

Locomotion and Movement

6 Light and dark bands

Cross bridge cycle

8

Sliding filament theory

Human skeletal system

9

© 2022, Aakash BYJU'S. All rights reserved.

Axial skeleton

Skull

Vertebral column

Sternum

Ribs

Joints

Synovial joints

Appendicular skeleton

Pectoral girdle

Bones of arms

Pelvic girdle

Bones of legs

Disorder of muscular and skeletal system

Summary

12

13

Locomotion

- Locomotion: It is the ability of an entity or organism to move from one place to another.
- Locomotion is a type of movement, but not all movements are locomotory.
- Locomotion is a special type of movement where the organism changes its position.
- Examples:
 - Limbs in humans for walking
 - o Cilia in Paramecium

Movements

- It is the change of position in an organism. It is essential for all living organisms including humans.
- Examples:
 - Pumping of blood
 - Breathing through lungs
 - Mobility of vesicles inside a vessel

Amoeboid	Ciliary	Muscular
movements	movements	movements
 It occurs with the help of pseudopodia. Pseudopodia is formed by cytoplasmic streaming. Cytoskeletal elements such as microfilaments aid in cytoplasmic streaming. Examples: Amoeba, macrophage, etc. 	 This type of movement occurs in some internal organs. The organs that are lined with ciliated epithelium show this movement. Examples: Trachea, female reproductive system 	 It is the movement shown by limbs, jaws, tongue, etc. The contractile property of muscles is utilised for this movement. Examples: Humans and majority of multicellular organisms.

Movements

Types of movements based on control

Voluntary movements

- These movements can be controlled consciously.
- They are associated with skeletal components and controlled voluntarily.

Involuntary movements

- They are under the control of the autonomic nervous system.
- These movements are involuntary, i.e., they cannot be controlled by our will.

Myocyte

Length = I -

Myocyte

-Length = I/2---

Myocyte

Length = I-

• Contractility: It is a property that allows it to shorten and return to its original state.

- It is a type of specialised tissue originating from mesoderm.
- It is made up of cells known as myocytes.
- Myocytes provide contractility and allow muscles to gain the ability to contract.
- The stimulus provided by a myocyte spreads to the neighbouring myocyte.

Unique properties of muscles

Contractibility

 It is the property that allows a muscle to shorten and return to its original state.

Excitability

 It is the ability of a muscle to respond to a stimulus.

Elasticity

 It is the ability of a muscle to recoil or bounce back to its original length.

Extensibility

 It is the ability of a muscle to stretch itself.

Types of muscles

Smooth muscles

- Tapering ends: The cells taper at both the ends.
- Striations are absent:
 The altering light and dark bands are absent, giving a smooth appearance to the muscles.

Cardiac muscles

- It is present only in the heart.
- It is a contractile tissue that aids in the beating of the heart.
- Cardiac muscle helps in maintaining the cardiac cycle.
 - It has continuous rhythmic heart movements: contraction and relaxation.

Skeletal muscles

- It is closely associated with skeletal components of the body.
- Voluntary muscle: The movements of this muscle are under the control of the nervous system.
- Muscle fibres have a striated appearance under microscope.
- It enables the movements of body parts.

Types of muscles

Smooth muscles

- It is also known as the following:
 - Visceral muscle: As it forms the lining of hollow organs
 - Non-striated muscle: As it lacks striation
 - Non-stripped muscle: As it appears smooth
 - Involuntary muscle: As it is involuntary in nature
- It assists in:
 - Transport of food through digestive tract
 - Transport of gametes through female genital tract

Cardiac muscles

- It is also known as the following:
 - Striated muscle
 - Involuntary muscle

Skeletal muscles

- It is also known as the following:
 - Striped muscle
 - Striated muscle
 - Voluntary muscle
- Examples:
 - Muscles of tongue
 - Muscles of limbs

Structure of Muscle

Fascia

 The collagenous sheath surrounding the muscle which holds together muscle bundle fibres.

Epimysium

 It is a dense connective tissue sheath surrounding a muscle.

Muscle bundle fibre

 The muscle fibres are arranged parallelly in the form of a bundle known as a muscle bundle fibre or fascicle.

Muscle fibre

- Each fascicle has many muscle fibres.
- Muscle fibres are arranged parallel to each other.

Myofibril

• A muscle fibre contains many filamentous myofibrils/myofilaments.

Sarcoplasm

- It is the **cytoplasm** of the striated muscle.
- Sarcoplasm contains lots of nuclei.
 Hence, it is termed as syncytium (multinucleated).

