Welcome to

Thermodynamics

THERMODYNAMICS

Heat
Movement

Various forms of energy
are interrelated

Can be
transformed
from one form to another

Branch of science which deals with different forms of energy \& their interconversion

Why Do We Need to Study Thermodynamics?

To understand,

Terms Used in Thermodynamics

Boundary

A real or imaginary layer separating the system from its surroundings

Allows us to control \& keep track of all the movements of matter \& energy

Boundary

Flexible Boundary

Rigid Boundary

Boundary

What is Universe?

Types of Systems

Matter
exchange
Energy
exchange

Energy exchange

State of the System

Condition in which the system is present

State is defined by measuring the observable properties of the system

State Functions

Values depend only
upon the state of the system

Does not depend upon the path by which this state has been attained

Pressure, volume, temperature, ...

Path Functions

Depends on the path by which the system has achieved a particular state

Can't have any definite (particular) value in any particular state of the system

Heat, work

Quick Contrast!

State function	Path function
Independent of the path taken	Dependent on the path taken
Depends only upon the state of the system	Depends upon how that state of the system has been achieved
Multiple paths result in the same value	Multiple paths may result in different values
E.g.: Temperature (T), Pressure (P), Enthalpy (H), Internal energy (U) etc.	E.g.: Heat (q), Work (W)

Macroscopic Properties

Remember!

Ratio of two extensive properties is an intensive property

Thermodynamic Equilibrium

Thermal Equilibrium and Chemical Equilibrium

> Thermal Equilibrium

No temperature gradient with time

Chemical Equilibrium

No concentration gradient of any of the species in the system

Thermodynamic state parameters are only defined when the system is in a thermodynamic equilibrium

Process by which a system can change its state from one state of thermodynamic equilibrium to another

Thermodynamic Processes

Isothermal Process

Adiabatic Process

$$
q=0
$$

Thermodynamic process in which the heat exchange between the system \& the surrounding is not possible

Heat exchange

Isobaric and Isochoric Process

$$
d P=0
$$

Thermodynamic process occurring at constant pressure is Isobaric Process.

Cyclic Process

Thermodynamic Processes

Based on the way the process is carried out

Irreversible

Reversible Process

Reversible Process

System is always in thermodynamic equilibrium at every stage of the process

At any moment, the direction of the process can be reversed by an infinitesimal change

System \& surroundings can be restored back to their original state

Irreversible Process

|rreversible Process

System may be in thermodynamic equilibrium state at some finite number of intermediate stages only

Process that goes
from the initial to the final state in finite steps

Carried out in finite steps

Internal Energy (U)

Every system having some quantity of matter is associated with a definite amount of energy, called internal energy

Translational

Internal Energy

Change in Internal Energy ($\Delta \mathrm{U}$)

Can be measured

Can be zero, positive or negative

Laws of Thermodynamics

Zeroth Law of Thermodynamics

Zeroth Law of Thermodynamics

B is in thermal equilibrium with C

Therefore, A and B are in thermal equilibrium

First Law of Thermodynamics

> Heat is the Energy transferred across a boundary as a result of temperature difference between system \& surroundings

Flow of energy from high T to low T

Work is the motion against an opposing force.

dx
Displacement

Both are mode of transfer of energy

Path function

SI Unit : Joule (J)

First Law of Thermodynamics

Mathematical Expression for the Ist Law

Sign Convention of Heat and Work

Positive

Anything which increases energy of the system

Negative
Anything which decreases energy of the system

Heat Capacity

Water has high Heat Capacity

Lots of energy is needed to raise
its temperature

Total Heat Capacity (C_{T})

Heat required to raise the temperature of the system by $1^{\circ} \mathrm{C}$ under the given process

Total Heat Capacity (C_{T})

$\mathrm{C}_{\mathrm{T}} \quad$ Extensive property \& path function

$$
\text { On integrating, } \quad \int \mathrm{dq}=\int \mathrm{C}_{\mathrm{T}} \mathrm{dT}
$$

If C_{T} is independent of temperature,
$q=C_{T} \Delta T$

Molar Heat Capacity (Cm)

Heat required to raise the temperature of 1 mol of a substance by $1^{\circ} \mathrm{C}$

Molar Heat Capacity (Cm)

$\mathrm{C}_{\mathrm{m}} \quad$ Intensive property \& path function

Specific Heat Capacity (s)

Heat required to raise the temperature of 1 g of a substance by $1^{\circ} \mathrm{C}$

Specific Heat Capacity (s)

s Intensive property \& path function

On integrating, $\quad \int d q=\int m s d T$
If s is independent of temperature,

Molar Heat Capacity (Cm)

Expression for P-V Work

Expression for P-V Work

Work required to move piston a distance d/ against an opposing force of magnitude F is,

Remember!!

Mathematical Expression for the Ist Law

Isothermal Reversible Process

$d P \quad d V=--\quad$| very small, |
| :--- |
| so can be |
| neglected |

Isothermal Reversible Process

Isothermal Reversible Process

$$
=\quad-n R T \ln \frac{V_{f}}{V_{i}} \quad \text { Since, } \ln x_{2}-\ln x_{1}=\ln \frac{x_{2}}{x_{1}}
$$

Isothermal Reversible Process

Isothermal Reversible Compression

$P_{\text {ext }}$ changes such that it is always infinitesimally higher than $P_{\text {gas }}$

Suppose we keep sand particles slowly on movable piston so that in each step one particle falling on piston
compresses infinitesimely the volume

Reversible compression occurs
$\mathrm{P}_{\text {ext }}$ is not constant, it increases very slowly as sand particles increases on the piston.

Isothermal Irreversible Expansion

Single step expansion

On removing the brick, expansion of the gas will take place against a constant external pressure.

