Welcome to

Chemical Bonding and Molecular Structure

$$
\begin{aligned}
& \text { (a) } \\
& \text { (c) (P) (a) } \\
& \text { (c) (c) }
\end{aligned}
$$

NaCl

Iodine crystals

CaCO_{3}

Aluminium

The substances are formed as a result of combination of atoms or molecules or ions.

So Many Why?

Why do some atoms combine while certain others do not?

What is the nature of the force that exists between combining atoms?

Why does definite number of various atoms constitute a particular molecule?

Why is it easy for some elements to lose electrons while it is harder for others?

Chemical Bond

The attractive force which holds various constituents (atoms, ions, etc.) together, in different chemical species.

A chemical bond forms in order to reduce the energy of the chemical species involved in bonding, thereby increasing their stability.

Potential Energy Curve

To attain stable electronic configuration
Electrostatic force of attraction between oppositely charged ions.

Elements lose or gain electron(s) in order to have a stable electronic configuration in their valence shell

Formation of Ionic Bond

Elements involved in the ionic bond should possess

Large difference in electronegativity of two elements
(2)

High Lattice enthalpy

Covalent Bond and Coordinate Bond

A Covalent bond is formed by sharing electrons.

A bond in which the shared pair of electrons originate from one atom and none from the other is called coordinate bond.

Shared pair of electrons

Electrostatic force of attraction between a metal kernel and valence electrons.

$\mathrm{NaCl}(\mathrm{s}) \longrightarrow \mathrm{Na}^{+}(\mathrm{g})+\mathrm{Cl}^{-}(\mathrm{g})$

$$
\mathrm{AB}(\mathrm{~s}) \longrightarrow \mathrm{A}^{+}(\mathrm{g})+\mathrm{B}^{-}(\mathrm{g}) \text {; Lattice Energy = Positive }
$$

$$
\mathrm{A}^{+}(\mathrm{g})+\mathrm{B}^{-}(\mathrm{g}) \longrightarrow \mathrm{AB}(\mathrm{~s}) \text {; Lattice Energy = Negative }
$$

Z^{+}

Radius of the cation

Radius of the anion

Lattice Energy

Charge is the deciding factor

Ionic compound	$r(\AA)$	$Z^{+} \times Z^{-}$	L.E. $\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$
LiF	2.01	1	$1004 \mathrm{~kJ} \mathrm{~mol}^{-1}$
MgO	2.10	4	$3933 \mathrm{~kJ} \mathrm{~mol}^{-1}$

> Energy released when one mole of a gaseous ion is hydrated in large amount of water to form an aqueous ion.

The interaction of the solute and the solvent molecules which stabilizes the solute in the solution

If the solvent is water, then it is known as Hydration

Dissolution of solute in water depends on Lattice energy and Hydration energy

Single Covalent bond

Triple Covalent bond

Double Covalent bond

Atoms can combine by the transfer of valence electrons from one atom to another or by sharing of electrons.

Lewis Dot Structures

Used to give the relative stability of possible Lewis

structures

Lowest energy structure:
Smallest formal charge on the atoms
F.C. on O (3)

Molecules with incomplete octet of the central atom

Limitations of Octet Rule

2 Molecules with odd electrons

$$
\mathrm{NO}, \mathrm{NO}_{2}, \mathrm{ClO}_{2}, \mathrm{ClO}_{3}
$$

Limitations of Octet Rule

4
Formation of Xe \& Kr compounds

Doesn't account for the shape of the molecules

Xe and Kr form compounds with F and O even though their octet is already complete.

Linus Pauling

Orbital Overlap

Directional Properties of Bonds

Covalent Bond: Directional

Bond formed by sharing of electrons between two atoms. Shared pair of electrons is contributed by only one of the two atoms. Co ordinate bond once formed cannot be distinguished from covalent bond. Covalent and coordinate bond are same with respect to bond properties.

How to Identify Coordinate Bond?

Example: $\mathrm{N}_{2} \mathrm{O}$

Example: $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$

Fourth bond formed by N is always coordinate

Third bond formed by O is always coordinate

Donor Acceptor

Sigma and pi-bonds

Covalent Bond

Sigma bond is formed when overlapping takes place along the internuclear axis of orbitals or when an axial overlap takes place.

