

degree to radian

$$
\times \frac{2 \pi}{360}
$$

ii) $210^{\circ}=\frac{2 \pi \times 210}{360}$

$$
=\frac{7}{6} \pi \mathrm{rad}
$$

radian to degree

$$
\times \frac{360}{2 \pi}
$$

$$
\theta=\frac{\text { arc length }}{\text { radius of circle }}=\frac{l}{r}(\mathrm{rad})
$$

iii) $270^{\circ}=\frac{2 \pi \times 270}{360}$

$$
=\frac{3}{2} \pi \mathrm{rad}
$$

i) $540^{\circ}=\frac{2 \pi \times 540}{360}$
$=3 \pi \mathrm{rad}$

$$
\sin \theta=\frac{o p p}{h y p} \quad \cos \theta=\frac{a d j}{h y p} \quad \tan \theta=\frac{o p p}{a d j}
$$

$$
\operatorname{cosec} \theta=\frac{1}{\sin \theta} \quad \sec \theta=\frac{1}{\cos \theta} \quad \cot \theta=\frac{1}{\tan \theta}
$$

	0°	30°	37°	45°	53°	60°	90°
$\sin \theta$	0	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{1}{\sqrt{2}}$	$\frac{4}{5}$	$\frac{\sqrt{3}}{2}$	1
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{4}{5}$	$\frac{1}{\sqrt{2}}$	$\frac{3}{5}$	$\frac{1}{2}$	0
$\tan \theta$	0	$\frac{1}{\sqrt{3}}$	$\frac{3}{4}$	1	$\frac{4}{3}$	$\sqrt{3}$	∞

Trigonometric Ratios

$\sin \left(90^{\circ}+\theta\right)$	$=\cos \theta$	y	
$\sin \left(180^{\circ}-\theta\right)$	$=\sin \theta$		
$\cos \left(90^{\circ}+\theta\right)$	$=-\sin \theta$		
$\cos \left(180^{\circ}-\theta\right)$	$=-\cos \theta$		$\cos \left(90^{\circ}-\theta\right)$
$\sec \left(180^{\circ}-\theta\right)$	$=-\sec \theta$		$\sin \theta$
$\operatorname{cosec}\left(180^{\circ}-\theta\right)$	$=\operatorname{cosec} \theta$		$\sec \left(90^{\circ}-\theta\right)=\operatorname{cosec} \theta$
$\tan \left(180^{\circ}-\theta\right)$	$=-\tan \theta$		$\operatorname{cosec}\left(90^{\circ}-\theta\right)=\sec \theta$
$\cot \left(180^{\circ}-\theta\right)$	$=-\cot \theta$	S	A
$-\cot \left(90^{\circ}-\theta\right)$	$=\tan \theta$		
	T	C	

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Polynomials and Linear Function

$$
\begin{gathered}
\text { Degree of a } \\
\text { polynomial }
\end{gathered}=\quad \text { Highest power } \quad=\begin{gathered}
\text { Maximum number } \\
\text { of solutions }
\end{gathered}
$$

$\begin{gathered}\text { Degree of a } \\ \text { polynomial }\end{gathered}=\quad \begin{gathered}\text { Mighest power } \\ \text { of solutions }\end{gathered}=1$

Graph of Linear Function

Quadratic Function

Constants
$y=f(x)=a_{0}+a_{1} x^{1}+a_{2} x^{2}+a_{3} x^{3}+$
$\left\{n \in N, a_{n} \neq 0\right\}$

\rightarrow Variables

Degree of a
polynomial

of solutions}}{Mamim number}=2\)

The graphical representation of a Quadratic function is Parabola.

$$
\text { Quadratic equation: } \quad a x^{2}+b x+c=0
$$

Root 1 :

$$
\alpha=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Root 2

$$
\beta=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}
$$

Sum of roots

$$
\alpha+\beta=-\frac{b}{a} \quad|\beta-\alpha|=\frac{\sqrt{b^{2}-4 a c}}{a} \quad \alpha \beta=\frac{c}{a}
$$