Isothermal Irreversible Expansion

Two step expansion
A brick of mass M was divided into two fragments of equal masses i.e. $\frac{M}{2}$

Removing one fragment,

Isothermal Irreversible Expansion

Isothermal Irreversible Expansion

Removing the second fragment,

Isothermal Irreversible Expansion

Isothermal Irreversible Expansion

If the irreversible process consists of n-steps, where $\mathrm{n} \rightarrow \infty$, the process becomes reversible.

Work Comparison for Isothermal Process

Work Comparison for Isothermal Process

Conclusion

Work done on the gas

Minimum in reversible process

Work done by the gas --- Maximum in reversible process

Remember!!

Process is irreversible when

Expansion/ compression against a constant external pressure

Isochoric and Isobaric process

Isochoric Process

Isobaric Process

for both reversible and irreversible processes

Adiabatic Process

From the First law of thermodynamics,

$$
\begin{gathered}
\Delta U=\mathrm{q}+\mathrm{w} \\
\Delta U=\mathbf{W}
\end{gathered}
$$

Adiabatic Expansion

Work is done by the system at the expense of internal energy

Adiabatic Compression

Work is done on the system, which is stored as the internal energy

Adiabatic Process

No heat exchange between the system and the surrounding

Remember!!

Reversible Adiabatic Process

$$
n C_{v, m} d T=-P_{e x t} d V
$$

For a reversible process

$$
P_{e x t}=P_{\text {gas }}=\frac{n R T}{V}
$$

$$
n C_{v, m} d T \quad=\quad-\frac{n R T}{V} d V
$$

$$
\int n C_{v, m} d T=\int-\frac{n R T}{V} d V
$$

Reversible Adiabatic Process

$$
\begin{aligned}
& \int_{T_{1}}^{T_{2}} \frac{C_{v, m}}{T} d T=-\int_{V_{1}}^{V_{2}} \frac{R}{V} d V \\
& C_{v, m} \ln \frac{T_{2}}{T_{1}}=-R \ln \frac{V_{2}}{V_{1}}
\end{aligned}
$$

T_{2} Final temperature
V_{1} Initial volume
V_{2}
Final volume

Reversible Adiabatic Process

$$
\ln \left(\frac{\mathrm{T}_{2}}{\mathrm{~T}_{1}}\right)=\left(-\frac{\mathrm{R}}{\mathrm{C}_{\mathrm{v}, \mathrm{~m}}} \ln \left(\frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}\right)\right.
$$

$$
a \ln x=\ln x^{a}
$$

$$
\ln \left(\frac{T_{2}}{T_{1}}\right)=\ln \left(\frac{V_{2}}{V_{1}}\right)^{-\frac{R}{C_{V, m}}}
$$

Reversible Adiabatic Process

$$
\begin{array}{ll}
\ln \left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)=\ln \left(\frac{\mathbf{V}_{2}}{\mathbf{V}_{1}}\right)^{1-\gamma} \\
\ln \left(\frac{\mathbf{T}}{\mathbf{T}_{1}}\right)=\gamma=\gamma-1 \\
\ln \left(\frac{\mathbf{V}_{1}}{\mathbf{C}_{\mathrm{V}, \mathrm{~m}}}\right)^{\gamma-1}=\left(\frac{\mathbf{V}_{1}}{\mathbf{V}_{2}}\right)^{\gamma-1} \\
\left(\frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}\right)
\end{array}
$$

Reversible Adiabatic Process

$$
\mathrm{PV}=\mathrm{nRT}, \mathrm{~T}=\frac{\mathrm{PV}}{\mathrm{nR}} \quad \mathrm{~T}_{2} \mathrm{~V}_{2}^{\gamma-1}=\mathrm{T}_{1} \mathrm{~V}_{1}{ }^{\gamma-1}
$$

At normal temperature degree of freedom (f) includes translational and rotational freedom only

Gas	f	$C_{v, m}\left[\frac{f}{2} R\right]$	$C_{p, m}\left[\frac{f+2}{2} R\right]$	$\gamma=\left[\frac{f+2}{f}\right]$
Monoatomic	3	$\frac{3 R}{2}$	$\frac{5 R}{2}$	$\frac{5}{3}$
Diatomic	5	$\frac{5 R}{2}$	$\frac{7 R}{2}$	$\frac{7}{5}$
Linear polyatomic	5	$\frac{5 R}{2}$	$\frac{7 R}{2}$	$\frac{7}{5}$
Non-Linear polyatomic	6	$\frac{6 R}{2}$	$\frac{8 R}{2}$	$\frac{8}{6}$

Generally, we ignore vibrational degree of freedom and consider only translational and rotational degree of freedom(f) but at high temperature vibrational degree of freedom are also present.

Work Done in Reversible Adiabatic Process

$$
W=-\int P_{\text {ext }} d V \quad P_{\text {gas }}=P_{\text {ext }}
$$

$$
\mathbf{P} \mathbf{V} \gamma=\mathbf{K}=\mathbf{W}=-\int \frac{\mathbf{K}}{\mathbf{V}^{\gamma}} \mathbf{d} \mathbf{V}
$$

$$
\mathbf{W}=-\mathbf{K} \frac{\left[\mathbf{V}_{\mathbf{2}}^{-\gamma+1}-\mathbf{V}_{1}^{-\gamma+1}\right]}{1-\gamma}=\mathbf{W}=\frac{\left[\mathbf{P}_{2} \mathbf{V}_{2}{ }^{\gamma} \mathbf{V}_{2}^{1-\gamma}-\mathbf{P}_{1} \mathbf{V}_{1}^{\gamma} \mathbf{V}_{1}^{1-\gamma}\right]}{\gamma-1}
$$