Pi (π) bond is formed when axes of combining orbitals are perpendicular to the internuclear axis i.e., lateral or sidewise overlapping takes place.

Cylindrically

 symmetrical about the internuclear axisCan undergo rotation about the internuclear axis

Generally, π bond between two atoms is formed in addition to a σ bond

In general, order of strength of bond

- Greater the extent of overlapping, more will be the bond strength.
- For same value of n,
s-s sigma overlap < s-p sigma overlap < p-p sigma overlap
- Strength of π bonds: $3 p-3 p ~ \pi$ overlap $<2 p-2 p \pi$ overlap
$\sum \quad$ Bonding in H_{2} Molecule

$$
\text { i.e. } \quad N \xlongequal{\overline{\frac{\sigma}{2 \pi}}} N
$$

Paramagnetic nature of O_{2} could not be explained.

Fails to account for the geometry and shapes of various molecules.

Steps to Draw Structures

01
Select the central atom
SO_{3} - Sulphur

Steps to Draw Structures

Draw a symmetrical skeleton of atoms.

03
Calculate the total number of valence electrons

Valence electrons in $\mathrm{SO}_{3}=6+(3 \times 6)$

$$
=24
$$

Electron pairs $=\frac{24}{2}=12$

Steps to Draw Structures

Make a single bond using the electron pairs. Then complete the octet of the side atoms. If any electron pair is left, assign it to the central atom.

Steps to Draw Structures

If the octet of central atom is not complete, use the lone pairs of side atoms to make the bonds and complete the octet.

Assign formal charge on each atom

Used to provide shape and

 electronic geometry of covalent compounds.1. Shape of a molecule depends upon the number of valence shell electron pairs around the central atom

sphere with the electron pairs localising on the spherical surface

2. Electron pairs in the valence shell repel one another since, they are all negatively charged

VSEPR Theory

Compound	Shape	π bond(s)
$\mathrm{Cl}-\mathrm{Be}-\mathrm{Cl}$	Linear	0
$\mathrm{O}=\stackrel{+}{\mathrm{C}}-\mathrm{H}$	Linear	1
$\mathrm{O}=\mathrm{C}=\mathrm{O}$	Linear	2
$\mathrm{H}-\mathrm{C} \equiv \mathrm{N}$	Linear	2

VSEPR Theory

General Formula: AB_{2}
(A: Central atom, B: Side atom)

Electron pairs	Bonding pairs	Lone pairs	Electronic Geometry	Shape
2	2	0	Linear	Linear

Example: $\mathrm{CO}_{2}, \mathrm{BeCl}_{2}$

VSEPR Theory

General Formula: AB_{3}
(A: Central atom, B: Side atom)

Electron pairs	Bonding pairs	Lone pairs	Electronic Geometry	Shape
3	3	0	Trigonal Planar	Trigonal Planar

Example: $\mathrm{BF}_{3}, \mathrm{SO}_{3}$

VSEPR Theory

General Formula: $\mathrm{AB}_{2} \mathrm{~L}$
(A: Central atom, B: Side atom, L: Lone pair)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
3	2	1	Trigonal Planar	Bent/ V-Shape

Example: $\mathrm{SO}_{2}, \mathrm{SnCl}_{2}$

Steric Number: $4\left(\mathrm{sp}^{3}\right)$ $\left(\mathrm{AB}_{4}\right)$

Example: $\mathrm{CH}_{4}{ }^{\prime}\left[\mathrm{NH}_{4}\right]^{+}, \mathrm{XeO}_{4}$

VSEPR Theory

General Formula: $\mathrm{AB}_{3} \mathrm{~L}$
(A: Central atom, B: Side atom, L: Lone pair)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
4	3	1	Tetrahedral	Pyramidal

Example: $\mathrm{NH}_{3}, \mathrm{XeO}_{3}, \mathrm{PCl}_{3}$

VSEPR Theory

General Formula: $\mathrm{AB}_{2} \mathrm{~L}_{2}$
(A: Central atom, B: Side atom, L: Lone pair)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
4	2	2	Tetrahedral	Bent or V-Shape

VSEPR Theory

General Formula: AB_{5} (A: Central atom, B: Side atom)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
5	5	0	Trigonal Bipyramidal (T.B.P.)	Trigonal Bipyramidal (T.B.P.)