Difference of roots

Find the roots of the Quadratic Equation, $y=x^{2}-6 x-7$

Exponential Functions and their Graph

$$
y=f(x)=b^{x}
$$

x - Index/ exponent $\quad[x \in$ real number]
b - base (Constant) $\quad[b>0$ and $b \neq 1]$
y - Output

Logarithmic Functions

Popular log functions

艮 Properties of Logarithmic functions

Product Rule $\quad \log _{b} m n=\log _{b} m+\log _{b} n$

Quotient Rule $\quad \log _{b} \frac{m}{n}=\log _{b} m-\log _{b} n$

Power Rule

$$
\log _{b} m^{p}=p \cdot \log _{b} m
$$

$$
\log _{b} 1=0
$$

厚 Limiting case of a secant

slope $(m)=\frac{\Delta y}{\Delta x}$

slope $(m)=\frac{d y}{d x}$

$$
\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta x}\right)=\lim _{\Delta x \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

$$
\frac{d y}{d x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\Delta y}{\Delta x}\right)
$$

Slope of the tangent $=\frac{d y}{d x}=y^{\prime}=f^{\prime}(x)$

Differentiation of Functions

Power Rule:

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

$\frac{d}{d x}\left(e^{x}\right)=e^{x}$

$$
\begin{aligned}
\frac{d}{d x}(\sin x) & =\cos x & \frac{d}{d x}(\cot x) & =-\operatorname{cosec}^{2} x \\
\frac{d}{d x}(\cos x) & =-\sin x & \frac{d}{d x}(\sec x) & =\sec x \tan x \\
\frac{d}{d x}(\tan x) & =\sec ^{2} x & \frac{d}{d x}(\operatorname{cosec} x) & =-\operatorname{cosec} x \cot x
\end{aligned}
$$

- Differentiation of a function is nothing but finding slope of curve at that point.

Differentiation of a sin function at any point is a cosine function.

- Example at Position A and B

(8)
 Properties of Derivatives

Derivative of a constant term a :

$$
\frac{d}{d x}[a]=0 \quad(a)^{\prime}=0
$$

Derivative of a Function multiplied by a constant term a :

$$
\frac{d}{d x}[a f(x)]=a \frac{d[f(x)]}{d x} \quad(a f)^{\prime}=a f^{\prime}
$$

Derivative of sum or difference of two functions:

$$
\frac{d}{d x}[a f(x) \pm b g(x)]=a \frac{d f(x)}{d x} \pm b \frac{d g(x)}{d x} \quad(a f \pm b g)^{\prime}=a f^{\prime} \pm b g^{\prime}
$$

> Differentiate $f(x)=2 \cos x-\tan 45^{\circ} \sec x+3$ with respect to x

$$
\begin{aligned}
\frac{d[f(x)]}{d x} & =\frac{d\left(2 \cos x-\tan 45^{\circ} \sec x+3\right)}{d x} \\
f^{\prime}(x) & =2[\cos x]^{\prime}-1 \cdot[\sec x]^{\prime}+[3]^{\prime} \\
& =-2 \sin x-\sec x \cdot \tan x
\end{aligned}
$$

$$
=-2 \sin x-\sec x \cdot \tan x
$$

To find the rate of change of one quantity with respect to another

$$
\begin{aligned}
& \text { Rate of change of } \\
& \text { position with time }
\end{aligned}=\frac{d x}{d t}=\text { velocity }
$$

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}} & =\frac{d}{d x}\left(\frac{d y}{d x}\right) \\
f(x) & =\sin (x) \\
f^{\prime}(x) & =\cos (x) \\
f^{\prime \prime}(x) & =-\sin (x)
\end{aligned}
$$

If the motion of a particle is represented by,

$$
x=\left(t^{3}+t^{2}-t+2\right) m .
$$

Find the position, speed of the particle at $t=2 s$?

First
Derivative

Slope of the curve and Increasing

 and Decreasing Functions

? Mention where the function is increasing or decreasing

Find the slope of the tangent to the curve y $=x^{2}-5 x+4$ at point $(5,4)$.

