Welcome to Aakash BYJU'S LIVE

H₂

H₂

Atomic Structure of Hydrogen

Isotopes of Hydrogen

Name	Symbol	Atomic number	Mass number	Relative abundance
Protium or Hydrogen	$H^1_{_1}$	1	1	99.985 %
Deuterium	H_1^2	1	2	0.0156 %
Tritium	H_{1}^{3}	1	3	10 ⁻¹⁵ %

 $\mathbf{O}_{\mathbf{O}}$

Isotopic Effect

For example, the reaction between H₂ and Cl₂ is almost 13 times faster than that between D₂ and Cl₂ under similar conditions.

Difference in bond enthalpies Results in difference in the rate of reactions

Position of Hydrogen in the Periodic Table

Position of Hydrogen in the Periodic Table

a

b

Hydrogen is the **first** element of the periodic table as its atomic number is **1**.

Electronic configuration **1s¹**

Hydrogen **resembles alkali metals** as well as **halogens** in many properties.

One electron in its valence shell - **1s¹**

Forms an **unipositive ion** H^+ (like Li⁺, Na⁺)

B

Position of Hydrogen in the Periodic Table

Forms oxides, halides, and sulphides like alkali metals

d

Good reducing agent

Oxide	Halide	Sulphide
Na ₂ O	NaCl	Na ₂ S
H ₂ O	HCI	H ₂ S

$$CuO + H_2 \xrightarrow{\Delta} Cu + H_2O$$

$$B_2O_3 + 6K \xrightarrow{\Delta} 3K_2O + 2B$$

SB

Position of Hydrogen in the Periodic Table

One electron less than that of its preceding inert gas configuration

Has **high ionisation enthalpy** like halogens

н	1312 kJ/mol
F	1680 kJ/mol
CI	1255 kJ/mol

b

a

Forms a **diatomic molecule** H_2 (like Cl_2 , Br_2 , l_2)

Position of Hydrogen in the Periodic Table

d

e

Forms an **uninegative ion** like halogens

Forms **compounds** like halogens

CCI ₄	SiCl ₄	NaCl
CH ₄	SiH ₄	NaH

Li	520 kJ/mol
Na	495 kJ/mol

Position of Hydrogen in the Periodic Table

The **reactivity** of hydrogen is **very low** compared to that of halogens.

Oxides of **halogens** are **acidic**, while the oxide of **hydrogen** is **neutral**.

Occurrence

Most abundant element of the **universe** (70% of the total mass)

It is much **less abundant** (0.15 % by mass) in the earth's atmosphere due to its light nature

2

3

In combined form, it constitutes 15.4% of the earth's crust and the oceans

Elemental Form of Hydrogen

By the action of water with metals

2

Action of water with Na, K, & Ca at room temperature

Action of water with Mg, Al, & Zn at the boiling temperature of water

$$2M + 2H_2O \xrightarrow{\Delta} 2MOH + H_2$$

$$2AI + 3H_2O \xrightarrow{\Delta} AI_2O_3 + 3H_2$$

$$Mg + H_2O \xrightarrow{\Delta} MgO + H_2$$

Δ

Laboratory method: By the action of granulated zinc with dilute HCI

$$Zn + 2NaOH \longrightarrow Na_2ZnO_2 + H_2$$

Sodium zincate

Zn (granulated) + 2HCl \longrightarrow ZnCl₂ + H₂

 $\begin{array}{c} \textbf{2AI + 2H_2O + 2NaOH} \xrightarrow{\Delta} \textbf{2NaAIO_2 + 3H_2} \\ \\ Sodium meta \\ aluminate \end{array}$

Preparation of **pure dihydrogen**

By the **electrolysis of acidified water** using **platinum** electrodes

By the electrolysis of warm aq. Ba(OH)₂ between Ni electrodes

Dihydrogen of high purity (> 99.95%) is obtained.

2H ₂ O(I) →	2H ₂ (g)	+	0 ₂ (g)
	At cathode		At anode

Preparation from hydrocarbons

$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + 3H_2(g)$$

Coal gasification

$$C (s) + H_2O (g) \xrightarrow{1270 \text{ K}} CO (g) + H_2 (g)$$

$$Water gas$$
(Syngas)

The yield of dihydrogen can be increased by reacting CO of the syngas mixture with steam in the presence of iron chromate as the catalyst.

