Welcome to Constant of the second states of the se

 \bigcirc

0

G = H - TS

THERMODYNAMICS

Heat

Movement

Various forms of energy are **interrelated** Can be transformed from one form to another

Deals with matter in bulk

Thermodynamics

Properties associated with bulk are called macroscopic properties

Why Do We Need to Study Thermodynamics?

To understand,

3

What drives a chemical reaction?

2 Energy changes involved in a chemical reaction

Extent of completion of a reaction Criteria to predict the feasibility of the process

4

System

Part of the universe under observation or thermodynamic investigation

Includes everything else in the universe other than the system

Surrounding

What is Universe?

State of the System

Condition in which the system is present

State is defined by measuring the observable properties of the system

State Functions

Values depend only upon the state of the system

Does not depend upon the path by which this state has been attained

Pressure, volume, temperature, ...

Depends on the path by which the system has achieved a particular state

Can't have any definite (particular) value in any particular state of the system

Heat, work

Quick Contrast!

State function	Path function
Independent of the path taken	Dependent on the path taken
Depends only upon the state of the system	Depends upon how that state of the system has been achieved
Multiple paths result in the same value	Multiple paths may result in different values
E.g.: Temperature (T), Pressure (P), Enthalpy (H), Internal energy (U) etc.	E.g.: Heat (q), Work (W)

Macroscopic Properties

Intensive Properties Macroscopic Properties

Extensive Properties

Intensive

Independent of the mass or the size of the system

Dependent on the mass or the size of the system

Extensive

Ratio of two extensive properties is an intensive property

Intensive property - - - - → Density

Mass ← - - - Extensive property Volume ← - - - Extensive property

No pressure gradient with time

Thermal Equilibrium and Chemical Equilibrium

Thermal Equilibrium

No temperature gradient with time

Chemical Equilibrium No concentration gradient of any of the species in the system

Thermodynamic state parameters are only defined when the system is in a thermodynamic equilibrium

Process by which a system can change its state from one state of thermodynamic equilibrium to another

Thermodynamic Processes

Isothermal Process

dT = 0

Thermodynamic process in which the **temperature remains constant** throughout

q = **0**

Thermodynamic process in which the heat exchange between the system & the surrounding is not possible

Heat exchange

Isobaric and Isochoric Process

dP = 0

Thermodynamic process occurring at constant pressure is Isobaric Process. dV = 0

Thermodynamic process occurring at constant volume is Isochoric Process.

Thermodynamic Processes

Reversible Process

Reversible Process

System is always in thermodynamic equilibrium at every stage of the process

At any moment, the direction of the process can be **reversed** by an infinitesimal change

Carried out **infinitely slowly** through a series of equilibrium states

System & surroundings can be **restored** back to their original state

Irreversible Process

Irreversible Process

System may be in thermodynamic equilibrium state at some finite number of intermediate stages only Process that goes from the initial to the final state in finite steps

Carried out in finite steps

Reversal of driving force does not restore the system & surroundings back to their original state

Change in Internal Energy (ΔU)

Can be zero, positive or negative

B

Zeroth Law of Thermodynamics

B is in thermal equilibrium with C

Therefore, **A** and **B** are in thermal equilibrium

A is in thermal equilibrium with C

First Law of Thermodynamics

Heat is the Energy transferred across a boundary as a result of temperature difference between system & surroundings

Flow of energy from high T to low T

Both are mode of transfer of energy

Path function

SI Unit : Joule (J)

02

Work is done on or by the system

01

Heat passes into or out of the system

U changes when Matter enters or leaves the system

Water has high Heat Capacity

Lots of energy is needed to raise its temperature

Heat required to raise the temperature of the system by 1 °C under the given process

Total Heat Capacity (C_T)

Molar Heat Capacity (Cm)

C_m

Specific Heat Capacity (s)

s Intensive property & path function

Molar Heat Capacity (Cm)

Isothermal process	C _m	= ± ∞
Isobaric process	C _m	= C _{p, m}
Isochoric process	C _m	= C _{v, m}
Adiabatic process	C _m	

Expression for P-V Work

F Force on piston

Expression for P-V Work

Work required to move piston a distance **d***I* against an opposing force of magnitude **F** is,

Remember!!

