Locomotion and Movement 6 Light and dark bands **Cross bridge cycle** 8 Sliding filament theory Human skeletal system 9 © 2022, Aakash BYJU'S. All rights reserved. ## **Axial skeleton** Skull Vertebral column Sternum Ribs **Joints** Synovial joints Appendicular skeleton Pectoral girdle Bones of arms Pelvic girdle Bones of legs Disorder of muscular and skeletal system Summary 12 13 # Locomotion - Locomotion: It is the ability of an entity or organism to move from one place to another. - Locomotion is a type of movement, but not all movements are locomotory. - Locomotion is a special type of movement where the organism changes its position. - Examples: - Limbs in humans for walking - o Cilia in Paramecium # **Movements** - It is the change of position in an organism. It is essential for all living organisms including humans. - Examples: - Pumping of blood - Breathing through lungs - Mobility of vesicles inside a vessel | Amoeboid | Ciliary | Muscular | |--|---|--| | movements | movements | movements | | It occurs with the help of pseudopodia. Pseudopodia is formed by cytoplasmic streaming. Cytoskeletal elements such as microfilaments aid in cytoplasmic streaming. Examples: Amoeba, macrophage, etc. | This type of movement occurs in some internal organs. The organs that are lined with ciliated epithelium show this movement. Examples: Trachea, female reproductive system | It is the movement shown by limbs, jaws, tongue, etc. The contractile property of muscles is utilised for this movement. Examples: Humans and majority of multicellular organisms. | ## **Movements** Types of movements based on control #### **Voluntary movements** - These movements can be controlled consciously. - They are associated with skeletal components and controlled voluntarily. #### **Involuntary movements** - They are under the control of the autonomic nervous system. - These movements are involuntary, i.e., they cannot be controlled by our will. ### Myocyte Length = I - **Myocyte** -Length = I/2--- **Myocyte** Length = I- • Contractility: It is a property that allows it to shorten and return to its original state. - It is a type of specialised tissue originating from mesoderm. - It is made up of cells known as myocytes. - Myocytes provide contractility and allow muscles to gain the ability to contract. - The stimulus provided by a myocyte spreads to the neighbouring myocyte. ## Unique properties of muscles #### Contractibility It is the property that allows a muscle to shorten and return to its original state. #### **Excitability** It is the ability of a muscle to respond to a stimulus. #### **Elasticity** It is the ability of a muscle to recoil or bounce back to its original length. #### **Extensibility** It is the ability of a muscle to stretch itself. ## Types of muscles #### **Smooth muscles** - Tapering ends: The cells taper at both the ends. - Striations are absent: The altering light and dark bands are absent, giving a smooth appearance to the muscles. #### **Cardiac muscles** - It is present only in the heart. - It is a contractile tissue that aids in the beating of the heart. - Cardiac muscle helps in maintaining the cardiac cycle. - It has continuous rhythmic heart movements: contraction and relaxation. #### Skeletal muscles - It is closely associated with skeletal components of the body. - Voluntary muscle: The movements of this muscle are under the control of the nervous system. - Muscle fibres have a striated appearance under microscope. - It enables the movements of body parts. ## Types of muscles #### **Smooth muscles** - It is also known as the following: - Visceral muscle: As it forms the lining of hollow organs - Non-striated muscle: As it lacks striation - Non-stripped muscle: As it appears smooth - Involuntary muscle: As it is involuntary in nature - It assists in: - Transport of food through digestive tract - Transport of gametes through female genital tract #### **Cardiac muscles** - It is also known as the following: - Striated muscle - Involuntary muscle #### Skeletal muscles - It is also known as the following: - Striped muscle - Striated muscle - Voluntary muscle - Examples: - Muscles of tongue - Muscles of limbs # **Structure of Muscle** #### **Fascia** The collagenous sheath surrounding the muscle which holds together muscle bundle fibres. ## **Epimysium** It is a dense connective tissue sheath surrounding a muscle. #### Muscle bundle fibre The muscle fibres are arranged parallelly in the form of a bundle known as a muscle bundle fibre or fascicle. #### Muscle fibre - Each fascicle has many muscle fibres. - Muscle fibres are arranged parallel to each other. #### Myofibril • A muscle fibre contains many filamentous myofibrils/myofilaments. #### Sarcoplasm - It is the **cytoplasm** of the striated muscle. - Sarcoplasm contains lots of nuclei. Hence, it is termed as syncytium (multinucleated). #### Sarcolemma