Example: $\mathrm{PCl}_{5}, \mathrm{SOF}_{4}$

Example: $\mathrm{SF}_{4}, \mathrm{XeO}_{2} \mathrm{~F}_{2}$

VSEPR Theory

(A: Central atom, B: Side atom, L: Lone pairs)
General Formula: $A B_{3} L_{2}$

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
5	3	2	Trigonal Bipyramidal (T.B.P.)	T-Shape

Example: ClF_{3}

VSEPR Theory

General Formula: $\mathrm{AB}_{2} \mathrm{~L}_{3}$
(A: Central atom, B: Side atom, L: Lone pairs)

Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
5	2	3	Trigonal Bipyramidal (T.B.P.)	Linear

Example: $\mathrm{XeF}_{2}, \mathrm{I}_{3}{ }^{-}$

Steric Number: $6\left(\right.$ sp $\left.^{3} \mathrm{~d}^{2}\right)$

 $\left(\mathrm{AB}_{6}\right)$

Example: SF_{6}

General Formula	Electron Pairs	Bonding Pairs	Lone Pairs	Electronic Geometry	Shape
$\mathrm{AB}_{5} \mathrm{~L}$	6	5	1	Octahedral	Square Pyramidal
$\mathrm{AB}_{4} \mathrm{~L}_{2}$	6	4	2	Octahedral	Square Planar

(A: Central atom, B: Side atom, L: Lone pairs)

Bond Angle $<90^{\circ}, 180^{\circ}$

Example: $\mathrm{BrF}_{5}, \mathrm{XeOF}_{4}$

$$
\text { Bond Angle }=90^{\circ}, 180^{\circ}
$$

Example: XeF_{4}

VSEPR Theory

Shape of CH_{4} Molecule

Electronic configuration of carbon is:

On excitation,
$C_{\text {Ground State }}:[\mathrm{He}] 2 s^{2} 2 \mathrm{p}^{2} \frac{\boxed{11}}{1 s^{2}}$

Release of energy due to overlap between the orbitals of C and H

Shape of CH_{4} Molecule

Shape of CH_{4} Molecule

s-orbital overlap can be in any direction

Direction of fourth C-H
bond cannot be determined

Shape of CH_{4} Molecule

Expected observations

> Experimental observations

Limitations of VBT

Formation of diatomic molecules are satisfactorily explained (except the paramagnetic nature of O_{2})

VBT fails to explain the bond properties in polyatomic molecules

Intermixing of atomic orbitals of equal or slightly different energies, results in the formation of new set of orbitals of equivalent energies and shape.

Pauling
J.C. Slater

Hybrid Orbital

Actual Shape
Shape used for representation

On the basis of atomic orbitals participating in hybridization:

Salient Features of Hybridisation

Promotion of electron is not an essential condition prior to hybridisation.
Orbitals undergo hybridisation and not the electrons.

Hybrid orbitals generally form σ bond.

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p		
	2	sp

Percentage Character of Orbitals

\% s character in hybrid orbital

Stability of hybrid orbital

Bond Strength \uparrow

Decreasing order of bond strength

Hybrid orbitals are directed in space in a way to have minimum repulsion between the electron pairs
in order to obtain a stable arrangement

Steric Number

Type of hybridisation is estimated by steric number

Type of hybridization indicates the geometry of the molecule

Steric Number, Hybridization and Geometry

Steric number	Hybridization	Geometry	Involving Orbitals
2	sp	Linear	$s, p_{x} / p_{z} / p_{y}$
3	sp ${ }^{2}$	Trigonal Planar	$s, p_{x^{\prime}} p_{z} / p_{y^{\prime}}, p_{z} / p_{x^{\prime}} p_{y}$
4	sp ${ }^{3}$	Tetrahedral	$s, p_{x^{\prime}}, p_{z}, p_{y}$
5	$s p^{3} d$	Trigonal bipyramidal	$s, p_{x^{\prime}} p_{z^{\prime}}, p_{y^{\prime}} d_{z}^{2}$
6	$s p^{3} d^{2}$	Octahedral	$s, p_{x^{\prime}} p_{z^{\prime}}, p_{y^{\prime}} d_{z}^{2}, d_{x-y}^{2}{ }^{2}$
7	$s p^{3} d^{3}$	Pentagonal bipyramidal	$s, p_{x^{\prime}} p_{z}, p_{y^{\prime}}, d_{z}^{2}, d_{x-y}^{2}{ }^{2}, d_{x y}$

