

Iodine crystals

Aluminium

The substances are formed as a result of combination of atoms or molecules or ions.

So Many Why?

Why do some atoms combine while certain others do not?

What is the nature of the force that exists between combining atoms?

Why does definite number of various atoms constitute a particular molecule?

Why is it easy for some elements to **lose electrons** while it is harder for others?

Chemical Bond

The attractive force which holds various constituents (atoms, ions, etc.) together, in different chemical species. A chemical bond forms in order to **reduce** the **energy** of the chemical species involved in bonding, thereby **increasing** their **stability**.

Observed bond distance in H₂

How Ionic Bonds are Formed?

Ionic Bond

Electrostatic force of attraction between oppositely charged ions. To attain stable electronic configuration

Elements lose or gain electron(s) in order to have a stable electronic configuration in their valence shell

Formation of Ionic Bond

Elements involved in the ionic bond should possess

The element losing electron should have LOW ionisation enthalpy.

(1)

(2)

(4)

Large difference in electronegativity of two elements

The element accepting electron should have HIGH electron gain enthalpy.

High Lattice enthalpy

B

Covalent Bond and Coordinate Bond

<mark>⊗</mark>B

Metallic Bonds

Electrostatic force of attraction between a metal kernel and valence electrons.

Lattice Energy

NaCl (s)
$$\longrightarrow$$
 Na⁺ (g) + Cl⁻ (g)

AB(s) \longrightarrow A⁺(g) + B⁻(g); Lattice Energy = Positive

 $A^+(g) + B^-(g) \longrightarrow AB(s);$ Lattice Energy = Negative

Isomorphism

Different ionic compounds having similar crystal structure are called isomorphs and this phenomenon is called isomorphism. Isomorphous compounds have the same type of formula . FeSO₄.7H₂O Green vitriol

MgSO₄.7H₂O Epsom salt

> ZnSO₄.7H₂O White vitriol

Polymorphism

Occurence of a particular substance in more than one **crystalline** form is called **polymorphism**

For example, ZnS exist as

(1) Sphalerite(2) Wurtzite

<mark>∕∕</mark>B

Hydration Energy

Energy released when one mole of a gaseous ion is hydrated in large amount of water to form an aqueous ion.

As the dielectric constant of solvent increases, more energy is released on solvation.

Size of ion 🕇

Charge of ion 1

Hydration energy \downarrow

Hydration energy 🕇

The interaction of the solute and the solvent molecules which stabilizes the solute in the solution

If the solvent is water, then it is known as Hydration

Dissolution of solute in water depends on Lattice energy and Hydration energy

Types of Covalent Bond Single Bond 01 Formed by the mutual Number sharing of electrons 0 of shared pair **Double Bond** between two atoms. 7 of electrons **Triple Bond**

Double Covalent bond

Kossel Lewis Electronic Theory

Atoms can combine by the transfer of valence electrons from one atom to another or by sharing of electrons.

It's a theoretical charge over an individual atom of a molecule or an ion.

Formal Charge 01

03

02

In polyatomic ions, the net charge is possessed by the whole ion.

Feasible to assign a formal charge on each atom.

Formal Charge

Used to give the relative stability of possible Lewis structures

Lowest energy structure: Smallest formal charge on the atoms

Limitations of Octet Rule

Valence Bond Theory

Linus Pauling

J.C. Slater

A covalent bond is formed by the overlap of half filled atomic orbitals that yield a pair of electrons shared between the two bonded atoms.

Directional Properties of Bonds

Covalent Bond: Directional Ionic Bond: Non-Directional

Coordinate or Dative Bond

Bond formed by sharing of electrons between two atoms. Shared pair of electrons is contributed by only one of the two atoms. Co ordinate bond once formed cannot be distinguished from covalent bond. Covalent and coordinate bond are same with respect to bond properties.