Muscle fibres are covered by a layer of plasma membrane known as sarcolemma. #### Sarcoplasmic reticulum - Sarcoplasm has the endoplasmic reticulum known as a sarcoplasmic reticulum that stores calcium. - This calcium aids in muscle contraction. Each muscle fibre has many myofibrils. Each myofibril contains many proteins. - Myofilaments are made up of actin and myosin that are also known as contractile proteins. - Myosin and actin both are rod-like structures arranged parallel to each other. - They are longitudinal to myofibrils. The actin filaments are thinner than myosin filaments. #### Structure of actin #### G actin Each F actin is a polymer of monomeric units known as G (globular protein) actin. #### **Tropomyosin** • It is the protein that runs close to F actin. #### F actin Each actin filament has two filamentous actin known as Factin helically wound to each other. #### **Troponin** - It is the filament that holds the tropomyosin and is present in regular intervals. - It blocks the active binding sites of actin. # **Structure of Contractile Proteins** ## Structure of myosin #### Myosin - Myosin is also known as the thick filament. - It is the polymer of meromyosin. Monomeric proteins are known as meromyosins. - Each meromyosin has two parts: HMM and LMM. #### **HMM: Heavy meromyosin** - Globular head: It is an active ATPase enzyme. It has binding sites for ATP and active sites for actin. - It has a short arm. 🛧 **Cross arm:** The head and the short arm project outwards at a regular distance and angle from each other and from the surface of myosin. LMM: Light memomyosin • It is the tall. # **Light and Dark Bands** Actin and myosin are arranged in the myofibril in such a way that they appear as light and dark bands. This gives the skeletal muscles a striated appearance. **Sarcomere** is the portion between the successive Z lines. A sarcomere is a functional unit for contraction. #### I band - The light band contains actin. - It is also known as the I band or isotropic band. #### M line - o It is a thin, fibrous membrane. - $_{\circ}$ $\,$ It holds the dark bands together. #### H zone - It is the central part of the thick filament that has only myosin or the thick filament. - The overlapping thin filaments are not present in this region. #### **Z** line - The I band is bisected by an elastic fibre known as the Z line. - The zigzag line cuts through the I band. #### Dark band - The dark band has myosin. It is overlapped by actin filaments at the periphery. - It is also known as the A band or anisotropic band. - A band and I band are arranged alternately throughout the myofibril. # **Muscle Contraction** - When an electrical signal reaches the neuromuscular junction, the neurotransmitter molecules are released. - The neurotransmitter molecules bind to the receptors on the sarcolemma. This generates an action potential in the muscle fiber. - Action potential It is an electrical impulse that propagates on the muscle fiber. - The action potential spreads to both sides from the neuromuscular junction. - An action potential causes the sarcoplasmic reticulum to release calcium ions. - These calcium ions ultimately bring about the contraction of the muscle, by means of the cross-bridge cycle. # **Cross-Bridge Cycle** 1997 # Myson-binding site Tropomyosin Actin Myosin-binding site masked at resting state Troponin #### **Myosin-binding sites exposed** During action potential Ca²⁺binds to troponin causing conformational change # **Cross-Bridge Cycle** Myosin head pulls actin filament Myosin head hydrolyses ATP and is full of energy Myosin head binds actin # **Cross-Bridge Cycle** Myosin head releases ADP and P **Myosin hydrolyses ATP** Myosin head binds fresh ATP Myosin detaches from actin filament Relaxed state of muscle # **Sliding Filament Theory** Contracting state of muscle When the myosin head binds and pulls at the actin filament, the actin filaments come closer to the M-line. - a. The Z-lines come closer - b. The length of the sarcomere shortens. - c. The lengths of the lands shortens. - d. The length of the A band remains the same. Maximally contracted state of muscle In this state of the muscle, the length of the sarcomere is the shortest. #### Relaxation of muscle - After a muscle contracts, it has to come back to its original relaxed state. - The steps of contraction are reversed as follows: - Calcium ions are pumped back into the sarcoplasmic reticulum. - Tropomyosin masks myosin-binding sites on actin once again. - So, myosin is no longer able to bind the actin filament. - Z lines go back to their original position. - Hence, the sarcomere goes back to its original length. - The **lengthening** of the sarcomere means the **relaxation** of the muscle. - In a normal condition, an electric impulse comes from a motor neuron, the muscle contracts and then relaxes. - When the electric impulses come too