Methods for Finding Hybridisation

Participating atomic orbitals	Number of hybridised orbitals	Hybridisation
One s + One p	2	sp

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + two p	3	sp^{2}

sp ${ }^{3}$ Hybridisation

Atomic orbitals participating in hybridisation	Number of hybridised orbitals	Hybridisation
One s + three p		
	4	sp^{3}

Bonding of CH_{4} Molecule

Here, electronic configuration of carbon is

```
\[
\mathrm{C}_{\text {Ground State }}:[\mathrm{He}] 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}
\]
```


$C_{\text {Excited state }}:[\mathrm{He}] 2 s^{1} 2 p_{x}^{1} 2 p_{y}^{1} 2 p_{z}^{1}$

In T.B.P. geometry,

Berry Pseudorotation

Fluxional behaviour of PF_{5} due to fast exchange between axial and equatorial F atoms

Energy difference b/w T.B.P. and square pyramidal geometry

Thermal energy at room temperature

All P-F bonds are observed to be equivalent

SF_{4}
XeF_{2}
XeOF_{2}

$$
S_{\text {Ground state }}:[\mathrm{Ne}] 3 s^{2} 3 p^{4}
$$

$S_{\text {Excited state }}:[\mathrm{Ne}] 3 s^{1} 3 p^{3} 3 d^{2}$
Hybridized orbitals

No equatorial \& no axial bonds
All Bond lengths are observed to be identical

XeOF_{4}

$$
\mathrm{XeF}_{4}
$$

$$
\therefore 2
$$

P cannot accomodate 6 large sized Br \& I .
So, it cannot form $\mathrm{PX}_{6}{ }^{-}$.

Resonance

Phenomenon of delocalisation of π electrons

If a single Lewis structure cannot represent a molecule

Most important parameter to explain the stability of certain molecule

Resonance structures describe the molecule accurately

Need of the theory

Resonance Hybrid of O_{3}

Molecules having Resonance

Resonance Structures (R.S.)

Similar or degenerate Energy

Identical positions of nuclei

Same number of bonding \& nonbonding electron pairs

Actual structure of different possible structures

Does not violate the rules of covalence maxima

Most stable R.S. contributes maximum towards Resonance hybrid (R.H.)

Resonance Structures of O_{3}

Resonance hybrid of O_{3}

Characteristics of Resonance

Resonance structures (R.S.) are hypothetical

Conditions of Resonance

Structure should be planar

Occurs in adjacent parallel p-orbitals

Bond lengths of R.H. are intermediate to those of R.S.

Each carbon of benzene has one unhybridised p-orbital

Unhybridised p-orbitals of each carbon are parallel to each other

Resonance Structures and Resonance Hybrid of Benzene

Bond order of Resonance Structures

For degenerate resonating structures:

$$
[\mathrm{O}=\mathrm{c}=\mathrm{O}]
$$

$\mathrm{C}=\mathrm{O}$ bond length in CO_{2} is less than expected because of resonance

* Hybridization does not take place for compounds of elements of $3^{\text {rd }}$ period onwards, bonded to a less electronegative element like hydrogen.
* It is because energy difference between participating orbitals is very high.

Lone pair donors are also called as Lewis base

Lone pair acceptors are also called as Lewis acid

$$
\begin{array}{l|l}
\mathrm{BF}_{3}, \mathrm{AlCl}_{3}, \mathrm{BCl}_{3} & \text { Incomplete octet }
\end{array}
$$

$$
\mathrm{SiF}_{4}, \mathrm{PCl}_{5}, \mathrm{PF}_{5}
$$

Central atom has vacant d-orbitals
$\mathrm{Mg}^{2+}, \mathrm{Al}^{3+}, \mathrm{Fe}^{2+}, \mathrm{Zn}^{2+}$
Metal cations

Lewis Bases

Central atom has at least one
$\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{ROH}, \mathrm{RNH}_{2} \quad$ lone pair and is surrounded by less E.N. atom
$\mathrm{Cl}^{-}, \mathrm{F}^{-}, \mathrm{OH}^{-}, \mathrm{NH}_{2}^{-}$
Anions

Back Bonding

Back bonding

Atom having non bonded electron pair
\&

Partial double bond character
Atom having vacant orbital

$$
\mathrm{CHCl}_{3} \rightleftharpoons \mathrm{H}^{+}+\overline{\mathrm{C} C l}_{3}
$$

$$
\mathrm{CHF}_{3} \rightleftharpoons \mathrm{H}^{+}+\overline{\mathrm{C}} \mathrm{~F}_{3}
$$

Stability of π-bond

$$
\text { Stability } \propto \frac{1}{\text { Size of orbitals }}
$$

Lewis acidic strength decreases.