Work Calculation for Reversible Isothermal Process

0

0

•

0

Isothermal Reversible Process

Isothermal Reversible Process

Isothermal Reversible Process V_f $= - nRT \int_{V_i} \frac{dV}{V}$ Since, $\int \frac{dx}{x} = \ln x$ = - nRT [lnV] ^v_f v_i W_{rev} - $nRT [InV_f - V_i]$ - nRT ln $\frac{V_{f}}{V_{i}}$ X₂ Since, $\ln x_2 - \ln x_1 = \ln x_1$ = X_1

Isothermal Reversible Process

Isothermal Reversible Compression

P_{ext} changes such that it is always infinitesimally higher than P_{gas}

Reversible compression occurs

Suppose we keep sand particles slowly on movable piston so that in each step one particle falling on piston compresses infinitesimely the volume

P_{ext} is not constant, it increases very slowly as sand particles increases on the piston. Work Calculation for Irreversible Isothermal Process

•

0

0

0

Single step expansion

On removing the brick, expansion of the gas will take place against a constant external pressure.

Two step expansion

A brick of mass M was divided into two fragments of equal masses i.e. $\frac{M}{2}$

Removing one fragment,

Removing the second fragment,

If the irreversible process consists of n-steps, where $n \rightarrow \infty$, the process becomes reversible.

Work Comparison for Isothermal Process

Work Comparison for Isothermal Process

W_{irrev} > W_{rev}

Conclusion

Remember!!

Process is irreversible when

Expansion/ compression against a constant external pressure

Change is sudden

From the First law of thermodynamics,

$$\Delta U = q + W$$
$$\Delta U = W$$

Adiabatic Expansion

Work is done by the system at the expense of internal energy

Adiabatic Compression

Work is done on the system, which is stored as the internal energy

Adiabatic Process

No heat exchange between the system and the surrounding

Reversible Adiabatic Process

T₁ Initial temperature

Final temperature

Initial volume

 \mathbf{V}_{1}

Final volume

Reversible Adiabatic Process

$$\ln\left(\frac{T_2}{T_1}\right) = \ln\left(\frac{V_2}{V_1}\right)^{-\frac{R}{C_{v,m}}}$$

Reversible Adiabatic Process

$$\frac{\mathsf{R}}{\mathsf{C}_{\mathsf{v},\mathsf{m}}} = \gamma - \mathsf{1}$$

$$\left[\ln \left(\frac{T_2}{T_1} \right) \right] = \left[\ln \left(\frac{V_1}{V_2} \right)^{\gamma - 1} \right]$$

$$\left(\begin{array}{c} T_2 \\ \hline T_1 \end{array}\right) = \left(\begin{array}{c} V_1 \\ \hline V_2 \end{array}\right)^{\gamma-1}$$

At normal temperature degree of freedom (f) includes translational and rotational freedom only

Gas	f	$C_{v,m}\left[\frac{f}{2}R\right]$	$C_{p,m}\left[\frac{f+2}{2}R\right]$	$\gamma = \left[\frac{f+2}{f}\right]$
Monoatomic	3	<u>3R</u> 2	<u>5R</u> 2	<u>5</u> 3
Diatomic	5	<u>5R</u> 2	<u>7R</u> 2	<u>7</u> 5
Linear polyatomic	5	<u>5R</u> 2	<u>7R</u> 2	<u>7</u> 5
Non-Linear polyatomic	6	<u>6R</u> 2	<u>8R</u> 2	<u>8</u> 6

Generally, we ignore vibrational degree of freedom and consider only translational and rotational degree of freedom(f) but at high temperature vibrational degree of freedom are also present.