fast, the muscle does not get the time to relax. - It is then in a state of continuous contraction. This is called tetanic contraction or tetanus. # **Muscle Fatigue** - While exercising, the glycogen stored in the muscles is readily converted to its monomer glucose, which then undergoes cellular respiration in order to produce energy. - Glycogen levels become depleted in the exercising muscles after prolonged or strenuous exercise. # **Red and White Muscle Fibres** Every muscle of the body is composed of two types of muscle fibers: **red and white**, named so because of their colors. | Red muscle fibre | White muscle fibre | | |---|---|--| | More blood vessels - more oxygen | Less blood vessels - less oxygen | | | More mitochondria - more aerobic respiration | Less mitochondria - more anaerobic respiration | | | Large amounts of myoglobin - stores oxygen - red in color | Less amount of myoglobin | | | Less sarcoplasmic reticulum - slow
release of Ca²⁺ - slow muscle contraction | Extensive sarcoplasmic reticulum -
rapid release of Ca²⁺ - fast muscle
contraction | | | Marathoners born with more red
fibres | Sprinters born with more white fibres | | # **Human Skeletal System** - The hard, supportive, or protective elements of the animal body constitute the skeletal system or skeleton. - It consists of a framework of bones (206) and a few cartilages. #### Functions - It supports the internal softer organs. - It protects the delicate parts. - It helps in movement. - o It provides attachment for muscles. - It gives the body its shape and form. - o It helps in the formation of blood cells in bone marrow. - It helps in breathing (tracheal rings, sternum, and ribs). - o It helps in hearing as ear bones (middle ear) transmit sound vibrations. # **Human Skeletal System** On the basis of **the position of the skeletal structures** in the body, the skeleton is divided as follows: (126 bones) **Appendicular** Pectoral girdle Arm bones Pelvic girdle Leg bones #### Skull - It is the bony framework of the head. - The skull is composed of the following set of bones: #### **Cranial bones** - Cranium is the skeleton of the head. - It is the outer protective covering of the brain. - It is made of 8 cranial bones. #### **Facial bones** - It forms the front part of the skull. - There are 14 facial bones. #### Ear ossicles - Ear ossicles are also known as auditory ossicles. - They are the 3 bones present in the middle part of human ears. - So, there are a total of six ear ossicles in the body. - The ear ossicles are the three of the smallest bones in the human body. ### Hyoid - It is a U-shaped bone. - It is present at the base of the buccal cavity above the larynx. - It is the only bone that is not in contact with any other bone. - It is also known as the tongue bone. - It acts as a point of attachment for certain tongue muscles and the floor of the mouth. **Mnemonics** **Bones of cranium** **Bones of face** Victor Can Not Make My Pet Zebra Laugh Fluffy Puppies On Every Third Street Frontal **Ethmoid** **Parietal** · Cimpora **Occipital** Temporal **Temporal** **S**phenoid Vomer **Conchae (inferior)** Nasal bone Maxilla **Mandible** **Palatine** **Z**ygomatic Lacrimal #### Skull Based on the number of articulations, skulls are of two types: ### Monocondylic - 1 occipital condyle - E.g. birds, reptiles Occipital condyles are bony articulations that are projections on the occipital bone. ### Dicondylic - 2 occipital condyle - E.g. humans - Humans have dicondylic skulls. - In the posterior end, there are these two rounded occipital condyles. - They attach with the first vertebrae. #### Vertebral column - The vertebral column or the backbone is curved and lies dorsally in our body. - It comprises 26 serially arranged units called vertebrae. - It extends from the base of the skull and forms the framework of the trunk. - Functions - It bears the bodyweight in the standing position and while the body is in motion. - It protects the spinal cord. - o It supports the head. - It serves as the point of attachment for the ribs. #### Vertebral column - The components of the vertebral column are known as vertebrae. - The anterior with a large disc-like flattened part is known as the body or centrum. - The posterior portion is known as neural arch. - The neural arch forms a hole known as vertebral foramen. - The 24 vertebral foramen together form vertebral canal/neural canal. The spinal cord passes through this neural canal. Vertebral column The vertebrae are grouped into **five types**, depending on the level of the vertebral column where they are found: #### Cervical (7) - It is present in the neck. - They are 7 in number in almost all mammals. - The first cervical vertebra is the atlas. It articulates with the occipital condyles and supports the head. - The second vertebra is known as the axis. ### Thoracic (12) - They are present in the chest