Water-gas shift reaction

Methods to separate CO₂ from H₂

1. CO_2 is dissolved in water under high pressure (20-25 atm) and the H₂ left undissolved is collected.

2. Carbon dioxide is removed by scrubbing with sodium arsenite solution.

At anode: $2CI^{-}(aq) \longrightarrow CI_{2}(g) + 2e^{-}$ At cathode: $2H_{2}O(l) + 2e^{-} \longrightarrow H_{2}(g) + 2OH^{-}(aq)$

As a **byproduct** in the manufacture of **NaOH and Cl₂** by the **electrolysis of brine solution**

Overall reaction: $2Na^{+}(aq) + 2CI^{-}(aq) + 2H_{2}O(l)$ $CI_{2}(g) + H_{2}(g) + 2Na^{+}(aq) + 2OH^{-}(aq)$

Physical Properties

It is a colourless, tasteless, and odourless gas. It is insoluble in water. It is highly combustible.

SB

Chemical Properties of Dihydrogen

Dihydrogen is quite stable and dissociates into hydrogen atoms at high temperature in an electric arc.

$$H_2 \xrightarrow{\Delta} H + H$$

ΔH° ≈ - 285 kJmol⁻¹

$$3H_2(g) + N_2(g) \xrightarrow{673 \text{ K, 200 atm}} 2NH_3(g)$$

$$\Delta H^\circ = -92.6 \text{ kJmol}^{-1}$$

5

$$CH_2 = CH_2 + H_2 \xrightarrow{\text{Ni or Pd}} CH_3 - CH_3$$
$$HC = CH + 2H_2 \xrightarrow{\text{Ni or Pd}} 473 \text{ K} CH_3 - CH_3$$

It yields **aldehydes**, which further undergo **reduction** to give **alcohols**.

Reducing agent

Hydrogenation of vegetable oils

Used as a rocket fuel

Used in fuel cells for generating electrical energy Uses of Dihydrogen Oxy/atomic hydrogen

torch for

welding

Preparation of many compounds like NH₃

0.0

Hydrides

Dihydrogen combines with a large number of **non-metals and metals**, except noble gases, under certain suitable reaction conditions to form **compounds** called hydrides.

Example: MgH₂, B₂H₆

Ionic or Saline Hydrides

Lighter metal hydrides such as LiH, BeH₂ and MgH₂ have significant **covalent character**.

These are stoichiometric compounds of dihydrogen with most of the s-block elements which are **highly** electropositive in nature.

BeH₂ and MgH₂ are polymeric in nature.

Ionic or Saline Hydrides

Ionic or Saline Hydrides

LiH is used in the **synthesis** of other useful hydrides.

 $8LiH + Al_2Cl_6 \longrightarrow 2LiAlH_4 + 6LiCl$

$$2\text{LiH} + \text{B}_2\text{H}_6 \longrightarrow 2\text{LiBH}_4$$

Covalent or Molecular Hydrides

Covalent hydrides involve the formation of covalent bonds between H atoms and other atoms by sharing of electrons.

These are the compounds of hydrogen with most of the **p-block elements** which have relatively **high electronegativity.**

Examples HCI, H_2O , CH_4 , PH_3 , NH_3 etc.

Covalent or Molecular Hydrides

Covalent or Molecular Hydrides

Electron deficient hydrides	Electron precise hydrides	Electron rich hydrides
Have lesser number of electrons than that required for writing the conventional Lewis structure.	Have the required number of electrons to write their conventional Lewis structures.	Have excess of electrons which are present as lone pairs around the central highly E.N. atom.
B ₂ H ₆ and hydrides of group 13 elements	CH ₄ and hydrides of group 14 elements	H ₂ O, NH ₃ , HF

Metallic/Interstitial Hydrides

Hydrides formed by many d & f block elements except the metals of group 7, 8, & 9.

They are almost always non-stoichiometric, being deficient in hydrogen.