Sarcolemma

 Muscle fibres are covered by a layer of plasma membrane known as sarcolemma.

Sarcoplasmic reticulum

- Sarcoplasm has the endoplasmic reticulum known as a sarcoplasmic reticulum that stores calcium.
- This calcium aids in muscle contraction.

Each muscle fibre has many myofibrils.
 Each myofibril contains many proteins.

- Myofilaments are made up of actin and myosin that are also known as contractile proteins.
- Myosin and actin both are rod-like structures arranged parallel to each other.
 - They are longitudinal to myofibrils. The actin filaments are thinner than myosin filaments.

Structure of actin

G actin

 Each F actin is a polymer of monomeric units known as
 G (globular protein) actin.

Tropomyosin

• It is the protein that runs close to F actin.

F actin

 Each actin filament has two filamentous actin known as
 Factin helically wound to each other.

Troponin

- It is the filament that holds the tropomyosin and is present in regular intervals.
- It blocks the active binding sites of actin.

Structure of Contractile Proteins

Structure of myosin

Myosin

- Myosin is also known as the thick filament.
- It is the polymer of meromyosin. Monomeric proteins are known as meromyosins.
- Each meromyosin has two parts: HMM and LMM.

HMM: Heavy meromyosin

- Globular head: It is an active ATPase enzyme. It has binding sites for ATP and active sites for actin.
- It has a short arm. 🛧

Cross arm: The head and the short arm project outwards at a regular distance and angle from each other and from the surface of myosin.

LMM: Light memomyosin

• It is the tall.

Light and Dark Bands

 Actin and myosin are arranged in the myofibril in such a way that they appear as light and dark bands. This gives the skeletal muscles a striated appearance.

Sarcomere is the portion between the successive Z lines. A sarcomere is a functional unit for contraction.

I band

- The light band contains actin.
- It is also known as the I band or isotropic band.

M line

- o It is a thin, fibrous membrane.
- $_{\circ}$ $\,$ It holds the dark bands together.

H zone

- It is the central part of the thick filament that has only myosin or the thick filament.
- The overlapping thin filaments are not present in this region.

Z line

- The I band is bisected by an elastic fibre known as the Z line.
- The zigzag line cuts through the I band.

Dark band

- The dark band has myosin. It is overlapped by actin filaments at the periphery.
- It is also known as the A band or anisotropic band.
- A band and I band are arranged alternately throughout the myofibril.

Muscle Contraction

- When an electrical signal reaches the neuromuscular junction, the neurotransmitter molecules are released.
- The neurotransmitter molecules bind to the receptors on the sarcolemma. This generates an action potential in the muscle fiber.
- Action potential It is an electrical impulse that propagates on the muscle fiber.
- The action potential spreads to both sides from the neuromuscular junction.
- An action potential causes the sarcoplasmic reticulum to release calcium ions.
- These calcium ions ultimately bring about the contraction of the muscle, by means of the cross-bridge cycle.

Cross-Bridge Cycle

1997

Myson-binding site Tropomyosin Actin

Myosin-binding site masked at resting state

Troponin

Myosin-binding sites exposed

During action potential Ca²⁺binds to troponin causing conformational change

Cross-Bridge Cycle

Myosin head pulls actin filament

Myosin head hydrolyses ATP and is full of energy

Myosin head binds actin

Cross-Bridge Cycle

Myosin head releases ADP and P

Myosin hydrolyses ATP

Myosin head binds fresh ATP

Myosin detaches from actin filament

Relaxed state of muscle

Sliding Filament Theory

Contracting state of muscle

When the myosin head binds and pulls at the actin filament, the actin filaments come closer to the M-line.

- a. The Z-lines come closer
- b. The length of the sarcomere shortens.
- c. The lengths of the lands shortens.
- d. The length of the A band remains the same.

Maximally contracted state of muscle

In this state of the muscle, the length of the sarcomere is the shortest.

Relaxation of muscle

- After a muscle contracts, it has to come back to its original relaxed state.
- The steps of contraction are reversed as follows:
 - Calcium ions are pumped back into the sarcoplasmic reticulum.
 - Tropomyosin masks myosin-binding sites on actin once again.
 - So, myosin is no longer able to bind the actin filament.
 - Z lines go back to their original position.
 - Hence, the sarcomere goes back to its original length.
- The **lengthening** of the sarcomere means the **relaxation** of the muscle.

- In a normal condition, an electric impulse comes from a motor neuron, the muscle contracts and then relaxes.
- When the electric impulses come too fast, the muscle does not get the time to relax.
- It is then in a state of continuous contraction. This is called tetanic contraction or tetanus.