Lewis basic strength decreases.

Bond length decreases.

Bond angle may or may not change.

Hybridisation may or may not change.

Electron Deficient Compounds

Insufficient no. of electrons to complete octet.

Examples: $\mathrm{BH}_{3}, \mathrm{BeCl}_{2}, \mathrm{BF}_{3}$

Case 1: Electron Deficiency in BH_{3}

Those bonds which has insufficient number of electrons and makes them stable are known as electron deficient bonds.
$\square \mathrm{BH}_{3}$ is electron deficient compound. That's why it undergoes dimerisation by means of $3 \mathrm{c}-2 \mathrm{e}^{-}$bonds also known as banana bonds.

Diborane $\left(\mathrm{B}_{2} \mathrm{H}_{6}\right)$ is a dimer of BH_{3}.
\square In $\mathrm{B}_{2} \mathrm{H}_{6}$ there are two $3 \mathrm{c}-2 \mathrm{e}^{-}$bond which are known as banana bonds. In $\mathrm{B}_{2} \mathrm{H}_{6}$ there are four $2 \mathrm{c}-2 \mathrm{e}^{-}$bond which are known as terminal bonds.

The hybridization of boron in $\mathrm{B}_{2} \mathrm{H}_{6}$ is sp ${ }^{3}$.

Electron Deficient Bonds

Those bonds which has insufficient number of electrons and makes them stable are known as electron deficient bonds.
BH_{3} is electron deficient compound. That's why it undergoes dimerisation by means of $3 \mathrm{c}-2 \mathrm{e}^{-}$bonds also known as banana bonds.

Case 2: Electron Deficiency in AlCl_{3}

In Vapour Phase - Dimer of $\mathrm{AlCl}_{3}\left(\mathrm{Al}_{2} \mathrm{Cl}_{6}\right)$

In Vapour Phase - Dimer of $\mathrm{BeCl}_{2}\left(\mathrm{Be}_{2} \mathrm{Cl}_{4}\right)$

$3 c-4 e^{-}$bond

In Solid Phase - Polymer of $\mathrm{BeH}_{2}\left(\mathrm{BeH}_{2}\right)_{\mathrm{n}}$

Case 5: Electron Deficiency in ICl_{3}

Forms dimer to minimize repulsion between lone pairs

In Solid Phase - Dimer of $\mathrm{ICI}_{3}\left(\mathrm{I}_{2} \mathrm{Cl}_{6}\right)$

Bond Angle

Angle between the orbitals containing bonding electron pairs around the central atom in a molecule/complex ion

Expressed in degrees \& is spectroscopically determined

Gives ideas about distribution of orbitals around the central atom which helps in determination of shape.

Bond angle

(2)

Steric Repulsions

Steric Repulsions

Bond angle

Same central atom (2 ${ }^{\text {nd }}$ period), same hybridisation $\left(\mathrm{sp}^{3}\right)$ \& side atoms are of $3^{\text {rd }}$ period \& onwards

(3) Number of lone pairs on the central atom

As number of lone pairs

Same hybridisation of the central atom

(4) Electronegativity of the central atom

E.N. of central atom

Same hybridization and number of lone pairs on central atom

(5)	Electronegativity of the side atoms

E.N. of
side atom

Bond angle

Same central atom, same hybridization \& same number of lone pairs

Regular geometry

All the side atoms are identical and no lone pair on central atom

Bond angle not affected by
electronegativity

Factors Affecting Bond Angle

Equilibrium distance between the nuclei of two bonded atoms in a molecule

Factors Affecting Bond Length

Bond Energy

Amount of energy required to break 1 mole of particular type of bonds between two atoms in gaseous state.