Lewis Acid and Lewis Base

Co-ordinate Bond or Dative Bond

Sigma bond is formed when overlapping takes place along the internuclear axis of orbitals or when an axial overlap takes place. Pi (π) bond is formed when axes of combining orbitals are **perpendicular** to the internuclear axis i.e., **lateral** or **sidewise overlapping** takes place.

Axial or Head-on Overlapping

Cylindrically symmetrical about the internuclear axis

Can undergo rotation about the internuclear axis

Generally, π bond between two atoms is formed in addition to a σ bond

- Greater the extent of overlapping, more will be the bond strength.
- For same value of n,
 s-s sigma overlap < s-p sigma overlap < p-p sigma overlap
- Strength of π bonds: 3p-3p π overlap < 2p-2p π overlap

Bonding in H₂ Molecule

Bonding in N₂ Molecule

B

Steps to Draw Structures

04

Make a single bond using the electron pairs. Then complete the octet of the side atoms. If any electron pair is left, assign it to the central atom.

Steps to Draw Structures

:0:

20:

:0:

:0:

+2

:0:

:0:

If the octet of central atom is not complete, use the lone pairs of side atoms to make the bonds and complete the octet.

06 Assign formal charge on each atom

05

B

VSEPR Theory

4. Electron pairs occupy positions in space that tend to minimise repulsion.

5. Lone pair occupies more space on the sphere. So, the order of repulsion is:
Ip-lp > Ip-bp > bp-bp (lp: Lone pair, bp: Bonding pair)

Compound	Shape	π bond(s)
Cl - Be - Cl	Linear	0
о=с-н	Linear	1
O = C = O	Linear	2
H - C ≡ N	Linear	2

ļ

General Formula: AB,

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
pairs	pairs	pairs	Geometry	
2	2	0	Linear	Linear

General Formula: AB₃

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
pairs	pairs	pairs	Geometry	
3	3	0	Trigonal Planar	Trigonal Planar

Bond Angle 120° Example: BF₃, SO₃

General Formula: AB₂L

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
3	2	1	Trigonal Planar	Bent/ V-Shape

General Formula: AB,L

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
4	3	1	Tetrahedral	Pyramidal

General Formula: AB, L,

(A: Central atom, B: Side atom, L: Lone pair)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
4	2	2	Tetrahedral	Bent or V-Shape

General Formula: AB₅

(A: Central atom, B: Side atom)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
5	5	0	Trigonal Bipyramidal (T.B.P.)	Trigonal Bipyramidal (T.B.P.)

(A: Central atom, B: Side atom, L: Lone pairs)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
5	3	2	Trigonal Bipyramidal (T.B.P.)	T-Shape

General Formula: AB₂L₃

(A: Central atom, B: Side atom, L: Lone pairs)

Electron	Bonding	Lone	Electronic	Shape
Pairs	Pairs	Pairs	Geometry	
5	2	3	Trigonal Bipyramidal (T.B.P.)	Linear

Bond Angle = 90°
Example:
$$SF_6$$

General Formula	Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
AB ₅ L	6	5	1	Octahedral	Square Pyramidal
AB_4L_2	6	4	2	Octahedral	Square Planar

(A: Central atom, B: Side atom, L: Lone pairs)

 AB_5L

Example: BrF₅, XeOF₄

Need for Hybridisation

Shape of CH₄ Molecule

Electronic configuration of carbon is:

Release of energy due to overlap between the orbitals of C and H

Shape of CH_4 Molecule

s-orbital overlap can be in any direction

Direction of fourth C–H bond cannot be determined

9

Limitations of VBT

•

Formation of diatomic molecules are satisfactorily explained (except the paramagnetic nature of O₂)

VBT fails to explain the bond properties in polyatomic molecules

Hybridisation

Intermixing of atomic orbitals of equal or slightly different energies, results in the formation of new set of orbitals of equivalent energies and shape.

(2)

The orbitals present in the valence shell (and sometimes penultimate shell also) of the atom can hybridise.

Larger lobe of H.O. takes part in bond formation (σ-bond)

[≫]B

Salient Features of Hybridisation

Promotion of electron is **not an essential condition** prior to hybridisation.