As, $\mathbf{K} = \mathbf{P}_2 \mathbf{V}_2^{\gamma} = \mathbf{P}_1 \mathbf{V}_1^{\gamma}$

Irreversible Adiabatic Process

Irreversible Adiabatic Process

$$W = nC_{v,m} (T_2 - T_1)$$

Reversible and Irreversible Adiabatic Processes

B

Reversible and Irreversible Adiabatic Processes

ļ

Graphical Comparison of Different Thermodynamic Processes

For a reversible isothermal process,

On differentiating, PdV +

$$\frac{dP}{dV} \implies \left[-\frac{P}{V}\right]$$

VdP

0

Graphical Comparison of Different Thermodynamic Processes

For an reversible adiabatic process,

 \mathbf{PV}^{γ} = Constant $P \gamma V^{\gamma-1} dV$ + $V^{\gamma} dP$ = 0 On differentiating, $\frac{\mathrm{dP}}{\mathrm{dV}} \implies -\gamma \frac{\mathrm{P}}{\mathrm{V}}$ For an ideal gas $\gamma > 1$

Graphical Comparison of Different Thermodynamic Processes

Slope of P-V curve is more negative in case of an adiabatic process

Most chemical reactions are carried out at constant atmospheric pressure & not at constant volume

> Need to define another state function suitable under these conditions

Mathematical Expression

$$q_{p} = U_{2} + PV_{2} - U_{1} + PV_{1}$$

$$q_p = H_2 - H_1 = \Delta H$$

Sum of Internal energy and PV energy of a system under a given set of conditions

Enthalpy Change (Δ H)

Measure of heat change (evolved or absorbed) taking place during a process at constant P

$$\Delta H = \Delta U + \Delta (PV)$$

$$\Delta H = \Delta U + P_f V_f - P_i V_i$$

At constant pressure,

$$\Delta n_g = 2 - (1 + 3) = -2$$

Moral of the Equation

dU & dH can be Related to the Degrees of Freedom!

dU & dH can be Related to the Degrees of Freedom!

During these processes the temperature doesn't change, but U does change

P.E. change because of the interparticle interactions

Limitations of the 1st Law

Unable to predict the direction or the spontaneity of a process

Spontaneous Process

Spontaneous Process: A process which has the natural tendency to occur either on its own or after proper initiation under a given set of conditions

Non-Spontaneous Process: Process that cannot occur on its own rather they continue till they receive outside assistance

Can we Identify Spontaneity using ΔH ?

Process is spontaneous in a given direction when

Before the partition is removed

Pick a gas molecule from the left container

The molecule will be of gas A

Pick a gas molecule from the right container

The molecule will be of gas B

After the partition is removed

Pick a molecule from the container

The molecule can be of either gas A or gas B

System has become less predictable or more disordered

Observations

a		ΔН	Process
	Melting of ice (T > 0 °C, P = 1 bar)	+ve	Spontaneous

b		ΔΗ	Process
	Evaporation	+ve	Spontaneous

Melting Solid ----> Liquid

Disorderness

Evaporation Liquid ----> Gas

Disorderness

In an isolated system, there is always a tendency to become more disordered

Criteria for spontaneous change

In a physical or a chemical process as the system moves from a less random state to a more random state, **entropy increases**.

On boiling an egg, denaturation of protein happens, so entropy increases.

Entropy Change

Heat is added to the system

Molecular motions

Entropy Change

Since **S** is a state function,

$$TdS_{sys} = nC_{V,m}dT + \frac{nRT}{V}dV$$
$$dS_{sys} = \frac{nC_{V,m}dT}{T} + \frac{nR}{V}dV$$

On integrating the above equation,

Derived for a reversible process but it is also valid for irreversible processes as S is a state function.

Since,

$$\Delta S_{sys} = nC_{V,m} ln \frac{T_2}{T_1} + nR ln \frac{P_1}{P_2} + nR ln \frac{T_2}{T_1}$$