Unit : kJ mol${ }^{-1}$

Multiplicity of bond \uparrow
Magnitude of Bond energy

Bond	Energy (kJ mol
-1$)$	
$\mathrm{C}-\mathrm{C}$	347
$\mathrm{C}=\mathrm{C}$	611
$\mathrm{C} \equiv \mathrm{C}$	837

Bond Energy

Bond	Bond length (pm)	Energy (kJ $\left.\mathrm{mol}^{-1}\right)$
$\mathrm{Cl}-\mathrm{Cl}$	199	243
$\mathrm{Br}-\mathrm{Br}$	228	192
$\mathrm{I}-\mathrm{I}$	267	151

In group 15, 16 and 17 single bonds between $2^{\text {nd }}$ period elements are exceptionally weaker due to I.p - l.p. repulsions

Example :

The number of bonds between the two atoms in a molecule.

What Exists in Reality?

E.N. of $A<B$

Symmetrical electron cloud
Asymmetrical electron cloud
$\mathrm{H}_{2}, \mathrm{Cl}_{2}, \mathrm{~N}_{2}, \mathrm{~F}_{2} \ldots$
HF, HCl, HBr, HI ...

1. Dipole moment is a measure of the separation of charges(polarity) between the two ends of a dipole.
2. It's magnitude is equal to the product of charge and the distance of separation.
3. It a vector quantity.
4. It is denoted by μ.

Dipole Moment

Formula of dipole moment is given as:

Represented by a small arrow with tail on the positive centre and head pointing towards the negative centre.

Dipole Moment (μ)

> In polyatomic molecules, μ depends upon \quad Bond dipole and spatial

$$
R=\sqrt{\left(P^{2}+Q^{2}+2 P Q \cos \theta\right)}
$$

Dipole Moment

Generally, out of ' q ' and ' d ', ' q ' is the dominant factor.

q depends on \triangle.E.N.

A.E.N. \uparrow
$q \uparrow$
$\mu \uparrow$

For a non-polar molecule,
For a polar molecule,

Polyatomic molecules

Lone pair contributes in dipole moment, but its contribution can't be quantified as size of lone pair is not known.

Some Important Order of Dipole Moment

\triangle E.N. in C-D $\rightarrow \quad \triangle$ E.N. in C - H

Effect of Dipole Moment on Boiling Point

Generally,

$$
\text { Dipole moment } \uparrow \rightarrow-\rightarrow \quad \text { Boiling point } \uparrow
$$

B.P. of cis is greater than trans

Dipole Moment and Percentage Ionic Character

Covalent Character in Ionic Compounds

When an anion and a cation approach each other

Valence shell of the anion
is pulled towards the nucleus of the cation

The shape of the anion is deformed

Polarisation

Phenomenon of deformation of an anion by a cation
\square

Polarising power of the cation

Polarisability of the anion

The ability of a cation to polarise a nearby anion

Ability of an anion to get polarised

Fajan's Rule

Greater is the polarisation of an anion in a molecule, more is the covalent character in the molecule.

Charge on Cation

Size on Anion

Covalent character

Example: $\mathrm{BeCl}_{2}>\mathrm{MgCl}_{2}>\mathrm{CaCl}_{2}>\mathrm{SrCl}_{2}>\mathrm{BaCl}_{2}$
(As size of cation increases from left to right, Polarisation decreases)

Factors affecting polarisation

For the cations of nearly the same size and charge,

Order of polarizing power: Pseudo inert gas configuration ${ }^{\text {configuration }}$

Eg: $\mathrm{CuCl}>\mathrm{NaCl}$ (Covalent character)

Cations with pseudo inert gas configuration: $(\mathrm{n}-\mathrm{l}) \mathrm{d}^{10} \mathrm{~ns}^{\circ}$

More $Z_{\text {eff }}$ due to poor shielding effect of d and f electrons.

02
Polarising power increases

Polarisability \propto Charge on the anion
Oxyanions are generally less polarisable because charge is present on O atom which is very small and we need to consider only the element which acquires the charge (and not the complete anion)

Applications of Fajans' Rule

Fluorides (F^{-}) of s-block metals (except BeF_{2}) \& Al^{3+} and $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$of alkali metals (except Li') are dominantly ionic.

Melting point of ionic solids depends upon

Extent of polarisation

Lattice Energy

Variation in Melting Point

For $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$of Li^{+}, all alkaline earth metals \& Al^{3+}, extent of polarisation is high.