Orbitals undergo hybridisation and not the electrons.

Hybrid orbitals generally form **r** bond.

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p	2	sp

Decreasing order of s character

Percentage Character of Orbitals

Decreasing order of **bond strength**

Hybrid orbitals are directed in space in a way to have **minimum repulsion** between the electron pairs

in order to obtain a stable arrangement

Type of hybridization indicates the geometry of the molecule

Steric Number, Hybridization and Geometry

Steric number	Hybridization	Geometry	Involving Orbitals
2	sp	Linear	s, p _x / p _z / p _y
3	sp ²	Trigonal Planar	s, p _x , p _z / p _y , p _z /p _x , p _y
4	sp ³	Tetrahedral	s, p _x , p _z , p _y
5	sp ³ d	Trigonal bipyramidal	s, p _x , p _z , p _y , d _z ²
6	sp ³ d ²	Octahedral	s, p _x , p _z , p _y , d _z ² , d _{x-y} ²
7	sp ³ d ³	Pentagonal bipyramidal	s, p_x , p_z , p_y , d_z^2 , d_{x-y}^2 , d_{xy}

sp Hybridisation

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p	2	sp

sp² Hybridisation

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + two p	3	sp²
3 new sp ² hybridised orbitals	Trigo 120° sp ² l	bnal planar Hybridisation

B

sp³ Hybridisation

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + three p	4	sp ³

Berry Pseudorotation

Fluxional behaviour of PF₅ due to fast exchange between axial and equatorial F atoms

Energy difference b/w T.B.P. and square pyramidal geometry

Thermal energy at room temperature

<

All P-F bonds are observed to be equivalent

Examples of sp³d Hybridisation

sp³d² Hybridisation

No equatorial & no axial bonds

All Bond lengths are observed to be **identical**

 SF_6

Did you Know?

$$PCl_{5}(s) \longrightarrow [PCl_{4}]^{+} [PCl_{6}]^{-}$$

$$sp^{3} sp^{3}d^{2}$$

 $Pl_{5}(s) \longrightarrow Does not exist$

P cannot accomodate 6 large sized Br & I. So, it cannot form PX₆⁻.

Resonance

Phenomenon of delocalisation of π electrons

If a single Lewis structure cannot represent a molecule

Most important parameter to explain the stability of certain molecule

Resonance structures describe the molecule accurately

Resonance Structures of O_3

Resonance Hybrid of O₃

Resonance Structures (R.S.) and Resonance Hybrid (R.H.)

Characteristics of Resonance

Resonance structures (R.S.) are hypothetical

Resonance hybrid (R.H.) has its individual identity

Bond lengths of R.H. are intermediate to those of R.S.

Conditions of Resonance

Structure should be planar

Occurs in adjacent parallel p-orbitals

Benzene

Each carbon of benzene has one unhybridised p-orbital

Unhybridised p-orbitals of each carbon are parallel to each other

Localised π bonds

Delocalised π bonds Resonance Structures and Resonance Hybrid of Benzene

[o === c === o]

C = O bond length in CO₂ is less than expected because of resonance

Drago's Rule

 Hybridization does not take place for compounds of elements of 3rd period onwards, bonded to a less electronegative element like hydrogen.

 It is because energy difference between participating orbitals is very high.

Lewis Acid and Lewis Base

$$\begin{array}{cccc}
H_{3}N & + & H^{+} \longrightarrow & NH_{4}^{+} \\
& & & & & \\ & & & & & & \\ & &$$

Lewis Bases

NH₃, H₂O, ROH, RNH₂

Central atom has at least one lone pair and is surrounded by less E.N. atom

Cl⁻, F⁻, OH⁻, NH₂⁻

Anions

Back Bonding

Species	Bond Length (pm)
BF_4^-	130.7
BF ₃	139.6

B-F bond in BF₃ is found to be shorter and stronger than expected due to back bonding.

Backbonding

Lewis acidic strength decreases.

Lewis basic strength decreases.