As, $\mathbf{K}=\mathbf{P}_{\mathbf{2}} \mathbf{V}_{\mathbf{2}}{ }^{\gamma}=\mathbf{P}_{\mathbf{1}} \mathbf{V}_{\mathbf{1}}{ }^{\gamma}$

Work Done in Reversible Adiabatic Process

For an ideal gas,

Irreversible Adiabatic Process

Irreversible Adiabatic Process

$$
\mathrm{W}=\mathrm{nC} \mathrm{v}_{\mathrm{v}, \mathrm{~m}}\left(\mathrm{~T}_{2}-\mathrm{T}_{1}\right)
$$

Reversible and Irreversible Adiabatic Processes

State
 $\stackrel{A}{P_{1}, V_{1}, T_{1}}$

Reversible
State
B
V_{2}, T_{2}

Reversible and Irreversible Adiabatic Processes

If the two states are linked by an adiabatic reversible and irreversible path then

Contradictions

As U is a state function;
If we assume ----> $W_{\text {rev }} \neq W_{\text {irrev }}$

It implies that ----> $\Delta \mathrm{U}_{\text {rev }} \quad \neq \Delta \mathrm{U}_{\text {irrev }}$

Which is a contradiction as W is a path function

Conclusions

Two states \mathbf{A} and \mathbf{B} can never lie both on a reversible as well as irreversible adiabatic path

Graphical Comparison of Different Thermodynamic Processes

For a reversible isothermal process,

On differentiating,

$$
\left.\frac{\mathrm{dP}}{\mathrm{dV}}\right) \Rightarrow\left(-\frac{\mathrm{P}}{\mathrm{~V}}\right.
$$

Graphical Comparison of Different Thermodynamic Processes

For an reversible adiabatic process,

On differentiating,

$$
\mathbf{P} \gamma \mathbf{V}^{\gamma-1} \mathbf{d} \mathbf{V}+\mathbf{V}^{\gamma} \mathbf{d P}=
$$

Graphical Comparison of Different Thermodynamic Processes

Slope of P-V curve is more negative in case of an adiabatic process

Expanded Till the Same Final Volume

Expanded Till the Same Final Pressure

Most chemical reactions are carried

 out at constant atmospheric pressure \& not at constant volume

Mathematical Expression

Enthalpy (H)

Sum of Internal energy and PV energy of a system under a given set of conditions

Important Features of Enthalpy

Enthalpy Change ($\Delta \mathrm{H}$)

Measure of heat change (evolved or absorbed) taking place during a process at constant P

Enthalpy Change ($\Delta \mathbf{H}$)

At constant pressure,

For solids \& liquids
For gases
ΔV is significant
$\mathrm{P} \Delta \mathrm{V}$ is insignificant
$P \Delta V$ is significant

Relationship Between $\Delta H \& \Delta U$

At constant P

For ideal gas

Relationship Between ΔH \& ΔU

$$
\Delta \mathrm{n}_{\mathrm{g}} \quad \begin{gathered}
\text { Change in the number } \\
\text { of gaseous moles }
\end{gathered}
$$

$$
\text { Example: } \quad \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\Delta n_{g}=2-(1+3)=-2
$$

Relationship Between $\Delta \mathrm{H}$ \& $\Delta \mathrm{U}$

ΔH
Heat change at constant P
ΔU
Heat change at constant V

Moral of the Equation

Relation Between ΔH and $C_{p, m}$

dU \& dH can be Related to the Degrees of Freedom!

dU \& dH can be Related to the
 Degrees of Freedom!

Melting of Ice/Freezing of Water

During these processes the temperature doesn't change, but U does change

Melting of Ice/Freezing of Water

Limitations of the $1^{\text {st }}$ Law

Spontaneous Process

Spontaneous Process: A process which has the natural tendency to occur either on its own or after proper initiation under a given set of conditions

Non-Spontaneous Process: Process that cannot occur on its own rather they continue till they receive outside assistance

Can we Identify Spontaneity using ΔH ?

Process is spontaneous in a given direction when

Before the partition is removed

Pick a gas molecule

 from the left containerThe molecule will be of gas \mathbf{A}

Pick a gas molecule from the right container

The molecule will be of gas B

After the partition is removed

Pick a molecule from the container

The molecule can be of either gas A or gas B

Observations

	ΔH	Process
Melting of ice	+ve	Spontaneous
$\left(T>0^{\circ} \mathrm{C}, \mathrm{P}=1 \mathrm{bar}\right)$		

	ΔH	Process
Evaporation	+ve	Spontaneous

Melting Solid ---- Liquid

Properties of Entropy

Entropy Change

For a given substance,

Entropy

In a physical or a chemical process as the system moves from a less random state to a more random state, entropy increases.

Boiling of an Egg

Entropy Change

Heat is added to the system

Molecular motions

Randomness

Entropy Change

Entropy Change

Since \mathbf{S} is a state function,

Entropy Change for an Ideal Gas

Entropy Change for an Ideal Gas

$$
\begin{aligned}
& \mathrm{TdS}_{\mathrm{sys}}=n \mathrm{nC}_{\mathrm{V}, \mathrm{~m}} \mathrm{dT}+\frac{n R T}{\mathrm{~V}} \mathrm{dV} \\
& \mathrm{dS}_{\mathrm{sys}}=\frac{n C_{\mathrm{V}, \mathrm{~m}} \mathrm{dT}}{T}+\frac{n R}{V} d V
\end{aligned}
$$

On integrating the above equation,

$$
\int_{S_{1}}^{S_{2}} d S_{s y s}=\int_{T_{1}}^{T_{2}} \frac{n C_{V, m} d T}{T}+\int_{V_{1}}^{V_{2}} \frac{n R}{V} d V
$$