As covalent character in an ionic compound, the melting point decreases.
M.P. of covalent compound < M.P. of ionic compound
$\rangle \quad$ Variation in Melting Point

* For uniatomic anion, as interionic distance increases, lattice energy decreases, hence thermal stability decreases.
\& $\mathrm{Be}_{2} \mathrm{~N}_{2}>\mathrm{MgN}_{2}>\mathrm{CaN}_{2}>\mathrm{Sr}_{2} \mathrm{~N}_{2}>\mathrm{Be}_{3} \mathrm{~N}_{2}$
* For multiatomic anion (for compounds having the same anion) thermal stability increases down the group.

Molecular Orbital Theory

Electrons in a molecule are present in the molecular orbitals (MO's)

Atomic orbitals (AO's) of comparable energies \& proper symmetry combine to form MO's

03
AO is monocentric whereas a MO is polycentric

Number of MO's formed is equal to the number of combining AO's

There are two types of molecular orbitals: Bonding Orbitals (ABMO).

BMO has lower energy and hence greater stability than the corresponding ABMO

Electron probability distribution around a group of nuclei in a molecule is given by a MO

MO's are filled according to Aufbau principle, Pauli's exclusion principle \& Hund's rule

ABMO (Anti Bonding Molecular Orbitals)

Destructive interference

Where, A and B are atoms

Additive combination (-) $+$

Bonding Molecular Orbital

Subtractive combination

AntiBonding
Molecular Orbital

Electron density increases in the internuclear region.

Electron density decreases in the internuclear region.

ABMO

Bonding Molecular Orbital (BMO)

Types of MO's

Antibonding Molecular Orbital (ABMO)

Difference between BMO and ABMO

Bonding Molecular Orbital (BMO)	Antibonding Molecular Orbital (ABMO)	Bonding Molecular Orbital (BMO)	Antibonding Molecular Orbital (ABMO)
MO formed by the addition of Atomic orbitals	MO formed by the subtraction of atomic orbitals	Lower in energy as compared to atomic orbital	Higher in energy as compared to atomic orbital
$\Psi_{\mathrm{BMO}}=\Psi_{\mathrm{A}}+\Psi_{\mathrm{B}}$	$\Psi_{\mathrm{ABMO}}=\Psi_{\mathrm{A}}-\Psi_{\mathrm{B}}$	Electron density increases in the internuclear region	Electron density decreases in the internuclear region
Formed by constructive interference (Stabilized MO)	Formed by destructive interference (Destabilized MO)	May or may not have a nodal plane	Always has a nodal plane
		Represented by $\sigma 1 \mathrm{~s}, \sigma 2 p_{z}, \pi 2 p_{x^{\prime}}, \pi 2 p_{y}$	Represented by $\begin{gathered} \sigma^{*} 1 \mathrm{~s}, \sigma^{*} 2 p_{z^{\prime}} \pi^{*} 2 p_{x^{\prime}} \\ \pi^{2} 2 p_{y} \end{gathered}$

When two orbitals combine in same phase then constructive interference take place.

When two orbitals combine out of the phase then destructive interference take place.

H_{2} molecule

Shapes of MO's: $\sigma 2 p_{z}$

$8: 8: 8$

Gerade \& Ungerade Molecular Orbitals

On moving equal distance in the opposite direction from the centre of the MO, if the sign of

Modifications in the

 energies of MO's due to s and p - mixing.Also known as symmetry contribution.

$$
\text { B - } 1 s^{2} 2 s^{2} 2 p^{1} \text { (5 electrons) }
$$

For B_{2} molecule, 10 electrons (< 14 electrons)

$$
\text { E.C. of } B_{2}-\rightarrow(\sigma 1 s)^{2}\left(\sigma^{*} 1 s\right)^{2}(\sigma 2 s)^{2}\left(\sigma^{*} 2 s\right)^{2}\left[\left(\pi 2 p_{x}\right)^{1}=\left(\pi 2 p_{y}\right)^{1}\right]
$$

What Does MOT Tell?

Applications

Color

Bond Order

One half the difference between the number of electrons present in the BMO \& the ABMO

Thus, He_{2} does not exist!!!

Species with the Same Bond Order

If the bond order is same for two species

The one with higher 02 ABMO is less stable.

And the one with higher
03 number of electrons in BMOs is more stable.