Bond length decreases.

Bond angle may or may not change.

Hybriclisation may or may not change.

Y

One atom involved in back bonding must be of 2nd period

<u>∼</u>B

Electron Deficient Compounds

Examples: BH₃, BeCl₂, BF₃

<u>∧</u>B

Case 1: Electron Deficiency in BH₃

- Those bonds which has insufficient number of electrons and makes them stable are known as electron deficient bonds.
- BH₃ is electron deficient compound. That's why it undergoes dimerisation by means of 3c-2e⁻ bonds also known as banana bonds.
 - Diborane (B_2H_6) is a dimer of BH_3 .
 - In B₂H₆ there are two 3c-2e⁻ bond which are known as banana bonds. In B₂H₆ there are four 2c-2e⁻ bond which are known as terminal bonds.
 - The hybridization of boron in B_2H_6 is sp³.

Electron Deficient Bonds

Those bonds which has **insufficient number of electrons** and makes them stable are known as **electron deficient bonds.**

BH₃ is electron deficient compound. That's why it undergoes dimerisation by means of 3c-2e⁻ bonds also known as banana bonds.

Case 2: Electron Deficiency in AlCl₃

Case 3: Electron Deficiency in BeCl₂

Forms dimer to minimize repulsion between lone pairs

In Solid Phase - Dimer of ICl₃ (I₂Cl₆)

Bond Parameters

Bond Angle

Angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion

Expressed in degrees & is spectroscopically determined

Gives ideas about distribution of orbitals around the central atom which helps in determination of shape.
Factors Affecting Bond Angle

Regular geometry

All the side atoms are identical and no lone pair on central atom

Bond angle not affected by electronegativity

Bond Energy

Amount of energy required to break 1 mole of particular type of bonds between two atoms in gaseous state.

Unit : kJ mol⁻¹

Multiplicity of bond

Magnitude of Bond energy

Bond	Energy (kJ mol ⁻¹)
с-с	347
c = c	611
C≡C	837

What Exists in Reality?

There exists some covalent character in an ionic bond and some ionic character in a covalent bond!

B

Non-polar & Polar Covalent Bond

Dipole Moment

- Dipole moment is a measure of the separation of charges(polarity) between the two ends of a dipole.
- 2. It's magnitude is equal to the product of charge and the distance of separation.
- 3. It a vector quantity.
- 4. It is denoted by **µ**.

Direction and Representation

Represented by a small arrow with tail on the positive centre and head pointing towards the negative centre.

Dipole Moment (µ)

In diatomic molecules, µ depends upon	Difference in electronegativities & bond length
In polyatomic molecules,	Bond dipole and spatial arrangement

μ depends upon

<u>∼</u>B

Resultant Dipole Moment (R)

Dipole Moment

Regular Geometries

Dipole Moment

Lone pair contributes in dipole moment, but its contribution can't be quantified as size of lone pair is not known.

n

Effect of Dipole Moment on Boiling Point

Generally,

B.P. of cis is greater than trans

Dipole Moment and Percentage Ionic Character

Massuming 100% ionic compound

B

Covalent Character in Ionic Compounds

When an anion and a cation approach each other

Valence shell of the anion is pulled towards the nucleus of the cation

The shape of the anion is deformed

Polarisation

Phenomenon of deformation of an anion by a cation

Polarising power of the cation

The ability of a cation to polarise a nearby anion

Polarisability of the anion

Ability of an anion to get polarised
Fajan's Rule

Greater is the polarisation of an anion in a molecule, more is the covalent character in the molecule.