Entropy Change for an Ideal Gas

Entropy Change for an Ideal Gas

$$
\text { Since, } \begin{aligned}
\frac{P_{1} V_{1}}{T_{1}} & =\frac{P_{2} V_{2}}{T_{2}} \\
\frac{V_{2}}{V_{1}} & =\frac{P_{1} T_{2}}{P_{2} T_{1}}
\end{aligned}
$$

$$
\left.\Delta S_{\text {sys }}\right)=\left(n C_{V, m} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{P_{1}}{P_{2}}+n R \ln \frac{T_{2}}{T_{1}}\right.
$$

Entropy Change for an Ideal Gas

$$
\Delta S_{\text {sys }}=n\left(C_{V, m}+R\right) \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{P_{1}}{P_{2}}
$$

$$
\text { Since, } \quad C_{P, m}-C_{V, m}=R
$$

Calculation of $\Delta \mathrm{S}_{\text {surr }}$

All heat exchanges with surroundings are considered to be reversible.

For surrounding, T is constant

Calculation of $\Delta \mathrm{S}_{\text {surr }}$

According to the Law of conservation of energy,

Entropy Change for Solids and Liquids

For solids \& liquids
$C_{p, m}=C_{v, m}=C_{m}$

Entropy Change for Solids and Liquids

Solid \& liquids are incompressible phases of a substance, $d V=0$

$$
\Delta S_{\text {sys }}=n C_{m} \ln \frac{T_{2}}{T_{1}}
$$

Entropy Calculation for Solid Systems

A copper block kept in an open atmosphere

Entropy Calculation for Solid Systems

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

For an ideal gas

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

For system,

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

$$
w=-n R T \ln \frac{V_{2}}{V_{1}} \quad q_{\text {sys }}=n R T \ln \frac{V_{2}}{V_{1}}
$$

$$
\Delta \mathrm{S}_{\text {surr }}=-\mathrm{nR} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}}
$$

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

$\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}$

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

$\Delta \mathrm{S}_{\text {sys }}=\mathrm{nR} \ln \frac{\mathrm{V}_{2}}{\mathrm{~V}_{1}} \quad$ For an ideal gas
$\Delta \mathbf{S}_{\text {surr }}=\frac{-\mathrm{q}_{\text {sys }}}{\mathrm{T}}$

Calculation of $\Delta \mathrm{S}_{\text {univ }}$ for an Isothermal Process

$$
\Delta \mathrm{S}_{\text {univ }}=\Delta \mathrm{S}_{\text {sys }}+\Delta \mathrm{S}_{\text {surr }}
$$

$\Delta S_{\text {univ }}=n R \ln \frac{V_{2}}{V_{1}}+\frac{-P_{\text {ext }}\left(V_{2}-V_{1}\right)}{T}$

$$
\Delta S_{\text {univ }}=\frac{1}{T}\left(n R T \ln \frac{V_{2}}{V_{1}}-P_{\text {ext }}\left(V_{2}-V_{1}\right)\right)
$$

Calculation of $\Delta S_{\text {univ }}$ for an Isothermal Process

For Isothermal compression

$$
\Delta \mathbf{S}_{\text {univ }}=\underbrace{\left(\frac{1}{T}\left(-P_{\text {ext }}\left(V_{2}-V_{1}\right)-\left(-n R T \ln \frac{V_{2}}{V_{1}}\right)\right]\right.}_{\mathbf{W}_{\text {irrev }}}>0
$$

Calculation of $\Delta S_{\text {univ }}$ for an Isothermal Process

For Isothermal expansion

Calculation of $\Delta S_{\text {univ }}$ for an Adiabatic Process

$\Delta S_{\text {sys }}=n C_{V, m} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}$

Entropy Change in a Reversible Adiabatic Process

For a reversible adiabatic process

$$
\Delta S_{\text {sys }}=n C_{v, m} \ln \left(\frac{V_{1}}{V_{2}}\right)^{(\gamma-1)}+n R \ln \frac{V_{2}}{V_{1}}
$$

Entropy Change in a Reversible Adiabatic Process

Entropy Change in a Reversible Adiabatic Process

Since, $\mathrm{q}_{\mathrm{sys}}=0$,

Entropy Change in a Reversible Adiabatic Process

Since for a reversible adiabatic process,

$$
\Delta S_{\mathrm{sys}}=n C_{\mathrm{v}, \mathrm{~m}} \ln \frac{\mathrm{~T}_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}
$$

Entropy Change in an Irreversible Adiabatic Process

For an irreversible adiabatic expansion: $\mathbf{V}_{\mathbf{2}}>\mathbf{V}_{\mathbf{1}}$

$$
\begin{array}{l|l|l|l}
\text { Assuming } & \left(\mathbf{V}_{2}\right)_{\text {irrev }} & =\left(\mathbf{V}_{2}\right)_{\mathrm{rev}}
\end{array}
$$

Magnitude wise: $n C_{v, m} \ln \frac{T_{2}}{T_{1}}<n R \ln \frac{V_{2}}{V_{1}}<\left(T_{2}\right)_{\text {irrev }}>\left(T_{2}\right)_{\text {rev }}$

Entropy Change in an Irreversible Adiabatic Process

$$
\begin{gathered}
\Delta S_{\text {sys }}=n C_{v, m} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}>0 \\
\Delta S_{\text {surr }}=0 \quad \Delta S_{\text {univ }}>0
\end{gathered}
$$

Entropy Change in an Irreversible Adiabatic Process

For an irreversible adiabatic compression: $\mathrm{V}_{1}>\mathrm{V}_{2}$

$$
\begin{array}{l|l|l}
\text { Assuming } & \left(\mathbf{V}_{2}\right)_{\text {irrev }} & =\left(\mathbf{V}_{2}\right)_{\mathrm{rev}}
\end{array}
$$