Since, $C_{P, m} - C_{V, m} = R$

$$\Delta S_{sys} = n C_{P,m} ln \frac{T_2}{T_1} + nR ln \frac{P_1}{P_2}$$

For surrounding, **T** is constant

According to the Law of conservation of energy,

$$\Delta S_{sys} = \int_{A}^{B} \frac{nC_{m}dT + P_{ext}dV}{T}$$

For solids & liquids C_{p,m} ≈ C_{v, m} ≈ C_m

Entropy Change for Solids and Liquids

Solid & liquids are **incompressible** phases of a substance, $dV \approx 0$

$$\Delta S_{surr} = \frac{ms (T_1 - T_2)}{T_2}$$

$$\Delta S_{univ} = \frac{T_2}{ms \ln \frac{T_2}{T_1} + \frac{ms (T_1 - T_2)}{T_2}}$$

$$\Delta S_{surr} = \frac{-\frac{q_{sys}}{T}}{dU} = dq + dW - - F : T_1 = T_2 \Rightarrow dU = 0$$

For system,

$$dq = -dW$$

$$q_{sys} = -W$$

Calculation of ΔS_{univ} for an Isothermal Process V₂ V₁ $\frac{V_2}{V_1}$ - nRT In – nRT In -W **q**_{sys} = V_2 – nRT In ΔS_{surr} ••• $- nR ln \frac{V_2}{V_1}$ ΔS_{surr}

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

$$\Delta S_{univ} = \left[nR \ln \frac{V_2}{V_1} \right] - \left[nR \ln \frac{V_2}{V_1} \right] = 0$$

×C

As
$$q_{sys} = -W$$
 for an isothermal process

$$\left(\begin{array}{c} q_{sys} \end{array}\right) = \left(\begin{array}{c} P_{ext} \left(V_2 - V_1\right) \right)$$

$$\Delta S_{surr} = \underbrace{-P_{ext}(V_2 - V_1)}_{T}$$

$$\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$$

$$\Delta S_{univ} = nR \ln \frac{V_2}{V_1} + \frac{-P_{ext}(V_2 - V_1)}{T}$$

$$\Delta S_{\text{univ}} = \left[\frac{1}{T} \left(nRT \ln \frac{V_2}{V_1} - P_{\text{ext}} (V_2 - V_1) \right) \right]$$

Calculation of ΔS_{univ} for an Adiabatic Process

$$\Delta S_{sys} = nC_{V,m} \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

For a reversible adiabatic process

$$\begin{array}{c|c} T_2 \\ \hline T_1 \end{array} = \left(\begin{array}{c} V_1 \\ \hline V_2 \end{array} \right)^{(\gamma - 1)}$$

$$\Delta S_{sys} = nC_{v,m} ln \left(\frac{V_1}{V_2}\right)^{(\gamma-1)} + nR ln \frac{V_2}{V_1}$$

We know that,

Since, $q_{sys} = 0$,

Since for a reversible adiabatic process,

$$\Delta S_{sys} = nC_{v,m} \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i} = 0$$

$$nC_{v,m} \ln \frac{T_f}{T_i} + nR \ln \frac{V_f}{V_i} = 0$$

$$\Delta S_{sys} = nC_{V,m} \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1}$$

For an irreversible adiabatic expansion: $V_2 > V_1$

Assuming
$$(V_2)_{irrev} = (V_2)_{rev}$$

Magnitude wise: $\ln C_{v,m} \ln \frac{T_2}{T_1} < \ln \ln \frac{V_2}{V_1}$ $(T_2)_{irrev} > (T_2)_{rev}$

$$\Delta S_{sys} = nC_{v,m} \ln \frac{T_2}{T_1} + nR \ln \frac{V_2}{V_1} > 0$$

$$\Delta S_{surr} = 0 \qquad \Delta S_{univ} > 0$$

Phase change occurs at constant P & T and is considered to be reversible if it occurs at its transition temperature at a given pressure.

Entropy Change for Fusion

$$H_2O(s) \longrightarrow H_2O(l) \longrightarrow \Delta_r H = \Delta_{fus}H$$

At constant pressure, $q = q_P = \Delta H$

Entropy Change for Vaporization

$$H_2O(I) \longrightarrow H_2O(g) \longrightarrow \Delta_r H = \Delta_{vap} H$$

At constant pressure, $q = q_P = \Delta H$

Second Law of Thermodynamics

0

0

•

0

B

Second Law of Thermodynamics

It is impossible for a system to undergo a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the performance of an equivalent amount of work by the system on the surroundings.