(As size of cation increases from left to right, Polarisation decreases)

<u>≫</u>B

Factors affecting polarisation

For the cations of nearly the Eg: CuCl > NaCl (Covalent character) same size and charge, Pseudo inert Order of polarizing power: [Ne] 3s² 3p⁶ 3d¹⁰ Cu⁺ gas Pseudo inert gas >Inert gas configuration configuration configuration Inert gas $1s^2 2s^2 2p^6$ Na⁺ configuration

Fajan's Rule

Cations with pseudo inert gas configuration: (n-1)d¹⁰ ns⁰

Polarisability of Anion

SO₂²⁻

CIO₃⁻

>

CIO,-

Polarisability \propto Charge on the anion

S²⁻

<

 $C|^{-}$

Oxyanions are generally less polarisable because charge is present on O atom which is very small and we need to consider only the element which acquires the charge (and not the complete anion)

SO_2²⁻

>

<

Applications of Fajans' Rule

Variation in Melting Point

Variation in Melting Point

For Cl⁻, Br⁻, I⁻ of Li⁺, all alkaline earth metals & Al³⁺, extent of polarisation is high.

As covalent character in an ionic compound, the melting point decreases.

 $\begin{array}{c}
\text{Melting} \\
\text{point}
\end{array} \quad \boxed{\begin{array}{c}
\end{array}} \\
\hline
\text{Extent of polarisation}
\end{array}}$

M.P. of covalent compound < M.P. of ionic compound

Intensity of Colour

Solubility in Water

<mark>∕∕</mark>B

Thermal Stability of Ionic Compounds

- For uniatomic anion, as interionic distance increases, lattice energy decreases, hence thermal stability decreases.
- $Be_2N_2 > MgN_2 > CaN_2 > Sr_2N_2 > Be_3N_2$
- For multiatomic anion (for compounds having the same anion) thermal stability increases down the group.

Molecular Orbital Theory

Features of MOT Electrons in a molecule are **present** 01 in the molecular orbitals (MO's) Atomic orbitals (AO's) of comparable energies 02 & proper symmetry combine to form MO's AO is monocentric whereas 03 a MO is polycentric Number of MO's formed is equal to 04 the number of combining AO's

Features of MOT

There are two types of molecular orbitals: **Bonding** Molecular Orbitals (BMO) and **antibonding** Molecular Orbitals (ABMO).

BMO has lower energy and hence greater stability than the corresponding ABMO

06

08

07

05

Electron probability distribution around a group of nuclei in a molecule is given by a MO

MO's are filled according to Aufbau principle, Pauli's exclusion principle & Hund's rule

Where, A and B are atoms

Molecular Orbitals

Electron Density in BMO

Electron density increases in the internuclear region.

Difference between BMO and ABMO

Bonding Molecular Orbital (BMO)	Antibonding Molecular Orbital (ABMO)	Bonding Molecular Orbital (BMO)	Antibonding Molecular Orbital (ABMO)
MO formed by the addition of Atomic orbitals	MO formed by the subtraction of atomic orbitals	Lower in energy as compared to atomic orbital	Higher in energy as compared to atomic orbital
$\Psi_{\rm BMO} = \Psi_{\rm A} + \Psi_{\rm B}$	$\Psi_{ABMO} = \Psi_{A} - \Psi_{B}$	Electron density increases in the internuclear region	Electron density decreases in the internuclear region
Formed by constructive interference (Stabilized MO)	Formed by destructive interference (Destabilized MO)	May or may not have a nodal plane	Always has a nodal plane
		Represented by σls, σ2p _z , π2p _x , π2p _y	Represented by σ*1s, σ*2p _z , π*2p _x , π*2p

<mark>∕∕</mark>B

Shapes of MOs Formed by s-orbitals

When two orbitals combine in same phase then constructive interference take place.

When two orbitals combine out of the phase then destructive interference take place.

Shapes of MO's

Shapes of MO's

s & p-Mixing

Modifications in the energies of MO's due to s and p - mixing.

Also known as symmetry contribution.

E.C. of B₂
$$\rightarrow$$
 $(\sigma ls)^2 (\sigma ls)^2 (\sigma$

Bond Order

One half the difference between the number of electrons present in the BMO & the ABMO

Number of electrons in ABMO

 N_a

N_b

Number of electrons in BMO

-0.5 -0.5

<mark>⊗</mark>B

Bond Order and Stability of Molecules

B

Species with the Same Bond Order

Magnetic Behaviour

Point to Remember!!

y

An unpaired electron acts as a magnetic dipole

n = Number of unpaired electrons

B.M. = Bohr Magneton

MO Diagram of Heteronuclear Diatomic Molecules

Isoelectronic molecules and ions have identical bond order.