Magnetic Behaviour

Generally,

If the total
number of electrons present in the species is odd, the species is paramagnetic

Examples: $\mathrm{O}_{3}^{-}, \mathrm{NO}_{2}, \mathrm{NO}, \mathrm{ClO}_{2}$

O_{2} molecule

An unpaired electron acts as a magnetic dipole

$$
\mathrm{n}=\text { Number of unpaired electrons }
$$

B.M. = Bohr Magneton

Heteronuclear Diatomic Molecules

Experimentally the bond orders of NO and O_{2}^{+}are the same.

Paramagnetic

Experimentally the bond orders of CN^{-}and N_{2} are the same.

Diamagnetic

Heteronuclear Diatomic Molecules

Experimentally the bond orders of CO and N_{2} are the same.

Diamagnetic

Bond Order

Isoelectronic molecules and ions have identical bond order.

Examples:
N_{2} \& CO: Bond order = 3

Metallic Bonding

Metallic Bonding

Formed between metal (electropositive element) and metal (electropositive element).

Electron sea model : Metal kernels occupy lattice positions in the crystal structure of a metal and are embedded is a gas of free valence electrons.

Many mechanical properties of metals can be related to the strength of metallic bond

Melting point (M.P.) \& hardness

Band Theory

Band Theory

Band Theory

Band Theory

Highest energy electrons of the metallic crystals occupy either a partially filled band or a filled band that overlaps with an empty band.

These filled/ partially filled bands and empty bands are known as valence band and conduction band respectively.

Exists between oppositely charged ends of permanent dipoles

It is a weak attraction, when a polar molecule induces a dipole in an atom or in a nonpolar molecule by disturbing the arrangement of electrons in the non-polar species.

Boiling Point \propto van der Waals forces

Boiling Point \propto Molecular mass

If molecular mass is same, then factor responsible is molecular surface area.
van der Waals Force \propto Surface area.

Formation of Polyhalide lons $\left(\mathrm{X}_{3}\right.$)

Interaction Energy v/s Distance

Type of interaction	Interaction energy $\propto \frac{1}{r^{x}}$	Type of interaction	Interaction energy $\propto \frac{1}{r^{x}}$
Ionic bond	$\frac{1}{r}$	Ionic-Induced Dipole	$\frac{1}{r^{4}}$
Ion-dipole	$\frac{1}{r^{2}}$	Dipole-Induced dipole	$\frac{1}{r^{6}}$
Dipole-dipole		$\frac{1}{r^{6}}$	

Strength of Intermolecular Forces

Ion-dipole attraction

Dipole-dipole attraction

Ion-induced dipole attraction

Dipole-induced dipole attraction

Instantaneous dipole - induced dipole attraction

Strongest Dipole-Dipole

 interaction!
\downarrow
Hydrogen Bonding

Strength of the H bond is determined by the coulombic interaction b/w the lone pair of the E.N. atom \& H atom.

Ease of donation of

 lone pair of E.N. atomStrength of H-bonding \uparrow

Very strong H-bonding occurs in the alkali metal hydrogen fluorides of formula $\mathrm{M}\left[\mathrm{HF}{ }_{2}\right]$

Bond lengths: $x=y=113$ pm

Types of Hydrogen Bonding

Hydrogen Bonding

Acetic Acid

Examples

Point to Remember!!

Cl usually doesn't form H - bond due to their low charge density

Chloral hydrate $\left(\mathrm{CCl}_{3} \mathrm{CH}(\mathrm{OH})_{2}\right)$

H-Bonding Dependency on Physical State of Compounds

Extent of H-bonding depends on the physical state of the compound.

Gaseous state
$<$ Liquid state \ll Solid state

Extensive network of H bonds

Ice has cage like structure with vacant space
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s})$ is less dense than $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

Did You Know?

$\mathrm{D}_{2} \mathrm{O}(\mathrm{s})$ sinks in $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$

E.N. of D is less than H

D forms stronger
H-bond

Clathrates

| Species formed by
 entrapment of |
| :---: | | appropriately sized |
| :---: |
| gas molecules |
| $(\mathrm{e} . \mathrm{g} . \mathrm{Xe}, \mathrm{Kr}$ etc.) |$>$| into the voids |
| :---: |
| of ice |

Ar. $6 \mathrm{H}_{2} \mathrm{O}$