Magnitude wise: $n C_{v, m} \ln \frac{T_{2}}{T_{1}}>n R \ln \frac{V_{2}}{V_{1}}>\left(T_{2}\right)_{\text {irrev }}>\left(T_{2}\right)_{\mathrm{rev}}$

$$
\begin{gathered}
\Delta \mathrm{S}_{\mathrm{sys}}=n C_{\mathrm{v}, \mathrm{~m}} \ln \frac{\mathrm{~T}_{2}}{\mathrm{~T}_{1}}+\mathrm{nR} \ln \frac{\mathrm{~V}_{2}}{\mathrm{~V}_{1}} \ggg>\mathrm{S}_{\mathrm{univ}} \ggg 0
\end{gathered}
$$

Phase Transformation

Phase change occurs at constant P \& T and is considered to be reversible if it occurs at its transition temperature at a given pressure.

Entropy Change for Fusion

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})--\cdots \quad \Delta_{\mathrm{r}} \mathrm{H}=\Delta_{\text {fus }} \mathrm{H}
$$

At constant pressure, $q=q_{p}=\Delta H$

$$
\begin{aligned}
& \Delta_{\text {fus }} \mathrm{S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}==\frac{\Delta_{\text {fus }} \mathrm{H}}{\mathrm{~T}_{\mathrm{m}}} \\
& \hat{i}
\end{aligned} \begin{gathered}
\text { Melting point (K) of a } \\
\text { substance }
\end{gathered}
$$

Entropy Change for Vaporization

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad-\cdots \quad \Delta_{\mathrm{t}} \mathrm{H}=\Delta_{\mathrm{vap}} \mathrm{H}
$$

At constant pressure, $q=q_{p}=\Delta H$

$$
\begin{aligned}
& \Delta_{\mathrm{vap}} \mathrm{~S}=\frac{\mathrm{q}_{\mathrm{rev}}}{\mathrm{~T}}= \frac{\Delta_{\mathrm{vap}} \mathrm{H}}{\mathrm{~T}_{\mathrm{b}}} \\
& \vdots
\end{aligned} \begin{gathered}
\text { Boiling point (in } \mathrm{K} \text {) of } \\
\text { a substance }
\end{gathered}
$$

Second Law of Thermodynamics

Kelvin - Planck Statement

It is impossible for a system to undergo a cyclic process whose sole effects are the flow of heat into the system from a heat reservoir and the performance of an equivalent amount of work
by the system on the surroundings.

Second Law of Thermodynamics

Second Law of Thermodynamics

For a spontaneous process,

$\Delta \mathrm{S}_{\text {univ }}$
Entropy change of the universe
$\Delta \mathrm{S}_{\mathrm{sys}}$
Entropy change of the system

$\Delta \mathrm{S}$

Entropy Change

Entropy Change

Gibbs Free Energy (G)

A system parameter to predict the spontaneity of a chemical reaction
kJ/mol or J/mol

For a spontaneous process, $\Delta S_{\text {universe }}>0$. $\Delta \mathrm{S}_{\text {universe }}$ includes $\Delta \mathrm{S}_{\text {surrounding }}$. To avoid calculation of surrounding, we define a new state function which can tell about spontaneity

State function

Extensive property

Spontaneous Process

If system is in thermal equilibrium with the surrounding

$$
T_{\text {sys }}=T_{\text {surr }}=T
$$

$$
\Delta \mathrm{H}_{\text {surr }}=-\Delta \mathrm{H}_{\text {sys }}
$$

Spontaneous Process

Spontaneous Process

Gibbs Free Energy

Defining
 $\begin{array}{llllll}\mathrm{G} & = & \mathrm{H} & - & \mathrm{TS}\end{array}$

At constant T, the change in Gibbs free energy between two states will be,

Spontaneity of a Process

For a process taking place at constant T \& P

Spontaneity of a Process

Spontaneity of a Process

In this case, $\Delta \mathrm{G}$ will be negative always (Subtracting a positive value from a negative value will always result in a negative value).
If a reaction is favourable for enthalpy (i.e., enthalpy decreases) and favourable for entropy (i.e., entropy increases), the reaction will always be spontaneous.

Spontaneity of a Process

In this case, $\Delta \mathrm{G}$ will be positive always (Subtracting a negative value from a positive value will always result in a +ve value). If a reaction is unfavourable for enthalpy (i.e., enthalpy increases) and unfavourable for entropy (i.e., entropy decreases), the reaction will always be non - spontaneous.

Spontaneity of a Process

In this case, $\Delta \mathrm{G}$ will be negative only when $|\Delta \mathrm{H}|<|T \Delta S|$.
If a reaction is unfavourable for enthalpy (i.e., enthalpy increases) and favourable for entropy (i.e., entropy increases), the reaction will be spontaneous only at higher temperatures (Becomes less spontaneous as the temperature decreases).

Gibbs Free Energy

Gibbs Free Energy

$$
d G \quad=\quad d q+d W+P d V+V d P \quad-\quad \text { TdS + SdT }
$$

$d G \int=\int d q+d W_{P V}+\mathrm{dW}_{\text {non-PV }}+\mathrm{PdV}+\mathrm{VdP} \int-\int \mathrm{TdS}+\mathrm{SdT}$

Case-I

Case - II

Case - III

Case - IV

Physical Interpretation of $\Delta \mathrm{G}$

Magnitude of negative value of ΔG

Maximum amount of non-PV work or useful work (electrical work) that can be obtained from the system

Physical Interpretation of $\Delta \mathrm{G}$

Absolute Entropy of a Pure Substance

Absolute value of entropy unlike the absolute value of enthalpy for any pure substance can be calculated at any given temperature