Examples: N₂ & CO: Bond order = 3

Metallic Bonding

Metallic Bonding

Formed between metal (electropositive element) and metal (electropositive element).

Electron sea model : Metal kernels occupy lattice positions in the crystal structure of a metal and are embedded is a gas of free valence electrons.

Point to Remember!!

Many mechanical properties of metals can be related to the strength of metallic bond

Melting point (M.P.) & hardness

Overlap of atomic orbitals in solids gives rise to bands of energy levels

Band of Orbital In Crystal of Sodium

Highest energy electrons of the metallic crystals occupy either a partially filled band or a filled band that overlaps with an empty band.

These filled/ partially filled bands and empty bands are known as valence band and conduction band respectively.

Exists between oppositely charged ends of permanent dipoles

Dipole -Induced Dipole Attraction

It is a weak attraction, when a polar molecule induces a dipole in an atom or in a nonpolar molecule by disturbing the arrangement of electrons in the non-polar species.

<mark>∕∕</mark>B

Factors Affecting Boiling Point

van der Waals Force \propto Surface area.

Polar molecules can interact via London Forces also.

Dipole moment of the polar molecule

(2)

Formation of Polyhalide lons (X_{3})

Interaction Energy v/s Distance

Type of interaction	Interaction energy $\infty \frac{1}{r^{x}}$	Type of interaction	Interaction energy $\propto \frac{1}{r^{x}}$
lonic bond	<u>1</u> r	lonic-Induced Dipole	1 r ⁴
Ion-dipole	$\frac{1}{r^2}$	Dipole-Induced dipole	_ <u>1_</u> r ⁶
Dipole-dipole	$\frac{1}{r^3}$	London Forces	_ <u>1</u> r ⁶

Strength of Intermolecular Forces

Ion-dipole attraction

Dipole-dipole attraction

Ion-induced dipole attraction

Dipole-induced dipole attraction

Instantaneous dipole - induced dipole attraction

Strength

Strongest Dipole-Dipole interaction

<mark>⊗</mark>B

Hydrogen Bond

Special case of dipole-dipole attraction

(1)

(2)

Molecules with H atom attached to a highly electronegative atom

Strength of the H bond is determined by the coulombic interaction b/w the lone pair of the E.N. atom & H atom. Factors Affecting Strength of H - bonding

Factors Affecting Strength of H - bonding

Ease of donation of lone pair of E.N. atom

Strength of H-bonding

Decreasing tendency to donate lone pair

To compare strength of H-bond

First check Δ E.N. and then tendency to donate lone pair

Symmetrical Hydrogen Bonding

Very strong H-bonding occurs in the alkali metal hydrogen fluorides of formula M[HF₂]

Bond lengths: x = y = 113 pm

Examples of Intermolecular Hydrogen Bonding

Acetic Acid

Conditions for the Formation of Intramolecular Hydrogen Bond

Ring formed as a result of H bonding should be planar

(1)

(2)

(3)

5 or 6 membered ring should be formed

Minimum strain should be there during ring closure

ŏ

Cl usually doesn't form H - bond due to their low charge density

Chloral hydrate (CCl₃CH(OH)₂)

Few organic compounds (Non-polar) are soluble in water (Polar solvent) due to H-bonding. Example: Alcohol in water.

Solubility

 C_2H_2 is highly soluble in acetone due to H-bonding but not in water.

03

01

02

Intramolecular hydrogen bonding leads to chelate formation, so the **solubility** of that species involved in intramolecular H-bonding in water **decreases**.

Why does Ice Floats over Water?

Extensive **network of H bonds**

Ice has cage like structure with vacant space

H_2O (s) is less dense than H_2O (l)

Did You Know?