Second Law of Thermodynamics

 Whenever a
 spontaneous process
 takes place in the universe, the total entropy of the universe increases.

ΔS_{surr}

Second Law of Thermodynamics

For a spontaneous process,

AS_{sys} Entropy change of the system

Entropy change of the surrounding

Gibbs Free Energy (G)

A system parameter to predict the spontaneity of a chemical reaction

kJ/mol or J/mol

For a spontaneous process, $\Delta S_{universe} > 0$. $\Delta S_{universe}$ includes $\Delta S_{surrounding}$. To avoid calculation of surrounding, we define a new state function which can tell about spontaneity

State function

Extensive property

G

B

Spontaneous Process

If system is in thermal equilibrium with the surrounding

Spontaneous Process

Spontaneous Process

At constant T, the change in Gibbs free energy between two states will be,

$$\Delta G = \Delta H - T\Delta S$$

Spontaneity of a Process

For a process taking place at constant T & P

Spontaneity of a Process

In this case, ΔG will be negative only when $|\Delta H| > |T\Delta S|$. If a reaction is favourable for enthalpy (i.e., enthalpy decreases) and unfavourable for entropy (i.e., entropy decreases), the reaction will be spontaneous only at lower temperatures (becomes less spontaneous as the temperature increases).

Spontaneity of a Process

In this case, ΔG will be negative always (Subtracting a positive value from a negative value will always result in a negative value). If a reaction is favourable for enthalpy (i.e., enthalpy

decreases) and favourable for entropy (i.e., entropy increases), the reaction will always be spontaneous.

Spontaneity of a Process

In this case, ΔG will be positive always (Subtracting a negative value from a positive value will always result in a +ve value). If a reaction is unfavourable for enthalpy (i.e., enthalpy increases) and unfavourable for entropy (i.e., entropy decreases), the reaction will always be non - spontaneous.

Spontaneity of a Process

In this case, ΔG will be negative only when $|\Delta H| < |T\Delta S|$. If a reaction is unfavourable for enthalpy (i.e., enthalpy increases) and favourable for entropy (i.e., entropy increases), the reaction will be spontaneous only at higher temperatures (Becomes less spontaneous as the temperature decreases).

dG	=	dH	_	d(TS)

Since, dl	H =	dU	+	d(PV)	
-----------	-----	----	---	-------	--

$$dG = dq + dW + PdV + VdP - TdS + SdT$$

$$dG = dq + dW_{PV} + dW_{non-PV} + PdV + VdP - TdS + SdT$$

$$dW_{PV} = -PdV \qquad dq = TdS$$

$$dG = VdP - SdT + dW_{non-PV}$$

Magnitude of **negative** value of ΔG

Maximum amount of non-PV work or useful work (electrical work) that can be obtained from the system

Physical Interpretation of ΔG

Magnitude of **positive** value of ΔG Minimum amount of work required to be done on the system to make the process spontaneous

B

Third Law of Thermodynamics

Absolute Entropy of a Pure Substance

Absolute value of entropy unlike the absolute value of enthalpy for any pure substance can be calculated at any given temperature

Absolute Entropy of a Pure Substance

If phase changes between 0 K & T K: Entropy of phase change will also add

Standard Entropy Changes in Chemical Reactions

$$aA(g) + bB(g) \longrightarrow cC(g) + dD(g)$$

$$\Delta_{r}S^{\circ} = \Sigma S^{\circ} (Products) - \Sigma S^{\circ} (Reactants)$$

$$\Delta_{r} S^{o} = cS^{o}_{m,C} + dS^{o}_{m,D} - aS^{o}_{m,A} + bS^{o}_{m,B}$$

Need for Thermochemistry

Provides a theoretical approach for calculating the Heat change in a reaction Performing an experiment for calculating the heat change for every reaction can be avoided

Study of the energy transferred as heat during the course of a chemical reaction or a physical change

Factors Affecting Enthalpy Change

Enthalpy change when the amounts of reactants consumed & products formed will be equal to corresponding stoichiometric numbers expressed in mole.