Absolute Entropy of a Pure Substance

If phase changes between 0 K \& T K:
Entropy of phase change will also add

Standard Entropy Changes in Chemical Reactions

$$
\mathrm{aA}(\mathrm{~g})+\mathrm{bB}(\mathrm{~g}) \longrightarrow \mathrm{cC}(\mathrm{~g})+\mathrm{dD}(\mathrm{~g})
$$

$$
y^{b i z}
$$

Need for Thermochemistry

Provides a theoretical approach for calculating the Heat change in a reaction

Performing an experiment for calculating the heat change for every reaction can be avoided

Study of the energy transferred as heat during the course of a chemical reaction or a physical change

Factors Affecting Enthalpy Change

Enthalpy of Reaction $\left(\Delta_{\mathrm{r}} \mathrm{H}\right)$

> Enthalpy change when the amounts of reactants consumed \& products formed will be equal to corresponding stoichiometric numbers expressed in mole.

Enthalpy of Reaction $\left(\Delta_{\mathrm{r}} \mathrm{H}\right)$

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta_{\mathrm{r}} \mathrm{H}=\quad=\quad-890 \mathrm{~kJ} / \mathrm{mol}
$$

'Per mole' in $\Delta_{r} \mathrm{H}$ means 'per mole $\mathrm{CH}_{4}(\mathrm{~g})$ ', 'per 2 mole $\mathrm{O}_{2}(\mathrm{~g})$ ', 'per mol CO $2(\mathrm{~g})$ ', or 'per $2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ '

Enthalpy of reaction refers to the entire chemical equation and not to any particular reactant or product.

Enthalpy of Reaction

Stoichiometric coefficients of the reactants
H_{m} Molar enthalpy

Enthalpy of Reaction

$\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta_{\mathrm{r}} \mathrm{H}=\Sigma \mathrm{a}_{\mathrm{i}} \mathrm{H}_{\mathrm{m}, \mathrm{p}}-\Sigma \mathrm{b}_{\mathrm{i}} \mathrm{H}_{\mathrm{m}, \mathrm{R}}
$$

$$
\Delta_{r} \mathrm{H}=\mathrm{H}_{\mathrm{m}}\left(\mathrm{CO}_{2}, \mathrm{~g}\right)+2 \mathrm{H}_{\mathrm{m}}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)-\quad-\mathrm{H}_{\mathrm{m}}\left(\mathrm{CH}_{4}, \mathrm{~g}\right)+2 \mathrm{H}_{\mathrm{m}}\left(\mathrm{O}_{2}, \mathrm{~g}\right)
$$

Standard Enthalpy of Reaction ($\Delta_{\mathrm{r}} \mathrm{H}^{0}$)

> Enthalpy change for a reaction when all the participating substances are in their standard states

Standard State

Standard state of a substance at a specified temperature is its pure form at 1 bar

represents standard conditions

Standard State

For Pure Crystalline Solid

Pure crystalline solid at 1 bar pressure at a specified temperature

Species at 1 M concentration, 1 bar pressure at a specified temperature

Pure liquid at 1 bar pressure at a specified temperature

Ideal gas at 1 bar partial pressure at a specified temperature

Standard States

Thermochemical Equation

$$
\begin{aligned}
& \begin{array}{l}
\text { Balanced chemical equation with } \\
\text { the value of its enthalpy change. }
\end{array} \\
& \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=-91.8 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=-91.8 \mathrm{~kJ} / \mathrm{mol}
$$

On reversing the equation

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \longrightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=+91.8 \mathrm{~kJ} / \mathrm{mol}
$$

Thermochemical Equation

Similarly,

$$
\text { On Multiplying by } \frac{1}{2} \quad \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=-45.9 \mathrm{~kJ} / \mathrm{mol}
$$

Multiplying by 2,

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+6 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 4 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta_{\mathrm{r}} \mathrm{H}=-183.6 \mathrm{~kJ} / \mathrm{mol}
$$

Hess's Law of Constant Heat Summation

Hess's Law of Constant Heat Summation

$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

$$
\begin{align*}
& \Delta_{r} H^{\circ}= \tag{i}\\
& ---\longdiv { \Delta _ { r } H ^ { \circ } { } _ { 1 } }
\end{align*}
$$

$\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+2 \mathrm{HCl}(\mathrm{aq}) \longrightarrow 2 \mathrm{NaCl}(\mathrm{aq})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-->\Delta_{\mathrm{r}} \mathrm{H}_{2}^{\circ}$

Hess's Law of Constant Heat Summation

Multiplying equation (i) by 2 and subtracting the equation (ii) from (i) we get,
$2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \cdots \Delta_{\mathrm{r}} \mathrm{H}^{\circ}$
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}=2 \Delta_{\mathrm{r}} \mathrm{H}^{\circ}{ }_{1}-\quad-\Delta_{\mathrm{r}} \mathrm{H}^{\circ}{ }_{2}$

Standard Enthalpy of Formation $\left(\Delta_{f} \mathrm{H}^{\circ}\right)$

Standard Enthalpy of Formation $\left(\Delta_{f} H^{\circ}\right)$

		Species	$\Delta_{f} H^{\circ}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l})$	2 HBr (g)	$\mathrm{I}_{2}(\mathrm{~s})$	0
		$\mathrm{Br}_{2}(1)$	0
$\Delta_{r} H^{\circ}$	-72.8 kJ/mol	$\mathrm{H}_{2}(\mathrm{~g})$	0
		$\mathrm{H}^{+}(\mathrm{aq})$	0
$\Delta_{\mathrm{r}} \mathrm{H}^{\circ}$		$\mathrm{F}_{2}(\mathrm{~g})$	0
	$2 \Delta_{f} H^{\circ}$	$\mathrm{Cl}_{2}(\mathrm{~g})$	0

Remember!!