Hint:
Slope of the tangent (m)

$$
=\tan \theta=\frac{d y}{d x}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =2 x-5 \\
& =\left(2^{*} 5\right)-5 \\
& =5
\end{aligned}
$$

Critical Points

Find the critical points of the function

 $f(x)=2 \sin x ?$$$
\frac{d f(x)}{d x}=2 \cos (x)
$$

$\cos (x)$ is has a maximum and minimum value of $1,-1$. So, critical points of the function is $-2,2$

 for the function $y=x^{3}-3 x+2$.

$$
y=x^{3}-3 x+2
$$

$$
\begin{gathered}
\text { Critical Point's }(x=1,-1) \quad \frac{d y}{d x}=0 \\
\frac{d^{2} y}{d x^{2}}=-6<0 \\
\text { Maximum } \\
\text { (at } x=-1 \text {) }
\end{gathered} \begin{gathered}
\frac{d^{2} y}{d x^{2}}=6>0 \\
\text { Minimum } \\
\text { (at } x=1 \text {) }
\end{gathered}
$$

A ball is thrown in the air. Its height at any time t is given by $h=3+14 t-5 t^{2}$. What is the maximum height attained by the ball?

$$
\begin{aligned}
& h=3+14 t-5 t^{2} \\
& \frac{d h}{d t}=14-10 t=0 \Rightarrow t=1.4 \mathrm{~s} \\
& \frac{d^{2} h}{d t^{2}}=-10<0 \Rightarrow \text { There is a Maxima } \\
& h=3+14(1.4)-5(1.4)^{2}=12.8 \mathrm{~m}
\end{aligned}
$$

目 Product rule, Quotient Rule and Chain Rule

Product rule

$$
\frac{d[f(x) \cdot g(x)]}{d x}=\frac{d f(x)}{d x} \cdot g(x)+\frac{d g(x)}{d x} \cdot f(x)
$$

$$
(f g)^{\prime}=f^{\prime} g+f g^{\prime}
$$

Quotient Rule

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{\frac{d f(x)}{d x} \cdot g(x)-\frac{d g(x)}{d x} \cdot f(x)}{(g(x))^{2}}
$$

$$
\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}
$$

Chain Rule

$$
\text { If } f=f(g) ; g=g(x)
$$

$$
f^{\prime}(x)=f^{\prime}[g] g^{\prime}(x)
$$

Differentiate inner function

Differentiate outer function

$$
\frac{d f}{d x}=\frac{d f}{d g} \cdot \frac{d g}{d x}
$$

? Differentiate: $f(x)=\frac{1}{1-x^{2}}$ w.r.t. to x using division rule.

$$
\begin{aligned}
& f(x)=\frac{1}{1-x^{2}} \\
& f^{\prime}(x)=\frac{1 \times(-2 x)-\left(1-x^{2}\right) \times 0}{\left(1-x^{2}\right)^{2}} \\
& f^{\prime}(x)=-\frac{2 x}{\left(1-x^{2}\right)^{2}}
\end{aligned}
$$

Hint:
$\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{f(x) g^{\prime}(x)-f^{\prime}(x) g(x)}{(g(x))^{2}}$

Composite Function

Composite function - example
Where, $f(g)=\sin (g)$

$$
g(x)=x^{2}
$$

It can also be written as,

$$
f[g(x)]=\sin \left(x^{2}\right)
$$

? Differentiate: $g(t)=\frac{1}{\left(4 t^{2}-3 t+2\right)^{2}}$ w.r.t. x using chain rule.

$$
\begin{aligned}
& g(t)=\frac{1}{\left(4 t^{2}-3 t+2\right)^{2}} \\
& \text { Put , } x=4 t^{2}-3 t+2 \\
& g(t)=\frac{1}{(x)^{2}} \quad \Rightarrow g^{\prime}(t)=-\frac{2}{x^{3}}\left(\frac{d x}{d t}\right) \\
& \Rightarrow g^{\prime}(t)=-\frac{2}{x^{3}}(8 t-3) \\
& \Rightarrow g^{\prime}(t)=\frac{-2(8 t-3)}{\left(4 t^{2}-3 t+2\right)^{3}}
\end{aligned}
$$