Enthalpy of Reaction $(\Delta_r H)$

$$CH_4(g) + 2O_2(g) \longrightarrow CO_2(g) + 2H_2O(l)$$

Per mole' in
$$\Delta_r$$
H means 'per mole CH₄ (g)', 'per 2 mole O₂ (g)', 'per mol CO₂ (g)', or 'per 2 mol H₂O (/)'

 $\Delta_{\rm r} {\rm H}$

Enthalpy of reaction refers to the entire chemical equation and not to any particular reactant or product.

-890 kJ/mol

Enthalpy of Reaction

$$\Delta_{r}H = \Sigma a_{i}H_{m,P} - \Sigma b_{i}H_{m,R}$$

Stoichiometric coefficients of the reactants

H_m Molar enthalpy

b_i

Standard Enthalpy of Reaction ($\Delta_r H^\circ$)

Enthalpy change for a reaction when all the participating substances are in their standard states

0

Standard state of a substance at a specified temperature is its pure form at 1 bar

represents standard conditions

Standard State

For Pure Crystalline Solid Pure crystalline solid at **1 bar pressure** at a specified temperature

For Substance or Ion in Solution Species at **1 M concentration**, **1 bar pressure** at a specified temperature

For Liquids

Pure liquid at **1 bar pressure** at a specified temperature

For Gases

Ideal gas at 1 bar partial pressure at a specified temperature

Standard States

On reversing the equation

$$2NH_3(g) \longrightarrow N_2(g) + 3H_2(g); \Delta_r H = + 91.8 \text{ kJ/mol}$$

Hess's Law of Constant Heat Summation

Heat absorbed or evolved in a given chemical equation is the same whether the process occurs in one step or several steps.

Hess's Law of Constant Heat Summation

$$2NaHCO_{3}(s) \longrightarrow Na_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O(g)$$

$$\left[\Delta_{r} H^{\circ} \right] = ?$$

$$NaHCO_{3}(s) + HCI(aq) \longrightarrow NaCI(aq) + CO_{2}(g) + H_{2}O(g) - - \rightarrow \Delta_{r}H^{o}_{1} \qquad \cdots \cdots \qquad (i)$$

$$Na_2CO_3 (s) + 2HCI (aq) \longrightarrow 2NaCI (aq) + CO_2 (g) + H_2O (g) \longrightarrow \Delta_r H_2^{\circ}$$
 (ii)

B

Hess's Law of Constant Heat Summation

Multiplying equation (i) by 2 and subtracting the equation (ii) from (i) we get,

2NaHCO₃ (s)
$$\longrightarrow$$
 Na₂CO₃ (s) + CO₂ (g) + H₂O (g) $\rightarrow \rightarrow \Delta_r H^\circ$

$$\Delta_r H^{\circ} = 2\Delta_r H^{\circ}_1 - \Delta_r H^{\circ}_2$$

Standard Enthalpy of Formation ($\Delta_{f} H^{o}$)

Standard Enthalpy of Formation

Species	Δ _f H°		
O ₂ (g)	=	0	
O ₃ (g)	>	0	
S, rhombic (s)	=	0	
S, monoclinic (s)	>	0	
C, graphite (s)	=	0	
C, diamond (s)	>	0	

Generally, the value of standard enthalpy of formation of the most stable allotrope is zero.

Exception

Order of Stability

B

Though white phosphorous is taken as standard but it is the most reactive form of phosphorous.
Enthalpy of Reaction from Enthalpies of Formation

$$\Delta_{\rm r} H = \Sigma a_{\rm i} \Delta_{\rm f} H_{\rm P} - \Sigma b_{\rm i} \Delta_{\rm f} H_{\rm R}$$

Enthalpy change when one mole of a compound combines with the requisite amount of oxygen to give products in their stable form

C (graphite, s)
$$+ O_2(g) \longrightarrow CO_2(g)$$

$$\Delta_{\rm C} {\rm H}^{\rm o}$$
 = - 393.5 kJ/mol

Enthalpy of Combustion

Calorific value

Application of Enthalpy of Combustion

To determine enthalpy of reaction

Calorific Value

Amount of heat released during the complete combustion of a unit mass of a substance

