 

⥮ ⥮ ⥮ ⥮

⥮

⥮

3s1

↿

3s0

Formed by removing outermost 
electron from a neutral atom



Electronic Configuration of Cations

In d-block metals
electrons are first removed 

from ns orbital, then from the 
penultimate (n-1)d orbital



Examples

⥮ ↿ ↿ ↿ ↿ ⥮

3d6 4s2 

ArFe: [Ar] 3d6 4s2       or     

⥮ ↿ ↿ ↿ ↿

3d6 4s0 

Ar

↿ ↿ ↿ ↿ ↿

3d5 4s0 

Ar

Fe2+: [Ar] 3d6 4s0  or       

Fe3+: [Ar] 3d5 4s0  or        



Examples

29Cu :                                 ⥮ ↿⥮

3d10 4s1 

Ar ⥮ ⥮ ⥮

3s2 

⥮

3p6 

⥮ ⥮ ⥮

29Cu+ :                                 ⥮ ⥮

3d10 4s0 

Ar ⥮ ⥮ ⥮

3s2 

⥮

3p6 

⥮ ⥮ ⥮

18 electrons Pseudo inert gas configuration



Electronic Configuration of Anions

F

1s2 2s2 2p5 

⥮ ⥮ ⥮ ⥮ ↿

1s2 2s2 2p6 

⥮ ⥮ ⥮ ⥮ ⥮F
_

Formed by adding electrons to a neutral atom 
according to the 3 rules (Pauli’s, Aufbau & Hund’s rule)



Schrodinger Wave Equation (SWE)

Based on the dual nature of matter

Describes the behavior of electron 
around the nucleus



Schrodinger Wave Equation

∂2𝚿
∂x2 +

∂2𝚿
∂y2 + ∂2𝚿

∂z2 +
8𝝅2m

h2  ( E - V ) 𝚿 0=

● x, y, z = Cartesian coordinates 

       𝚿 = Amplitude of the electron wave or Wave function

● h =  Planck’s constant

● V = Potential energy of the electron

● E = Total energy of the electron 

● x, y, z = Cartesian coordinates 

       𝚿 = Amplitude of the electron wave or Wave function

● h =  Planck’s constant

● V = Potential energy of the electron

● E = Total energy of the electron 



Wavefunction

Amplitude of a standing wave is a function of x

Similarly, 𝚿 is a function of coordinates 

A1
A2

x1

x2

𝚿 corresponds to the allowed 
solutions of SWE

𝚿 contains all the information related to the 
motion of an electron in an atom



Wavefunction

Wave 
function

Radial part of 
wave function

Angular part of 
wave function

𝚿 (r, 𝜃, ɸ) 𝚿 (r) 𝚿 (𝜃, ɸ)

n, l l, mln, l l, ml

= ×



Physical Significance of 𝚿

Physical 
significance 

of 𝚿 

Amplitude of the 
electron wave

Can be +ve or -ve 

As such there is no 
significance of 𝚿



Physical significance of 𝚿2 

Intensity of wave 

𝚿2
Probability of finding an 
electron per unit volume or 
probability density

Maxwell’s wave theory 

∝ Square of amplitude

Max Born suggested that



Probability density

𝚿2(r,𝜃,ɸ)

Radial 
probability 

density 

Angular 
probability 

density

𝚿2(r) 𝚿2(𝜃,ɸ)

Probability 
density

= ×

𝚿(r,𝜃,ɸ) 𝚿(r) 𝚿(𝜃,ɸ)= ×



Radial Distribution Function

Probability of finding an electron in a 
volume dV around the nucleus

Radial probability of finding an 
electron in a shell of thickness ‘dr’

 at a radial distance ‘r’
𝚿R

2 × dV

Radial probability of finding an electron 𝚿R
2 × dV =

=

This probability which is 
independent of direction is called 
radial probability and is equal to 

[4𝜋r2drR2].

It gives the probability of finding 
the electron at a distance r from 

the nucleus regardless of direction.