Muscle Fatigue

- While exercising, the glycogen stored in the muscles is readily converted to its monomer glucose, which then undergoes cellular respiration in order to produce energy.
- Glycogen levels become depleted in the exercising muscles after prolonged or strenuous exercise.

Red and White Muscle Fibres

Every muscle of the body is composed of two types of muscle fibers: **red and white**, named so because of their colors.

Red muscle fibre	White muscle fibre	
 More blood vessels - more oxygen 	Less blood vessels - less oxygen	
 More mitochondria - more aerobic respiration 	 Less mitochondria - more anaerobic respiration 	
 Large amounts of myoglobin - stores oxygen - red in color 	 Less amount of myoglobin 	
 Less sarcoplasmic reticulum - slow release of Ca²⁺ - slow muscle contraction 	 Extensive sarcoplasmic reticulum - rapid release of Ca²⁺ - fast muscle contraction 	
 Marathoners born with more red fibres 	 Sprinters born with more white fibres 	

Human Skeletal System

- The hard, supportive, or protective elements of the animal body constitute the skeletal system or skeleton.
- It consists of a framework of bones (206) and a few cartilages.

Functions

- It supports the internal softer organs.
- It protects the delicate parts.
- It helps in movement.
- o It provides attachment for muscles.
- It gives the body its shape and form.
- o It helps in the formation of blood cells in bone marrow.
- It helps in breathing (tracheal rings, sternum, and ribs).
- o It helps in hearing as ear bones (middle ear) transmit sound vibrations.

Human Skeletal System

On the basis of **the position of the skeletal structures** in the body, the skeleton is divided as follows:

(126 bones)

Appendicular

Pectoral girdle

Arm bones

Pelvic girdle

Leg bones

Skull

- It is the bony framework of the head.
- The skull is composed of the following set of bones:

Cranial bones

- Cranium is the skeleton of the head.
- It is the outer protective covering of the brain.
- It is made of 8 cranial bones.

Facial bones

- It forms the front part of the skull.
- There are
 14 facial bones.

Ear ossicles

- Ear ossicles are also known as auditory ossicles.
- They are the 3 bones present in the middle part of human ears.
- So, there are a total of six ear ossicles in the body.
- The ear ossicles are the three of the smallest bones in the human body.

Hyoid

- It is a U-shaped bone.
- It is present at the base of the buccal cavity above the larynx.
- It is the only bone that is not in contact with any other bone.
- It is also known as the tongue bone.
- It acts as a point of attachment for certain tongue muscles and the floor of the mouth.

Mnemonics

Bones of cranium

Bones of face

Victor Can Not Make My Pet Zebra Laugh

Fluffy Puppies On Every Third Street

Frontal

Ethmoid

Parietal

· Cimpora

Occipital

Temporal **Temporal**

Sphenoid

Vomer

Conchae (inferior)

Nasal bone

Maxilla

Mandible

Palatine

Zygomatic

Lacrimal

Skull

Based on the number of articulations, skulls are of two types:

Monocondylic

- 1 occipital condyle
- E.g. birds, reptiles

 Occipital condyles are bony articulations that are projections on the occipital bone.

Dicondylic

- 2 occipital condyle
- E.g. humans

- Humans have dicondylic skulls.
- In the posterior end, there are these two rounded occipital condyles.
- They attach with the first vertebrae.

Vertebral column

- The vertebral column or the backbone is curved and lies dorsally in our body.
- It comprises 26 serially arranged units called vertebrae.
- It extends from the base of the skull and forms the framework of the trunk.
- Functions
 - It bears the bodyweight in the standing position and while the body is in motion.
 - It protects the spinal cord.
 - o It supports the head.
 - It serves as the point of attachment for the ribs.

Vertebral column

- The components of the vertebral column are known as vertebrae.
- The anterior with a large disc-like flattened part is known as the body or centrum.
- The posterior portion is known as neural arch.
- The neural arch forms a hole known as vertebral foramen.
- The 24 vertebral foramen together form vertebral canal/neural canal.
 The spinal cord passes through this neural canal.

Vertebral column

The vertebrae are grouped into **five types**, depending on the level of the vertebral column where they are found:

Cervical (7)

- It is present in the neck.
- They are 7 in number in almost all mammals.
- The first cervical vertebra is the atlas. It articulates with the occipital condyles and supports the head.
- The second vertebra is known as the axis.

Thoracic (12)

- They are present in the chest level.
- They are 12 in number.
- They are larger and stronger than cervical vertebrae.
- They are joined with the ribs.