Determine Enthalpy of Reaction

Determine Enthalpy of Reaction

Using Hess's law,

$$\Delta_{c} H [C_{2}H_{4}(g)] + \Delta_{c} H [H_{2}(g)] = \Delta_{r} H + \Delta_{c} H [C_{2}H_{6}(g)]$$
$$\Delta_{r} H = \Delta_{c} H [C_{2}H_{4}(g)] + \Delta_{c} H [H_{2}(g)] - \Delta_{c} H [C_{2}H_{6}(g)]$$
$$\Delta_{r} H = \Sigma (\Delta_{c} H)_{Reactants} - \Sigma (\Delta_{c} H)_{Products}$$

Calorimetry

Calorimetry

Study of heat transfer during physical & chemical processes

Device for measuring the energy transferred as heat

Calorimeter

Calorimetry

Measurements are made under two different conditions

A combustible substance is burnt in the presence of **pure O₂** in the steel bomb

Steel bomb is immersed in water bath

Bomb Calorimeter

Heat evolved during the reaction is transferred to the water around the bomb

Temperature of the water is monitored

Sample is ignited by the electric shock provided by the ignition box, heat is being radiated by the combustion of the sample and got transferred to the liquid where it gets uniformly distributed by the stirrer, consequently the thermometer shows rise in the temperature.

ΔU Measurements

ΔU Measurements

Water equivalent (W.E.) Mass of water that would absorb the same amount of heat as absorbed by stirrer, thermometer, bomb etc.

$$H_2O(s) \longrightarrow H_2O(l) \int \Delta_{fus}H^o = 6 \text{ kJ/mol}$$

$$H_2O(I) \longrightarrow H_2O(g)$$

$$\Delta_{vap}$$
H° = 40.79 kJ/mol

Enthalpy change when **1 mole of a solid** is directly converted into vapors at sublimation temperature

= 25.2 kJ/mol

$$CO_2 (s) \longrightarrow CO_2 (g) \qquad \Delta_{sub} H^o$$

Enthalpy change when one mole of an allotropic form changes to another allotropic form

Enthalpy of Atomization ($\Delta_a H$)

Enthalpy change when one mole of substance converts into gaseous atoms

$$H_2(g) \longrightarrow 2H(g)$$

Bond Enthalpy for Diatomic Molecules

Bond Dissociation Enthalpy ($\Delta_{BDE}H$)

Enthalpy required to dissociate a given bond of some specific compound.

$$H_2(g) \longrightarrow 2H(g)$$

Bond Enthalpy of Polyatomic Molecules

In methane, all the four C – H bonds are identical in bond length & energy

But the energy required to break the individual C – H bonds in each successive step differs

Bond Enthalpy of Polyatomic Molecules

$$\begin{array}{c} \mathsf{CH}_4(\mathsf{g}) \longrightarrow \mathsf{CH}_3(\mathsf{g}) + \mathsf{H}(\mathsf{g}) \\ \hline \Delta_{\mathsf{C}-\mathsf{H}}\mathsf{H}^\circ \end{array} = & +427 \text{ kJ/mol} \\ \hline \mathsf{CH}_3(\mathsf{g}) \longrightarrow \mathsf{CH}_2(\mathsf{g}) + \mathsf{H}(\mathsf{g}) \\ \hline \Delta_{\mathsf{C}-\mathsf{H}}\mathsf{H}^\circ \end{array} = & +439 \text{ kJ/mol} \\ \hline \mathsf{CH}_2(\mathsf{g}) \longrightarrow \mathsf{CH}(\mathsf{g}) + \mathsf{H}(\mathsf{g}) \\ \hline \Delta_{\mathsf{C}-\mathsf{H}}\mathsf{H}^\circ \end{aligned} = & +452 \text{ kJ/mol} \\ \hline \mathsf{CH}(\mathsf{g}) \longrightarrow \mathsf{C}(\mathsf{g}) + \mathsf{H}(\mathsf{g}) \\ \hline \Delta_{\mathsf{C}-\mathsf{H}}\mathsf{H}^\circ \end{aligned} = & +347 \text{ kJ/mol} \end{array}$$