Standard enthalpy of formation of elements in pure state at 298 K and 1 bar is Zero.

Standard Enthalpy of Formation

Species	$\Delta_{\mathrm{f}} H^{\circ}$	
$\mathrm{O}_{2}(\mathrm{~g})$	$=$	0
$\mathrm{O}_{3}(\mathrm{~g})$	$>$	0
S, rhombic (s)	$=$	0
S, monoclinic (s)	$>$	0
C, graphite (s)	$=$	0
C, diamond (s)	$>$	0

Generally, the value of standard enthalpy of formation of the most stable allotrope is zero.

Exception

Order of Stability

Though white phosphorous is taken as standard but it is the most reactive form of phosphorous.

Enthalpy of Reaction from Enthalpies of Formation

Stoichiometric coefficients of the products

Stoichiometric coefficients of the reactants

Enthalpy of Combustion $\left(\Delta_{\mathrm{C}} \mathrm{H}\right)$

Enthalpy change when one mole

 of a compound combines with the requisite amount of oxygen to give products in their stable form
Enthalpy of Combustion

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
\Delta_{\mathrm{C}} \mathrm{H}^{\circ}=-2802 \mathrm{~kJ} / \mathrm{mol}
$$

C (graphite, s) $+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})$
$\Delta_{\mathrm{C}} \mathrm{H}^{\circ}=-393.5 \mathrm{~kJ} / \mathrm{mol}$

Enthalpy of Combustion

Calorific Value

Amount of heat released

 during the complete combustion of a unit mass of a substance

Determine Enthalpy of Reaction

Determine Enthalpy of Reaction

Using Hess's law,

Calorimetry

Calorimetry

Measurements are made under two different conditions

$\Delta \mathrm{U}$ Measurements

A combustible substance is burnt in the presence of pure O_{2} in the steel bomb

Steel bomb is immersed in water bath

Bomb Calorimeter

Heat evolved during the reaction is transferred to the

Temperature of the water is monitored

Sample is ignited by the electric shock provided by the ignition box, heat is being radiated by the combustion of the sample and got transferred to the liquid where it gets uniformly distributed by the stirrer, consequently the thermometer shows rise in the temperature.

water around the bomb

$\Delta \mathrm{U}$ Measurements

$\mathrm{q}_{\mathrm{v}}=\Delta \mathrm{U}=\mathrm{m}_{\text {water }} \mathrm{s}_{\text {water }} \Delta \mathrm{T}+\mathrm{C} \Delta \mathrm{T}$

Specific heat

$\Delta \mathrm{T}$ Change in temperature

$\Delta \mathrm{U}$ Measurements

Mass of water that would absorb the same amount of heat as absorbed by stirrer, thermometer, bomb etc.

Enthalpy Changes during Phase Transformations

Fusion
$\Delta_{\text {fus }} H$

Enthalpy of Fusion $\left(\Delta_{\text {fus }} H\right)$

Enthalpy change when
1 mole of a solid is completely converted into liquid state at its melting point

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~s}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta_{\mathrm{fus}} \mathrm{H}^{\circ}=6 \mathrm{~kJ} / \mathrm{mol}
$$

Always +ve
Endothermic

Enthalpy of Vaporization ($\Delta_{\text {vap }} H$)

Enthalpy change when 1 mole of a liquid is completely converted into its vapors at its boiling point

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

$$
\Delta_{\mathrm{vap}} \mathrm{H}^{\circ}=40.79 \mathrm{~kJ} / \mathrm{mol}
$$

Enthalpy of Sublimation ($\left.\Delta_{\text {sub }} \mathrm{H}\right)$

Enthalpy change when

 1 mole of a solid is directly converted into vapors at sublimation temperature$$
\mathrm{CO}_{2}(\mathrm{~s}) \longrightarrow \mathrm{CO}_{2}(\mathrm{~g})
$$

$$
\Delta_{\text {sub }} H^{\circ}=25.2 \mathrm{~kJ} / \mathrm{mol}
$$

Enthalpy of Transition ($\Delta_{\text {trans }} H$)

Enthalpy change when one mole of an allotropic form changes to another allotropic form

C (s)
Graphite
C (s)
Diamond

Enthalpy of Atomization $\left(\Delta_{\mathrm{a}} \mathrm{H}\right)$

Enthalpy change when one mole of substance converts into gaseous atoms

Bond Enthalpy for Diatomic Molecules

Bond Dissociation Enthalpy ($\Delta_{\mathrm{BdE}} \mathrm{H}$)

Enthalpy required to dissociate a given bond of some specific compound.

$$
\mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}(\mathrm{~g})
$$

Bond Enthalpy of Polyatomic Molecules

In methane, all the four $\mathbf{C}-\mathrm{H}$ bonds are identical in bond length \& energy

But the energy required to break the individual C-H bonds in each successive step differs

Bond Enthalpy of Polyatomic Molecules

Bond Enthalpy of Polyatomic Molecules

$\mathrm{CH}_{4}(\mathrm{~g}) \longrightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$

Mean Bond Enthalpy

$$
\Delta_{\mathrm{a}} \mathrm{H}^{\circ}=\quad+1665 \mathrm{~kJ} / \mathrm{mol}
$$

$\Delta_{\mathrm{c}-\mathrm{H}} \mathrm{H}^{\circ}=\frac{1}{4}\left(\Delta_{a} H^{\circ}\right)$
$\frac{1}{4}\left(\Delta_{\mathrm{a}} H^{\circ}\right)=\frac{1}{4}(1665 \mathrm{~kJ} / \mathrm{mol})$
$\Delta_{\mathrm{C}-\mathrm{H}} \mathrm{H}^{\circ}$
$416 \mathrm{~kJ} / \mathrm{mol}$

Applications of Bond Enthalpy

Determination of enthalpy of reaction

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g})
$$

Resonance Energy ($\Delta_{\mathrm{RE}} \mathrm{H}$)

Resonance energy can't be determined from the reaction because resonating structures do not exist. So, resonance energy is determined indirectly using bond enthalpy.