            𝜋 (r + dr)3 -       𝜋r3         dV 4
4𝜋r2 . dr       

3
4
3

Volume of that layer
 

  𝚿R
2 . 4𝜋r2 . dr

Radial probability 
density on a layer 

= =

× =

Radial Distribution Function

Radial distribution function 𝚿R
2 . 4𝜋r2=



Radial Distribution Function



𝚿R

Summary

𝚿R
2 

Radial probability distribution 4𝜋r2𝚿R
2  

Radial probability density 

Radial wave function



Nodes

Region where the probability of finding an 
electron is zero

Or

So, it’s all about 
probability! 

Region where the probability density is zero i.e. 
where the probability of finding an electron is zero

𝚿2 0=

𝚿2.dV 0=

dV can’t be zero∵

⟹



Nodes

Nodes

Radial Node

Angular Node



Node

𝚿R
2 0 =

𝚿(r,𝜃,ɸ) 𝚿(r) 𝚿(𝜃,ɸ)= × 0=∵

⟹ 𝚿(r) 0= 𝚿(𝜃,ɸ) 0=or



Radial Node

𝚿R
2 0 =

Number of radial nodes in an orbital n - l - 1

Spherical region 
around nucleus

𝚿R  or 𝚿R
2  is zero

 

=



Angular Node

Number of angular nodes in an orbital l

𝚿R
2 0 =

Plane or a surface 
passing through the 

nucleus 
𝚿𝜃, Φ  or 𝚿2

𝜃, Φ
  is zero

 

=



Nodes

Radial nodes
(n - l - 1)

Total number 
of nodes

Angular nodes
(l) 

n - 1= + =



What are these radial and angular nodes?

Radial node

Angular node

Dark coloured regions 
show increased 
electron density



           Radial Node vs Angular Node

Have fixed angles.

Flat planes or cones 
where probability of 
finding an electron is 

zero.

Number of angular
nodes is determined by 

l 

Angular node

Radial node Angular node

Spherical regions where the 
probability of finding an 

electron is zero.

Flat planes or cones where 
the probability of finding an 

electron is zero.

Have fixed radii. Have fixed angles.

Number of radial nodes is 
given by (n - l - 1)  

Number of angular nodes is 
given by (l)  



Nodes of ‘s’ orbitals

Node Nodes

1s 2s 3s

       Electron probability



Angular Nodes of ‘p’ orbitals

py

pz

z

y

x

px

z

y

x

z

y

x



Angular Nodes of ‘d’ orbitals 

z

y
x

dyz

z

y

x

dzx

z

y
x

dxy



Angular Nodes of ‘d’ orbitals 

x

z

x y

z

3dx2-y

2

dz 2

y

x

z

y

dx  -  y22



Comparison of Penetration Power

Measure of orbital’s closeness to the nucleus 

r
r

𝚿
R

2
 4
𝜋r

2

3p
3s

3d



Comparison of Penetration Power

Additional maximas in 3s curve 

Electron in 3s spends maximum time 
near the nucleus compared to 3p and 3d.  