 $\label{eq:LaH2.87} \begin{array}{l} {\sf LaH}_{{\rm 2.87}}\,,\,{\sf YbH}_{{\rm 2.55}}\,,\,{\sf TiH}_{{\rm 1.5-1.8}}\,,\,{\sf ZrH}_{{\rm 1.3-1.75}}\,,\\ {\sf VH}_{{\rm 0.56}}\,,\,{\sf NiH}_{{\rm 0.6-0.7}}\,,\,{\sf PdH}_{{\rm 0.6-0.8}}\,{\rm etc.} \end{array}$

The **inability** of metals of **groups 7, 8, & 9** of the periodic table to form hydrides is referred to as **hydride gap of d-block.**

Chromium - the only 6th group metal which form metallic hydrides, (CrH).

1																	18
, H	2											13	14	15	16	17	He
<mark>الا</mark>	Be											β	° C	7 N	8	9	Ne
Na	Mg	3	4	5	6	7	8	9	10	11	12	AI 13	Si	P 15	S 16	CI	Ar
<mark>К</mark> 19	Ca 20	Sc 21	Ti 22	V 23	Cr 24	Mn 25	Fe	Co 27	Ni 28	Cu	₃₀ Zn	Ga 31	Ge 32	As	Se 34	Br 35	Kr 36
Rb 37	Sr 38	Y 39	Zr	Nb 41	Mo	TC 43	Ru	Rh 45	Pd	Ag	Cd	In 49	Sn 50	Sb	Te 52	53	Xe
Cs 55	Ba	La 57	Hf 72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg	TI 81	Pb 82	Bi	Po	At 85	Rn
Fr 87	Ra	Ac 89	Rf 104	Db 105	Sg 106	Bh 107	Hs 108	Mt	Ds 110	Rg	Cn	Nh	FI 114	Mc	Lv 116	Ts	Og

Ce 58	Pr 59	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th 90	Pa 91	U 92	Np 93	Pu	Am 95	Cm	Bk 97	Cf 98	Es 99	Fm	Md	No 102	Lr 103

Metallic/Interstitial Hydrides

Earlier, it was thought that **hydrogen** occupies interstices in the metal lattice, producing <u>distortion</u> without any change in its type.

Recent studies have shown that except for **hydrides** of **Ni**, **Pd**, **Ce**, and **Ac**, others have different lattice from that of the parent metals.

Applications

Property of absorption of hydrogen on transition metals is largely used in catalytic reduction/hydrogenation reactions.

Did You Know?

Dihydrogen is used as **fuel**, as it liberates large amount of heat on combustion.

At atmospheric pressure, ice crystallises in the **hexagonal form**, and at very low temperature, it condenses to **cubic form**.

Water is **denser** than ice

Chemical Properties of Water

$$H_2 O(l) + NH_3(aq) \rightleftharpoons OH^-(aq) + NH_4^+(aq)$$
 1

 $H_2 O(l) + NH_3(aq) \rightleftharpoons OH^-(aq) + NH_4^+(aq)$
 Amphoteric nature

 $H_2 O(l) + H_2 S(aq) \rightleftharpoons H_3 O^+(aq) + HS^-(aq)$
 $H_2 O(l) + H_2 O(l) \rightleftharpoons H_3 O^+(aq) + OH^-(aq)$

Water free from soluble salts of calcium and magnesium Water containing calcium & magnesium in the form of hydrogen carbonates, chlorides, and sulphates.

E.g., Distilled water, rain water E.g., Sea water, river water, tap water

Causes of Hardness of Water

Q.

Removing Temporary Hardness

Softening of Water by Boiling

Calgon's method

С

Calgon ($Na_6P_6O_{18}$ or $Na_2[Na_4(PO_3)_6]$) forms **soluble** complexes with Mg²⁺ and Ca²⁺ ions.

$$\begin{aligned} & \mathsf{Na}_{6}\mathsf{P}_{6}\mathsf{O}_{18} & \longrightarrow & 2\mathsf{Na}^{+} + \mathsf{Na}_{4}\mathsf{P}_{6}\mathsf{O}_{18}^{2-} \\ & \mathsf{M}^{2+} + \mathsf{Na}_{4}\mathsf{P}_{6}\mathsf{O}_{18}^{2-} & \longrightarrow & [\mathsf{Na}_{2}\mathsf{M}\mathsf{P}_{6}\mathsf{O}_{18}]^{2-} + 2\mathsf{Na}^{+} \end{aligned}$$