Lumbar (5)

- Lumbar vertebrae are present in the lower back.
- They are five in number.
- They are the largest and strongest of all vertebrae.
- They have to bear the weight of the whole body when the body is in a standing position.

Sacrum (1) (Fused)

- Five sacral vertebrae are fused, forming the sacrum.
- The vertebrae are separate in the beginning, but start to fuse during adolescence.
- The sacrum lies between the innominate or hip bones.

Coccyx (1) (Fused)

- The **four coccygeal vertebrae fuse** to form the coccyx.
- The vertebrae separate in the beginning, but start to fuse during adolescence.
- The coccyx is considered to be the vestigial tail in humans.

Sternum

- The sternum is also known as the breastbone.
- It is a flat dagger-shaped bone.
- It is present just under the skin in the front and middle of the chest.
- It provides the point of attachment for ribs.
- It also protects the organs in the thoracic region and helps in respiration.

Ribs

- They are the thin, flat, and curved bones that form a protective cage around the organs of the upper body.
- The ribs are composed of 24 bones arranged in 12 pairs.
- They are dorsally connected to the vertebral column (thoracic vertebrae) and ventrally to the sternum.
- They have two articulations/attachment surfaces on their dorsal ends. Hence, they are known as bicephalic.
- Functions:
 - They protect the organs present in the thoracic cavity and the kidneys.
 - They also help in the respiration process.

Ribs

Ribs

True ribs	False ribs	Floating ribs
 The first seven pairs of ribs are known as true ribs. They are dorsally attached to the thoracic vertebrae. They are ventrally connected to the sternum with the help of hyaline cartilage, known as costal cartilage. 	 The eighth, ninth, and tenth pairs are known as vertebrochondral (false) ribs. They do not articulate directly instead anteriorly connect indirectly with the sternum by costal cartilage of the seventh rib. 	 The last two pairs (11th and 12th) of ribs are not connected ventrally to the sternum or the cartilage. Therefore, they are known as floating ribs. Thoracic vertebrae, ribs, and sternum together form the rib cage.

- It lies along the transverse (side) axis.
- The bones of the limbs along with their girdles constitute the appendicular skeleton.
- It is called so because it gives support to the appendages.
- It comprises 126 bones.

Appendicular Skeleton

Pectoral girdle

- Also known as the shoulder girdle
- Acts as a point of attachment for the upper limbs and the arm muscles
- Made up of two halves
 - o Scapula
 - Clavicle
- The scapula is a large triangular flat bone.
- It consists of a spine and a body.
- The slightly elevated ridge is known as the spine.

Pectoral girdle

Scapula

- The spine projects as a flat expanded process known as the acromion.
- The scapula is situated in the dorsal part of the thorax.
- It lies between the second and the seventh rib.
- Below the acromion is a depression known as the glenoid cavity.
 - It articulates with the head of the humerus to form the shoulder joint.

Appendicular Skeleton

Pectoral girdle

Clavicle

- Pectoral girdle has two clavicles.
- Each clavicle is a long slender bone with two curvatures.
- This bone is commonly known as the collar bone.
- The clavicle **articulates with** the **acromion** of the scapula.
- The clavicle and the scapula together make the pectoral girdle.

Appendicular Skeleton

Bones of arms

Pelvic girdle

- The pelvic girdle bones help in the articulation of the lower limbs.
- It is formed by two innominate bones. They are also known as the coxal or hip bones.
- Each hip bone is made by the fusion of three bones:
 - o_ ilium
 - o ischium
 - o pubis
- At the point of fusion of the above bones is a cavity known as acetabulum, to which the thigh bone articulates.

Pelvic girdle

The pubic symphysis is made of **fibrous cartilage** that joins the two **coxal (hip) bones** ventrally.

Appendicular Skeleton

Bones of legs

Total Number of Bones

Bones	Number
Cranial bones	8
Facial bones	14
Ear ossicles	6
Hyoid	1
Vertebral column	26
Sternum	1

Bones	Number
Ribs	24
Scapula	2
Clavicle	2
Arm bones	60
Hip bones	2
Leg bones	60

Total	206

Joints

- Joints are the points of contact between:
 - Bones
 - Bones and cartilages
- Functions of joints:
 - Hold bones together
 - Bear weight of the whole body
 - Allow movements in coordination with muscles