Hint:

$f^{\prime}(x)=f^{\prime}(g) \cdot g^{\prime}(x)$

Differentiate:

$$
f(x)=\sin \left(x^{2}+5\right)+e^{x} \tan x \text { W.r.t. } x
$$

$$
f(x)=\sin \left(x^{2}+5\right)+e^{x} \tan x
$$

Using Chain rule and Product rule:

$$
\begin{aligned}
f^{\prime}(x) & =\cos \left(x^{2}+5\right) \cdot \frac{d}{d x}\left(x^{2}+5\right) \\
& +\frac{d}{d x}\left(e^{x}\right) \cdot \tan x+e^{x} \cdot \frac{d}{d x}(\tan x)
\end{aligned}
$$

$$
\frac{d}{d x}(\tan x)=\sec ^{2} x
$$

$$
f^{\prime}(x)=2 x \cos \left(x^{2}+5\right)+e^{x}\left(\sec ^{2} x+\tan x\right)
$$

$$
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}
$$

Integration

Integration of Functions

Algebraic

This is also called as Indefinite integration

Exponential

$$
\left.\frac{d\left(e^{x}\right)}{d x}=e^{x} \right\rvert\, \int e^{x} d x=e^{x}+C
$$

$$
\left.\begin{array}{c|c|c}
\frac{d\left(x^{n}\right)}{d x}=n x^{n-1} & \int x^{n} d x=\frac{x^{n+1}}{n+1}+C & \frac{d(\sin x)}{d x}=\cos x
\end{array}\left|\int \cos x d x=\sin x+C \quad \begin{array}{l}
\frac{d(\ln x)}{d x}=\frac{1}{x}
\end{array}\right| \int \frac{1}{x} d x=\ln x+C \quad \frac{d(\cos x)}{d x}=-\sin x \right\rvert\, \int \sin x d x=-\cos x+C
$$

? $\int \sqrt{x^{3}} d x=?$

Using the formula of integration

$$
\begin{gathered}
\int x^{n} d x=\frac{x^{n+1}}{n+1}+C \\
\int \sqrt{x^{3}} d x=\frac{2}{5} x^{\frac{5}{2}}=\frac{2}{5} \sqrt{x^{5}}+C
\end{gathered}
$$

E) Integration of Algebraic expressions

Derivative of any constant term as a sum in original function becomes zero. Hence, adding C to the result of integration. C gives the most general case.

$$
\begin{array}{l|c}
\frac{d(\tan x)}{d x}=\sec ^{2} x & \int \sec ^{2} x d x=\tan x+C \\
\frac{d(\sec x)}{d x}=\sec x \tan x & \int \sec x \tan x d x=\sec x+C \\
\frac{d(\cot x)}{d x}=-\operatorname{cosec}^{2} x & \int \operatorname{cosec}^{2} x d x=-\cot x+C \\
\frac{d(\operatorname{cosec} x)}{d x}=-\operatorname{cosec} x \cot x & \int \operatorname{cosec} x \cot x d x=-\operatorname{cosec} x+C
\end{array}
$$

$$
? \int\left(4 x^{3}+\frac{1}{x}+\sin x\right) d x=\text { ? }
$$

$$
\int\left(4 x^{3}+\frac{1}{x}+\sin x\right) d x=x^{4}+\ln (x)-\cos (x)+c
$$

目 Geometrical Meaning of Integration

$\int f(x) d x \rightarrow$ Area under the curve
$y_{\text {A }}$

$$
\int f(x) d x \rightarrow \text { Area under the curve }
$$

$$
\text { from } x=a \text { to } x=b
$$

- In the adjacent picture less number of pixels are there and the picture quality is low.
- Below picture more the pixels, better the picture quality.
- Likewise, Smaller the element, less will be the error in measuring area, which is mathematically integration