M = Mg, Ca

d

Involves the use of cation/anion exchange resin for the softening of water. Reactions with cation exchange resin,

$$RSO_{3}H + NaCI \longrightarrow RSO_{3}Na + HCI$$

2RNa (s) +
$$M^{2+}$$
 (aq) $\longrightarrow R_2^{-}M$ (s) + 2Na⁺ (aq)

$$M^{2+} = Ca^{2+}/Mg^{2+}$$

Pure de-mineralised water (free from all soluble mineral salts) is obtained by passing water successively through

A cation exchange (in the H⁺ form) and an anion exchange (in the OH⁻ form)

2RH (s) +
$$M^{2+}$$
 (aq) $\longrightarrow MR_2$ (s) + 2H⁺ (aq)

In anion exchange process, OH⁻ exchanges anions like Cl⁻, HCO₃⁻, SO₄²⁻, etc.

$$RNH_{2}(s) + H_{2}O(l) \rightleftharpoons RNH_{3}^{+}.OH^{-}(s)$$

$$RNH_{3}^{+}.OH^{-}(s) + X^{-}(aq) \rightleftharpoons RNH_{3}^{+}X^{-}(s) + OH^{-}(aq)$$

$$H^{+}(aq) + OH^{-}(aq) \longrightarrow H_{2}O(l)$$

Measurement of Hardness

Hardness is measured in terms of **ppm (parts per million)** of **CaCO**₃ or equivalent to it.

Hardness (in ppm) = $\frac{Mass of CaCO_3}{Total mass of solution} \times 10^6$

Properties of D₂O

Colourless, tasteless, & odourless liquid

Chemically, it is similar to H_2O

Values of all physical constants are higher than that of H_2O

It's chemical reactions are slower than those of H_2O

Uses of Heavy Water

Moderator in nuclear reactors

Used in **exchange reactions** for the study of the reaction mechanism

For the preparation of other **deuterium** compounds

Preparation of Deuterium Compounds

$$CaC_2 + 2D_2O \longrightarrow C_2D_2 + Ca(OD)_2$$

$$SO_3 + D_2O \longrightarrow D_2SO_4$$

$$Al_4C_3 + 12D_2O \longrightarrow 3CD_4 + 4Al(OD)_3$$

Å ₿

Hydrogen Peroxide (H₂O₂)

Solid phase

Gas phase

Preparation of H₂O₂

Acidifying barium peroxide and removing excess of water by evaporation under reduced pressure gives H_2O_2 .

Preparation of H_2O_2

Prepared by the **electrolysis** of **50%** H₂**SO**₄ solution at 0°C using inert electrodes.

Cathode Platinum

Anode Graphite

B

Physical Properties of H_2O_2

Colourless viscous liquid which appears blue in larger quantities.

01

02

03

Miscible with water in all proportions.

b.p. (144°C) & density are more than that of water and F.P. (–4°C) is less than that of water.

Volume Strength of H₂O₂

Strength of H₂O₂ is represented as **10 V**, **20 V**, **30 V**, etc.

20 V H_2O_2 means one litre of this sample of H_2O_2 on decomposition gives **20 L of O₂ gas at STP**.

$$Mn^{2+} + H_2O_2 \longrightarrow Mn^{4+} + 2OH$$

Chemical Properties

Reducing action in acidic medium

$$2MnO_{4}^{-} + 6H^{+} + 5H_{2}O_{2} \longrightarrow 2Mn^{2+} + 8H_{2}O + 5O_{2}$$

$$HOCI + H_2O_2 \longrightarrow H_3O^+ + CI^- + O_2$$

B

Chemical Properties

Reducing action in basic medium

$$I_2 + H_2O_2 + 2OH^- \longrightarrow 2I^- + 2H_2O + O_2$$

$$2MnO_4^- + 3H_2O_2 \longrightarrow 2MnO_2 + 3O_2 + 2H_2O + 2OH^-$$

Storage of H₂O₂

 H_2O_2 decomposes slowly on exposure to light

$$2H_2O_2(h) \longrightarrow 2H_2O(h) + O_2(g)$$

Decomposition of H_2O_2 is catalysed in the presence of **metal surfaces** or **traces of metal ions**.

Stored in **wax-lined glass** or plastic vessels in dark. **Urea** can be added as a **stabiliser**.

Antiseptic

Pollution control

Manufacture chemicals like sodium perborate Hair bleach & mild disinfectant

Uses of Hydrogen Peroxide

> Synthesis of hydroquinone, tartaric acid

Bleaching agent