Penetration power : 3s > 3p > 3d
 



Probability Curves

Plots

Radial Wave
function (𝚿) against r

Radial Probability distribution 
(4𝜋r2𝚿R

2) against r

Radial Probability
density (𝚿2) against r



s-orbital

1s

x

y

z

Density of electron cloud is spherical

 Probability density is maximum at the 
nucleus and decreases at large distance



Radial Probability of 1s

𝚿

r r

ΨR
2

r

4𝜋
r2

Ψ
R

2



Radial Probability of 2s

𝚿

r r

r

ΨR
2

4𝜋
r2

Ψ
R

2

Node



Radial Probability of 3s

Node

𝚿

r 
r

r

ΨR
2

4𝜋
r2

Ψ
R

2



Radial Probability of 2p

𝚿

r r

ΨR
2

4𝜋
r2

Ψ
R

2

r



Radial Probability of 3p

𝚿

r r

ΨR
2

4𝜋
r2

Ψ
R

2

r

3p



Radial Probability of 3d

𝚿

r r

ΨR
2

4𝜋
r2

Ψ
R

2

r

3d

3d



Analysis: 𝚿 Plots

𝚿

r 

𝚿

r 

𝚿

r 

𝚿

r 

3p

𝚿

r 

3p

𝚿

r 

3d

𝚿

r 

3d2p1s

2s 3s

𝚿

r r

𝚿

r 

𝚿

r 

𝚿 𝚿

r r

3p 3d2p1s

2s 3s

𝚿



Analysis: 𝚿2 Plots

𝚿R
2

r r r r 

r r

3p 3d2p1s

2s 3s

3p2p1s

2s 3s

r

ΨR
2

r

NodeΨR
2 ΨR

2

r

r

ΨR
2

ΨR
2

r

3d

ΨR
2

r
𝚿R

2 𝚿R
2 𝚿R

2

𝚿R
2 𝚿R

2



Analysis: 𝚿2.4𝜋r2 Plots

r r r r 

r

4𝜋
r2

Ψ
R

2

3p 3d2p1s

2s 3s

r

4𝜋
r2

Ψ
R

2

3p2p1s

2s 3s

r

4𝜋
r2

Ψ
R

2

r

4𝜋
r2

Ψ
R

2
4𝜋

r2
Ψ

R
2

r

4𝜋
r2

Ψ
R

2

r

3d

4𝜋
r2

Ψ
R

2

r

4𝜋
r2

Ψ
R

2

4𝜋
r2

Ψ
R

2

4𝜋
r2

Ψ
R

2

4𝜋
r2

Ψ
R

2

r

4𝜋
r2

Ψ
R

2



r

(Ψ
R

2
) 4

𝜋r
2

Node

1s 2s

r

(Ψ
R

2
) 4

𝜋r
2

   Nodes

3s

r
(Ψ

R
2
) 4

𝜋r
2



Ψ2 Node

Nodes

Ψ2 Ψ2

r 
1s

r 
2s

r 
3s



Radial Wavefunction of Hydrogenic Atoms

        Rnl(r) = 2Z
na0

3/2

2n [(n + l)!]3

(n - l - 1)! 
1/2

2Zr
na0

l
2Zr
na0

Ln - l - 1 

2l  + 1 
e-Zr/na0



Laguerre Polynomial

                 Ln - l - 1

2l + 1
(𝜌) ⅀  

n - l - 1

  
i = 0

(-1)i [ (n + l)! ]2 𝜌i

i! (n - l - 1 - i)! (2l + 1 + i)!
=

where 𝜌 = 2kr and kn = 

 

Z
a0n



1s orbital

R (1s)

Number of radial nodes n - l - 1 1 - 0 - 1 0

   K1σ
 e= 

= = =

where, σ = 
2Zr
n a0

- σ/2



  Radial Probability of 1s

𝚿R

r

𝚿R
2

r

4𝜋
r2
𝚿

R
2

r



2s orbital

R (2s)

Number of radial nodes n - l - 1 2 - 0 - 1 1

     K2(2 - σ)  e= 

= = =

- σ/2



  Radial Probability of 2s

Node

4𝜋
r2
𝚿

R
2

𝚿R

r r

𝚿R
2

r



p-orbitals

p-orbitals consist of lobes

z

y

x

pz

p-orbitals consist of lobes

Two sections on the opposite side 
separated by the nodal plane

Dumb bell Shaped



2p orbital

R (2p)

Number of radial nodes n - l - 1 2 - 1 - 1 0

   K3σ e= 

= = =

- σ/2



Radial Probability of 2p

𝚿R

r

𝚿R
2

r r

4𝜋
r2
𝚿

R
2



3p orbital

R (3p)

Number of radial nodes n - l - 1 3 - 1 - 1 1

    K4(4 - σ) σ e= 

= = =

- σ/2



Radial Probability of 3p

𝚿R

r

𝚿R
2

r

4𝜋
r2
𝚿

R
2

r

Radial node

xy nodal plane



Nodes in p-orbital

2pz orbital

3pz orbital
z

z

Radial node

xy nodal plane 
(Angular node)xy nodal plane 

(Angular node)



Nodes in d-orbitals

p-orbitals consist of lobes

z

y

x

pz

d-orbitals also consist of lobes
Two sections on the opposite side 

separated by the nodal plane

Double Dumb bell Shaped

x y

z

3dxy



3d orbital

R (3d)

Number of radial nodes n - l - 1 3 - 2 - 1 0

     K5σ 2 e= 

= = =

- σ/2