2 Find the area bounded by the lines

$$
y=x, y=0, x=2 \text { and } x=6
$$

$$
\begin{aligned}
\text { Area of Trapezium } & =\frac{h(a+b)}{2} \\
& =\frac{4(2+6)}{2}=16
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of Trapezium } & =\int_{2}^{6} x d x \\
& =\left[\frac{x^{2}}{2}\right]_{2}^{6}=16
\end{aligned}
$$

$$
\int_{-\pi / 2}^{\pi / 2} \cos x d x=\left.\sin x\right|_{-\frac{\pi}{2}} ^{+\frac{\pi}{2}}=\left[\sin \frac{\pi}{2}-\sin \left(-\frac{\pi}{2}\right)\right]=2
$$

$$
\int_{-\pi / 2}^{\pi / 2} \cos x d x=2
$$

1) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$
2) $\int_{a}^{a} f(x) d x=0$
3) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$

$$
\int_{1}^{4} \frac{1}{2 \sqrt{x}} d x+\int_{4}^{1} \frac{1}{2 \sqrt{x}} d x=[\sqrt{x}]_{1}^{4}+[\sqrt{x}]_{4}^{1}=0
$$

A physical quantity is a vector when,

- It has a magnitude and a unit
- It has a direction

目 Definition and How to represent a vector

A physical quantity is a vector when,

- It has a magnitude and a unit
- It has a direction
- It obeys laws of vector algebra

Length 5 unit $30^{\circ} E$ of N

Assume that all vectors have the same magnitude and are of the same physical quantity (Say Force)

$$
\vec{A}=\vec{B}
$$

Properties of Vectors

- If a vector is displaced parallel to itself, then it does not change in magnitude or direction.

- If a vector is rotated through an angle, other than integer multiple of 2π (or 360°), then the vector changes.

How to measure angle between vectors?

Step 1:

- Place vectors tail to tail or head to head

Step 2:

- Measure the smaller angle i.e. angle which is less than 180° between them
?
Find the angle between the vectors
(i) \vec{A} and \vec{B} is 90°
(ii) \vec{A} and \vec{C} is 30°
(iii) \vec{A} and \vec{D} is 120°

Collinear	Lie on the same line
Parallel	Vectors along lines parallel to each other
Negative	Equal in magnitude but opposite in direction
Equal	Same magnitude and along the same direction
Null or zero	Zero magnitude

$?$ From the following diagram, write (i) a pair of equal vectors (ii) a vector, which is negative of \vec{F}

Force on the block is 0

Force on the block is 50 N

When two Vectors are aligned head to tail, their "vector sum" or "resultant vector" is represented by the third side of the completed triangle in the opposite order

Commutative law

$$
\vec{R}=\vec{A}+\vec{B}=\vec{B}+\vec{A}
$$

Arranging all vectors in head-to-tail manner. According to polygon law, $\overrightarrow{A E}$ is their resultant.

Using Triangle Law in $\triangle A B C, \triangle A C D$ \& $\triangle A D E$

$$
\vec{A}+\vec{B}=\vec{P}
$$

$$
\vec{P}+\vec{C}=\overrightarrow{\boldsymbol{Q}}
$$

$$
\vec{Q}+\vec{D}=\vec{E}
$$

$\vec{A}+\vec{B}+\vec{C}+\vec{D}=\vec{E}$
If several vectors are represented in head-to-tail manner so that they form an incomplete polygon, then the remaining side of the polygon, drawn from tail of first vector to the head of last vector, is their resultant vector.

Sum of all the vectors in cyclic order is a zero vector

Vector divided by its own magnitude is a vector with unit magnitude and direction along the parent vector.

$$
\vec{A}
$$

$\vec{R}=R \cos \theta \hat{\imath}+R \sin \theta \hat{\jmath}$

Fill in the Blanks

Magnitude

The unit vector along $\vec{A}=2 \hat{\imath}+3 \hat{\jmath}$ is...