Joints

Fibrous Cartilaginous **Synovial** These joints allow Fibrous joints do not allow These joints permit considerable movement. limited movements. any movement. They have a **fluid-filled Sutures** are a type of The bones are joined synovial cavity between fibrous joints in the skull. together with the the articulating surfaces of help of a cartilage. Skull bones are fused end the two bones. to end with the help of Example: The joint dense fibrous connective between the adjacent Examples: Movement of head, wrist movement etc. tissues to form sutures. vertebrae in the vertebral column. Synovial Sutures cavity → Cartilage Articular cartilage

Synovial Joints

Types of synovial joints

Pivot joint

- Also known as rotary joint
- A ring-like movement is seen
- E.g. Joint between atlas and axis

Gliding joint

- Also known as the plane joint
- Characterised by smooth surfaces that can glide over one another
- E.g. Joint between the carpals

Pivot joint

Gliding joint

Synovial Joints

Condyloid joint

- The condyloid joint allows movement but not rotation.
- E.g. Wrist joint

Saddle joint

- The saddle joint does not allow rotation.
- It enables back-and-forth and side-to-side movements.
- E.g. Joint between the carpals and the metacarpals of thumb

Condyloid joint

Saddle joint

Synovial Joints

Ball and socket joint

- Permits movement in all directions
- E.g. Shoulder joint, hip joint

Hinge joint

- Allows the opening and closing in one direction, along one plane
- E.g. Elbow joint, knee joint

Ball and socket joint

Hinge joint

Disorders of Muscular and Skeletal System

Myasthenia gravis

- Myasthenia gravis is a rare autoimmune neuromuscular disorder that causes weakness in skeletal muscles.
- It can also lead to paralysis.
 - An autoimmune disease is a condition where the body's immune system mistakenly attacks its own organs.
- The most commonly affected muscles are those of the eyes, face, and the ones involved in swallowing.

Muscular dystrophy

- It is a genetic-inherited disorder.
- It causes progressive degeneration of skeletal muscles.
- Muscles are damaged in this disorder.
- It causes difficulty in:
 - Walking
 - Swallowing
 - Breathing

Disorders of Muscular and Skeletal System

Tetany

- Rapid spasms (wild contractions) occur in muscles due to low Ca** in body fluid.
- Spasms are rapid contractions

Osteoporosis

 It is an age-related disorder, characterised by decreased bone mass and increased chances of fractures.

Arthritis

- The articulating cartilage wears away in this condition, leading to more friction between the bones.
- Symptoms:
 - Joint pain
 - Stiffness

Gout

 It is the inflammation of joints due to the accumulation of uric acid crystals.

Types of movement

Amoeboid

E.g. - Amoeba

Ciliary

E.g. - Cilia of trachea

Muscular

E.g. - Jaws

Types of muscles

Smooth muscles

E.g. - Muscles of digestive tract

Cardiac muscles

E.g. - Muscles of heart

Skeletal muscles

E.g. - Muscles of limbs

Structure of muscle fibre

Structure of skeletal muscle

Structure of actin

• Also known as the thin filament

Muscle contraction

- Neuromuscular junction- The place where the end-point of a motor neuron meets the sarcolemma of the muscle is called a neuromuscular junction or motor end plate.
- Action potential Action potential is an electrical impulse that propagates on the muscle fibre.

Tetanus/ Tetanic contraction

- When the electric impulses come too fast, the muscle does not get the time to relax.
- It is then in a state of continuous contraction. This is called tetanic contraction or tetanus.

Cross-bridge cycle

- A. Myosin-binding site masked at resting state.
- B. During action potential Ca2+ binds to troponin causing conformational change.
- C. Myosin-binding sites exposed.
- D. Myosin head binds ATP.
- E. Myosin head hydrolyses ATP and is full of energy.
- F. Myosin head binds actin.
- G. Myosin head pulls actin filament.
- H. Myosin head releases ADP and P.
- I. Myosin head binds fresh ATP.
- J. Myosin detaches from actin filament.
- K. Myosin hydrolyses ATP.
- L. Myosin binding and releasing cycle continues as long as there is Ca²⁺.

On the basis of the position of the skeletal structures in the body, the skeleton is divided as follows:

Skull

Vertebral column

Rib cage

Bones of upper limb and pectoral girdle

Bones of lower limb and pelvic girdle

Joints (On the basis of structure and movement)

Fibrous

No movement

Cartilaginous

Slight movement

Synovial

Slight movement

Myasthenia gravis

Autoimmune neuromuscular disease causing muscle weakness

Muscular dystrophy

Progressive degeneration of skeletal muscle

Tetany

Rapid spasms in muscles due to low calcium ions

Arthritis

Inflammation in joints

Osteoporosis

Decrease in the bone mass increases the risk of fractures

Gout

Inflammation of joints due to the accumulation of uric acid crystals