level. - They are 12 in number. - They are larger and stronger than cervical vertebrae. - They are joined with the ribs. ### Lumbar (5) - Lumbar vertebrae are present in the lower back. - They are five in number. - They are the largest and strongest of all vertebrae. - They have to bear the weight of the whole body when the body is in a standing position. ### Sacrum (1) (Fused) - Five sacral vertebrae are fused, forming the sacrum. - The vertebrae are separate in the beginning, but start to fuse during adolescence. - The sacrum lies between the innominate or hip bones. ### Coccyx (1) (Fused) - The **four coccygeal vertebrae fuse** to form the coccyx. - The vertebrae separate in the beginning, but start to fuse during adolescence. - The coccyx is considered to be the vestigial tail in humans. #### Sternum - The sternum is also known as the breastbone. - It is a flat dagger-shaped bone. - It is present just under the skin in the front and middle of the chest. - It provides the point of attachment for ribs. - It also protects the organs in the thoracic region and helps in respiration. #### Ribs - They are the thin, flat, and curved bones that form a protective cage around the organs of the upper body. - The ribs are composed of 24 bones arranged in 12 pairs. - They are dorsally connected to the vertebral column (thoracic vertebrae) and ventrally to the sternum. - They have two articulations/attachment surfaces on their dorsal ends. Hence, they are known as bicephalic. - Functions: - They protect the organs present in the thoracic cavity and the kidneys. - They also help in the respiration process. Ribs ### Ribs | True ribs | False ribs | Floating ribs | |--|--|--| | The first seven pairs of ribs are known as true ribs. They are dorsally attached to the thoracic vertebrae. They are ventrally connected to the sternum with the help of hyaline cartilage, known as costal cartilage. | The eighth, ninth, and tenth pairs are known as vertebrochondral (false) ribs. They do not articulate directly instead anteriorly connect indirectly with the sternum by costal cartilage of the seventh rib. | The last two pairs (11th and 12th) of ribs are not connected ventrally to the sternum or the cartilage. Therefore, they are known as floating ribs. Thoracic vertebrae, ribs, and sternum together form the rib cage. | - It lies along the transverse (side) axis. - The bones of the limbs along with their girdles constitute the appendicular skeleton. - It is called so because it gives support to the appendages. - It comprises 126 bones. # **Appendicular Skeleton** ### **Pectoral girdle** - Also known as the shoulder girdle - Acts as a point of attachment for the upper limbs and the arm muscles - Made up of two halves - o Scapula - Clavicle - The scapula is a large triangular flat bone. - It consists of a spine and a body. - The slightly elevated ridge is known as the spine. **Pectoral girdle** Scapula - The spine projects as a flat expanded process known as the acromion. - The scapula is situated in the dorsal part of the thorax. - It lies between the second and the seventh rib. - Below the acromion is a depression known as the glenoid cavity. - It articulates with the head of the humerus to form the shoulder joint. # **Appendicular Skeleton** ### **Pectoral girdle** #### Clavicle - Pectoral girdle has two clavicles. - Each clavicle is a long slender bone with two curvatures. - This bone is commonly known as the collar bone. - The clavicle **articulates with** the **acromion** of the scapula. - The clavicle and the scapula together make the pectoral girdle. # **Appendicular Skeleton** **Bones of arms** ### Pelvic girdle - The pelvic girdle bones help in the articulation of the lower limbs. - It is formed by two innominate bones. They are also known as the coxal or hip bones. - Each hip bone is made by the fusion of three bones: - o_ ilium - o ischium - o pubis - At the point of fusion of the above bones is a cavity known as acetabulum, to which the thigh bone articulates. Pelvic girdle The pubic symphysis is made of **fibrous cartilage** that joins the two **coxal (hip) bones** ventrally. # **Appendicular Skeleton** **Bones of legs** # **Total Number of Bones** | Bones | Number | |------------------|--------| | Cranial bones | 8 | | Facial bones | 14 | | Ear ossicles | 6 | | Hyoid | 1 | | Vertebral column | 26 | | Sternum | 1 | | Bones | Number | |-----------|--------| | Ribs | 24 | | Scapula | 2 | | Clavicle | 2 | | Arm bones | 60 | | Hip bones | 2 | | Leg bones | 60 | | Total | 206 | |-------|-----| | | | # **Joints** - Joints are the points of contact between: - Bones - Bones and cartilages - Functions of joints: - Hold bones together - Bear weight of the whole body - Allow movements in coordination with muscles # **Joints** #### **Fibrous** Cartilaginous **Synovial** These joints allow Fibrous joints do not allow These joints permit