Determination of Resonance Energy

Determination of Resonance Energy

$\Delta_{H} H$
Enthalpy of Hydrogenation

Lattice Enthalpy

Energy released when one mole of a solid ionic compound is formed from its gaseous constituent ions

Born Haber Cycle of NaCl

Born Haber Cycle of NaCl

$\Delta_{f} \mathrm{H}^{\circ}=\begin{gathered}108 \\ \mathrm{~kJ} / \mathrm{mol}\end{gathered}+\begin{gathered}122 \\ \mathrm{~kJ} / \mathrm{mol}\end{gathered}+\begin{gathered}496 \\ \mathrm{~kJ} / \mathrm{mol}\end{gathered}+\begin{gathered}-349 \\ \mathrm{~kJ} / \mathrm{mol}\end{gathered}+\begin{gathered}-788 \\ \mathrm{~kJ} / \mathrm{mol}\end{gathered}$

Enthalpy of Hydration

Enthalpy change when 1 mole of a gaseous ion is hydrated in large amount of water to form an aqueous ion

$$
\mathrm{Cl}^{-}(\mathrm{g})+\mathrm{aq} \longrightarrow \mathrm{Cl}^{-}(\mathrm{aq})
$$

Enthalpy of Hydration of Anhydrous or Partially Hydrated Salts

Enthalpy change when anhydrous or partially hydrated salt combines with the requisite amount of water to form a new hydrated stable salt

```
CuSO
```


Enthalpy of Solution ($\Delta_{\text {sol }} H$)

Enthalpy change when one mole of a solute is dissolved in excess of solvent so that further dilution does not involve any heat change

Integral Enthalpy of Solution

Enthalpy change when one mole of the solute is dissolved in a definite quantity of solvent to produce a solution of a desired concentration
$\mathrm{HCl}(\mathrm{g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCl}\left(10 \mathrm{H}_{2} \mathrm{O}\right)$
$\Delta \mathrm{H}=-69.5 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{HCl}(\mathrm{g})+25 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCl}\left(25 \mathrm{H}_{2} \mathrm{O}\right)$
$\Delta \mathrm{H}=-72.3 \mathrm{~kJ} / \mathrm{mol}$

Integral Enthalpy of Solution

$$
\mathrm{HCl}(\mathrm{~g})+25 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCl}\left(25 \mathrm{H}_{2} \mathrm{O}\right)
$$

$$
\Delta H=-72.3 \mathrm{~kJ} / \mathrm{mol}
$$

$\mathrm{HCl}(\mathrm{g})+40 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longrightarrow \mathrm{HCl}\left(40 \mathrm{H}_{2} \mathrm{O}\right)$
$\Delta \mathrm{H}=-73.0 \mathrm{~kJ} / \mathrm{mol}$

Enthalpy of Dilution

Enthalpy change when a solution of 1 mole of a solute is diluted from a higher concentration to a lower concentration

Dissolving gaseous HCl in water

$$
\mathrm{HCl}\left(25 \mathrm{H}_{2} \mathrm{O}\right)+15 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{HCl}\left(40 \mathrm{H}_{2} \mathrm{O}\right)
$$

$\Delta \mathrm{H}=$| -73 |
| :---: |
| $\mathrm{~kJ} / \mathrm{mol}$ |$-$| -72.3 |
| :--- |
| $\mathrm{~kJ} / \mathrm{mol}$ |

$\Delta \mathrm{H}=$| -0.7 |
| :---: |
| $\mathrm{~kJ} / \mathrm{mol}$ | | Enthalpy |
| :---: |
| of dilution |

Kirchhoff's Equation

Relates enthalpies of a reaction at two different temperatures

$$
\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}
$$

Let the standard enthalpy of reaction at temperature T_{1} be $\Delta \mathrm{H}^{\circ}{ }_{1}$

$$
\mathrm{cH}_{\mathrm{m}}{ }^{\circ}\left(\mathrm{C}, \mathrm{~T}_{1}\right)+\mathrm{dH}_{\mathrm{m}}^{o}\left(\mathrm{D}, \mathrm{~T}_{1}\right)-\mathrm{aH}_{\mathrm{m}}^{\circ}\left(\mathrm{A}, \mathrm{~T}_{1}\right)-\mathrm{bH}_{\mathrm{m}}{ }^{\circ}\left(\mathrm{B}, \mathrm{~T}_{1}\right)
$$

Kirchhoff's Equation

If same reaction is carried out at temperature $\mathbf{T}_{\mathbf{2}}$

$=\begin{aligned} & c\left\{H_{m}^{o}\left(C, T_{2}\right)-H_{m}{ }^{o}\left(C, T_{1}\right)\right\}+d\left\{H_{m}{ }^{\circ}\left(D, T_{2}\right)-H_{m}{ }^{o}\left(D, T_{1}\right)\right\} \\ & -a\left\{H_{m}{ }^{o}\left(A, T_{2}\right)-H_{m}{ }^{\circ}\left(A, T_{1}\right)\right\}-b\left\{H_{m}{ }^{\circ}\left(B, T_{2}\right)-H_{m}{ }^{o}\left(B, T_{1}\right)\right\}\end{aligned}$

Kirchhoff's Equation

Kirchhoff's Equation

Similarly,

Kirchhoff's Equation

Kirchhoff's Equation

Where,

Kirchhoff's Equation

If $\Delta_{r} C_{p, m}$ is a function of temperature