B

Mean Bond Enthalpy

$$\Delta_{a}H^{o}$$
 = +1665 kJ/mol

. . .

$$\Delta_{\text{C-H}} H^{\text{o}} = \frac{1}{4} (\Delta_{\text{a}} H^{\text{o}})$$

$$\frac{1}{4}$$
 ($\Delta_a H^o$) = $\frac{1}{4}$ (1665 kJ/mol)

$$\Delta_{C-H}H^{\circ} = 416 \text{ kJ/mol}$$

Applications of Bond Enthalpy

Determination of enthalpy of reaction

$$C_2H_4(g) + HCI(g) \longrightarrow C_2H_5CI(g)$$

Resonance Energy (Δ_{RE} H)

Difference in energy of the most stable resonating structure and the energy of the actual molecule

Resonance energy can't be determined from the reaction because resonating structures do not exist. So, resonance energy is determined indirectly using bond enthalpy.

Determination of Resonance Energy

Determination of Resonance Energy

$$\Delta_{RE}H = \Delta_{c}H_{calculated} - \Delta_{c}H_{experimental}$$

Energy released when one mole of a solid ionic compound is formed from its gaseous constituent ions

Lattice enthalpy of an ionic compound can be determined using the Born-Haber cycle

Born Haber Cycle of NaCl

$$\Delta_{\rm f} {\rm H}^{\rm o} = -411 \, {\rm kJ/mol}$$

Enthalpy of Hydration

Enthalpy change when 1 mole of a gaseous ion is hydrated in large amount of water to form an aqueous ion

 $Cl^{-}(g) + aq \longrightarrow Cl^{-}(aq)$

Enthalpy of Hydration of Anhydrous or Partially Hydrated Salts

Enthalpy change when anhydrous or partially hydrated salt combines with the requisite amount of water to form a new hydrated stable salt

 $CuSO_4(s) + 5H_2O(l) \longrightarrow CuSO_4.5H_2O(s)$

Enthalpy change when one mole of a solute is dissolved in excess of solvent so that further dilution does not involve any heat change

Enthalpy change when one mole of the solute is dissolved in a definite quantity of solvent to produce a solution of a desired concentration

HCl (g) + $10H_2O(l) \longrightarrow HCl (10H_2O)$

ΔH = - 69.5 kJ/mol

HCl (g) + $25H_2O(l) \longrightarrow HCl (25H_2O)$

ΔH = - 72.3 kJ/mol

Integral Enthalpy of Solution

HCl (g) + 25 H₂O (/)
$$\longrightarrow$$
 HCl (25 H₂O) Δ H = - 72.3 kJ/mol

HCl (g) + 40 H₂O (/)
$$\longrightarrow$$
 HCl (40 H₂O) Δ H = - 73.0 kJ/mol

Relates enthalpies of a reaction at **two different temperatures**

$$aA + bB \longrightarrow cC + dD$$

Let the standard enthalpy of reaction at temperature T_1 be $\Delta H^{\rm o}{}_1$

$$(\Delta H^{\circ}_{1}) = (CH_{m}^{\circ}(C, T_{1}) + dH_{m}^{\circ}(D, T_{1}) - aH_{m}^{\circ}(A, T_{1}) - bH_{m}^{\circ}(B, T_{1}))$$

If same reaction is carried out at temperature T₂

Similarly,

$$H_{m}^{o}(B, T_{2}) - H_{m}^{o}(B, T_{1}) = C_{P, m, B} (T_{2} - T_{1})$$

$$H_{m}^{\circ}(C, T_{2}) - H_{m}^{\circ}(C, T_{1}) = C_{P, m, C} (T_{2} - T_{1})$$

$$H_{m}^{\circ}(D, T_{2}) - H_{m}^{\circ}(D, T_{1}) = C_{P, m, D} (T_{2} - T_{1})$$

Where,

If $\Delta_r C_{p, m}$ is a function of temperature