considerable movement. limited movements. any movement. They have a **fluid-filled Sutures** are a type of The bones are joined synovial cavity between fibrous joints in the skull. together with the the articulating surfaces of help of a cartilage. Skull bones are fused end the two bones. to end with the help of Example: The joint dense fibrous connective between the adjacent Examples: Movement of head, wrist movement etc. tissues to form sutures. vertebrae in the vertebral column. Synovial Sutures cavity → Cartilage Articular cartilage # **Synovial Joints** Types of synovial joints ### **Pivot joint** - Also known as rotary joint - A ring-like movement is seen - E.g. Joint between atlas and axis #### **Gliding joint** - Also known as the plane joint - Characterised by smooth surfaces that can glide over one another - E.g. Joint between the carpals **Pivot joint** **Gliding joint** # **Synovial Joints** ### **Condyloid joint** - The condyloid joint allows movement but not rotation. - E.g. Wrist joint ### Saddle joint - The saddle joint does not allow rotation. - It enables back-and-forth and side-to-side movements. - E.g. Joint between the carpals and the metacarpals of thumb **Condyloid joint** Saddle joint # **Synovial Joints** ### Ball and socket joint - Permits movement in all directions - E.g. Shoulder joint, hip joint ### Hinge joint - Allows the opening and closing in one direction, along one plane - E.g. Elbow joint, knee joint Ball and socket joint **Hinge joint** # Disorders of Muscular and Skeletal System ### Myasthenia gravis - Myasthenia gravis is a rare autoimmune neuromuscular disorder that causes weakness in skeletal muscles. - It can also lead to paralysis. - An autoimmune disease is a condition where the body's immune system mistakenly attacks its own organs. - The most commonly affected muscles are those of the eyes, face, and the ones involved in swallowing. #### **Muscular dystrophy** - It is a genetic-inherited disorder. - It causes progressive degeneration of skeletal muscles. - Muscles are damaged in this disorder. - It causes difficulty in: - Walking - Swallowing - Breathing # Disorders of Muscular and Skeletal System ### **Tetany** - Rapid spasms (wild contractions) occur in muscles due to low Ca** in body fluid. - Spasms are rapid contractions ### Osteoporosis It is an age-related disorder, characterised by decreased bone mass and increased chances of fractures. #### **Arthritis** - The articulating cartilage wears away in this condition, leading to more friction between the bones. - Symptoms: - Joint pain - Stiffness #### Gout It is the inflammation of joints due to the accumulation of uric acid crystals. # Types of movement #### **Amoeboid** E.g. - Amoeba ### **Ciliary** E.g. - Cilia of trachea #### Muscular E.g. - Jaws # Types of muscles #### **Smooth muscles** E.g. - Muscles of digestive tract #### **Cardiac muscles** E.g. - Muscles of heart #### **Skeletal muscles** E.g. - Muscles of limbs ### Structure of muscle fibre Structure of skeletal muscle ### Structure of actin • Also known as the thin filament #### Muscle contraction - Neuromuscular junction- The place where the end-point of a motor neuron meets the sarcolemma of the muscle is called a neuromuscular junction or motor end plate. - Action potential Action potential is an electrical impulse that propagates on the muscle fibre. #### **Tetanus/ Tetanic contraction** - When the electric impulses come too fast, the muscle does not get the time to relax. - It is then in a state of continuous contraction. This is called tetanic contraction or tetanus. #### Cross-bridge cycle - A. Myosin-binding site masked at resting state. - B. During action potential Ca2+ binds to troponin causing conformational change. - C. Myosin-binding sites exposed. - D. Myosin head binds ATP. - E. Myosin head hydrolyses ATP and is full of energy. - F. Myosin head binds actin. - G. Myosin head pulls actin filament. - H. Myosin head releases ADP and P. - I. Myosin head binds fresh ATP. - J. Myosin detaches from actin filament. - K. Myosin hydrolyses ATP. - L. Myosin binding and releasing cycle continues as long as there is Ca²⁺. On the basis of the position of the skeletal structures in the body, the skeleton is divided as follows: ### Skull #### Vertebral column ### Rib cage Bones of upper limb and pectoral girdle Bones of lower limb and pelvic girdle Joints (On the basis of structure and movement) Fibrous No movement Cartilaginous Slight movement **Synovial** Slight movement Myasthenia gravis Autoimmune neuromuscular disease causing muscle weakness **Muscular dystrophy** Progressive degeneration of skeletal muscle Tetany Rapid spasms in muscles due to low calcium ions **Arthritis** Inflammation in joints Osteoporosis Decrease in the bone mass increases the risk of fractures Gout Inflammation of joints due to the accumulation of uric acid crystals