Solution: $\quad \hat{A}=\frac{\vec{A}}{|\vec{A}|}$

$$
|\vec{A}|=\sqrt{{A_{x}}^{2}+{A_{y}}^{2}}=\sqrt{2^{2}+3^{2}}=\sqrt{13}
$$

$$
\hat{A}=\frac{2 \hat{\imath}}{\sqrt{13}}+\frac{3 \hat{\jmath}}{\sqrt{13}}
$$

Parallelogram Law

If two vectors are oriented coinitial, representing two adjacent sides of a parallelogram, then their resultant is represented by the included diagonal of the completed parallelogram.

$$
\overrightarrow{A C}=\overrightarrow{A B}+\overrightarrow{A D}=\vec{P}+\vec{Q}
$$

Magnitude of the Resultant

$$
|\vec{R}|=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}
$$

Direction of resultant

$$
\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}
$$

2 The resultant of vectors $\overrightarrow{O A}$ and $\overrightarrow{O B}$ is perpendicular to $\overrightarrow{O A}$ as shown in the figure. Find the angle $A O B$.

Magnitude of the Resultant

$$
|\vec{R}|=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}
$$

Direction of resultant

$$
\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}
$$

$$
\begin{aligned}
& |\vec{R}|=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta} \\
& \tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta} \\
& \tan 90^{\circ}=\frac{6 \sin \theta}{4+6 \cos \theta}
\end{aligned}
$$

$$
\theta=\cos ^{-1}\left(-\frac{2}{3}\right)
$$

?
A river is flowing at $4 \mathrm{~m} / \mathrm{s}$. A girl swims with velocity $3 \mathrm{~m} / \mathrm{s}$ perpendicular to the direction of flow. Find the resultant velocity of the girl?

Magnitude of the Resultant :

$|\vec{R}|=\sqrt{P^{2}+Q^{2}+2 P Q \cos \theta}$

Direction of resultant:

$\tan \alpha=\frac{Q \sin \theta}{P+Q \cos \theta}$

Here, $P=4 \mathrm{~ms}^{-1}, Q=3 \mathrm{~ms}^{-1}, \theta=90^{\circ}$
$|\vec{R}|=\sqrt{16+9+\left(2 \times 4 \times 3 \times \cos 90^{\circ}\right)}$

$$
=\sqrt{25}=5 \mathrm{~ms}^{-1}
$$

$$
\tan \alpha=\frac{3 \times \sin 90^{\circ}}{4+3 \cos 90^{\circ}}=\frac{3}{4} \Rightarrow \alpha=37^{\circ}
$$

$$
|R|=5 \mathrm{~ms}^{-1} ; \alpha=37^{\circ}
$$

2 If the magnitude of the resultant of two vectors of equal magnitudes is equal to the magnitude of either of the vectors, then find the angle between two vectors?

$$
\begin{aligned}
& |\vec{P}|=|\vec{Q}|=|\vec{R}|=x \\
& R^{2}=P^{2}+Q^{2}+2 P Q \cos \theta \\
& x^{2}=x^{2}+x^{2}+2 x^{2} \cos \theta \\
& \cos \theta=-\frac{1}{2}
\end{aligned}
$$

$$
\theta=120^{\circ}
$$

Vector Substraction

$$
|\vec{A}-\vec{B}|=\sqrt{A^{2}+B^{2}-2 A B \cos \theta}
$$

$$
\tan \alpha=\frac{B \sin \theta}{A-B \cos \theta}
$$

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \widehat{k} \\
& \vec{B}=B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \widehat{k} \\
& \vec{C}=C_{x} \hat{\imath}+C_{y} \hat{\jmath}+C_{z} \widehat{k}
\end{aligned}
$$

Addition

Subtraction

$?$ If magnitude of the sum of two vectors is equal to the magnitude of difference of the two vectors, then the angle between these vectors is,

$$
\begin{aligned}
& \text { Solution: } \\
& \qquad \begin{array}{l}
\\
\\
\qquad \begin{array}{l}
A^{2}+B^{2}+2 A B \cos \theta \\
B
\end{array}=\sqrt{A^{2}+B^{2}-2 A B \cos \theta} \\
\Rightarrow 4 A B \cos \theta=0 \\
\Rightarrow \\
\Rightarrow
\end{array} \theta=90^{\circ}
\end{aligned}
$$

Range of the resultant vector

Range of magnitude $\quad|P-Q| \leq|\vec{R}| \leq P+Q$

? If \vec{P} of magnitude 5 unit and \vec{Q} of magnitude of 7 unit are added, then which of the following can not be the magnitude of the resultant vector?

Solution: Range of magnitude

$$
\begin{aligned}
& |P-Q| \leq|\vec{R}| \leq P+Q \\
& |5-7| \leq|\vec{R}| \leq 5+7 \\
& 2 \leq|\vec{R}| \leq 12
\end{aligned}
$$

Find the vector $\vec{A}+2 \vec{B}+\vec{C}$, where $\vec{A}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \vec{B}=3 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}$ and $\vec{C}=\hat{\imath}-\hat{\jmath}-\hat{k}$ and also find its magnitude.

Solution :

$$
\begin{gathered}
\vec{A}=2 \hat{\imath}-\hat{\jmath}+\hat{k}, \\
\vec{B}=3 \hat{\imath}+4 \hat{\jmath}-2 \hat{k} \\
\vec{C}=\hat{\imath}-\hat{\jmath}-\hat{k}
\end{gathered}
$$

$$
\vec{D}=\vec{A}+2 \vec{B}+\vec{C}=9 \hat{\imath}+6 \hat{\jmath}-4 \hat{k}
$$

$$
|\vec{D}|=\sqrt{9^{2}+6^{2}+4^{2}}=\sqrt{133}
$$

$$
|\vec{D}|=\sqrt{133}
$$

The scalar product or dot product of any two vectors \vec{A} and \vec{B}, denoted by $\vec{A} \cdot \vec{B}$ is defined as the product of their magnitudes with cosine of the angle between them.

$$
\vec{A} \cdot \vec{B}=A B \cos \theta
$$

\vec{A}

Right hand thumb rule

To find the direction of $\vec{a} \times \vec{b}$

- Draw $\overrightarrow{\boldsymbol{a}}$ and $\overrightarrow{\boldsymbol{b}}$ such that they are coinitial.
- Place the stretched right palm perpendicular to the plane of \vec{a} and \vec{b} such that the fingers are along \vec{a} and when the fingers are closed, they go towards \vec{b}.
- The direction in which thumb points gives
 the direction of $\vec{c}=\vec{a} \times \vec{b}$.

If $|\vec{A}|=2,|\vec{B}|=3$ and the angle between \vec{A} and \vec{B} is 60°, then find $\overrightarrow{\boldsymbol{A}} \cdot \overrightarrow{\boldsymbol{B}}$.

Given : $|\vec{A}|=2,|\vec{B}|=3$ and $\theta=60^{\circ}$
To find: $\vec{A} \cdot \vec{B}$

Solution:

$$
\begin{gathered}
\vec{A} \cdot \vec{B}=|\vec{A}||\vec{B}| \cos \theta \\
\vec{A} \cdot \vec{B}=2 \times 3 \times \cos 60^{\circ}=3
\end{gathered}
$$

$$
\vec{A} \cdot \vec{B}=3
$$

? Find the magnitude and direction of $\vec{A} \times \vec{B}$ and $\vec{B} \times \vec{A}$, where $\vec{A} \& \vec{B}$ lie in $x-y$ plane.

Given: $|\vec{A}|=5,|\vec{B}|=4$ and $\theta=30^{\circ}$
To find: $\vec{A} \cdot \vec{B}$
Solution:

$$
\begin{aligned}
& |\vec{A} \times \vec{B}|=|\vec{B} \times \vec{A}|=|\vec{A}||\vec{B}| \sin \theta \\
& |\vec{A} \times \vec{B}|=|\vec{B} \times \vec{A}|=5 \times 4 \times \sin 30 \\
& |\vec{A} \times \vec{B}|=|\vec{B} \times \vec{A}|=10
\end{aligned}
$$

$$
(\hat{n}=\hat{k})
$$

$$
\vec{A} \times \vec{B}=10 \hat{k}
$$

$$
\vec{B} \times \vec{A}=-10 \hat{k}
$$

