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e Arectangulararrangement of m - n numbers (real or complex) or
expressions (real or complex valued), having m rows and n columns is
called a matrix. (m,n € N)

a1 Q12 A13--Qqpy | «——

Az1 Q22 QA23--Ayy | L
A= . / g Rows

Am1 Am2 Am3 - AQppl

U

rprs
Columns

e An element of a matrix is denoted by

a;;: Element of it" row & j*" column.

Return To Top




e Arectangulararrangement of m - n numbers (real or complex) or
expressions (real or complex valued), having m rows and n columns is
called a matrix. (m,n € N)

a1 Q12 A13--Qqpy | «——

Az1 Q22 QA23--Ayy | L
A= . / g Rows

Am1 Am2 Am3 - AQppl

U

rprs
Columns

Number of elements in a matrix
= Number of rows x Number of columns

=mXn

Return To Top










Order of a matrix

Order or dimension of a matrix denotes the arrangement of elements
as number of rows and number of columns.

e Order = Number of rows x Number of columns = m x n

Name of a matrix

F Q11 Q12 A13 - Qqpy | —

Az1 Q22 Q234 | o
- : . . Rows

1OGm1 AGm2 Am3 - AQppld

Lt Tt

—~
Columns

Order of a matrix

e Thus, a matrix can also be represented as A = [aif]mxn Or (aij)mxn



® Row Matrix (row vector) : A matrix having a single row is called a row matrix.

A= [aif]1xn= [@11 Q12 Q13- aqp]ixn

Example: B=[a b clixs

Column Matrix (column vector) : A matrix having a single column is called
a column matrix.

aiq
a
A=layl, =

Example: B = Am1l ;s

e Matrices consisting of one row or one column are called vectors.

Return To Top




® Zero Matrix (null matrix) : If all the elements of a matrix are zero, then it is
called zero or null matrix

= [aif]mxn is called a zero matrix, if a;; = 0,V i &}.

Examples:

=QY =09




trix if m > n, where m is
the number of columns.

A the matrix example :JJ\/—'F he numlber of rows (m) = 4, whereas the
AUMLer of columns (n) =

Therefore, this makes the matrix a vertical matrix.



rix if n > m, wherem s
e number of columns.

ows (m) = 2, whereas the

tal matrix.



ssible orders it can have?

Mmber of columns

6x2,12x1



(i+2))
by aij = 3] .

7
3
9
J




® Principal Diagonal of a Matrix : Diagonal containing the elements
a;j, Where i = j is called principal
Examples: diagonal of a matrix

2 -6 10
3 0 7 ]
3x3

19 -3 -8

A=

Types of Matrix:

® Square Matrix: A matrix where number of rows = number of columns
is called square matrix.

11 Q12 Q13-+ agy Example:
dz1 dz2 A23:--a,, 4 5 0
8 -1 3]
3x3

9 7 2

A=
A=

an1 Qn2 Qp3 Unn -

Return To Top
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Example:
2
A =115
—7
0
H=|—2

11

—6
9
3

—3
3
—8

® Trace of a Matrix: Sum of all elements in the principal diagonal

of a matrix is called trace of a matrix.

—
-
\
e
I
NG
8

1
0] >Tr(A)=24+9—-8=3
_83X3

5 1

—5 10/3x4






Types of Matrix:

Example:

-3 0 0]

0 2 0

0 0 —10J3x3

A = diag.(—3,2,— 10)

Return To Top

al]=0,Vl¢]

® Diagonal Matrix: A square matrix |a;;| is said to be a diagonal matrix if

» A diagonal matrix is represented as: A = diag. (a1, 052, Q)

1 0 0 O
10 2 0 O
B_oooo

000_44X4

B = diag.(1,2,0,—4)



Types of Matrix:

® Scalar Matrix: A diagonal matrix whose all diagonal elements are equal
is called scalar matrix

A = [a;;] is a scalar matrix if
al]=0,Vl=/:] aU=k,Vl=_]

Example:

A=(“ 0)



Types of Matrix:

® Unit Matrix (identity matrix) : A diagonal matrix whose all diagonal elements are
equal to 1 is called identity matrix

e Unit matrix of order n is denoted by I, ().
I, = [aif]n such that

al-j=0,Vi¢j

aU=1,Vl=]
Example:
1 0 0
12:((1) ") 13=<o 1 0)
0 0 1

Return To Top




Types of Matrix:

e Triangular Matrix:

(i) Upper Triangular Matrix

A matrix in which all the elements below the principal
diagonal are zero is called an upper triangular matrix.

P= [aif]n such that a;; =0,Vi>j

Example:

1 3 0 2 =3 5 1
A= (O -4 9 ) B=10 3 6 -9
0 0 =5 0 0 -5 10

Return To Top




Types of Matrix:

e Triangular Matrix:

(ii) Lower Triangular Matrix

A matrix in which all the elements above the principal
diagonal are zero is called a lower triangular matrix

P =[a;| suchthat a;;=0,Vi<j

Example:

-7 0 0 -1 0
A=<3 4 o) B={0 4
-2 10 0 -3 8

Return To Top




Comparable Matrix:

Two matrices A & B are said to be comparable if,

order of matrix A = order of matrix B

Example: If matrices Asys & B4, are comparable , then (im,n) = (3,5)

Equal Matrix:
Two matrices are said to be equal if,
(i) They are comparable.
(ii) corresponding elements of them are equal.
LetA=[a;] and B= [bif]pxq
ThenA=B ,if m=p;n=q & a;; =b;; ,Vi&j

Return To Top




ind @ so that A = B.

N



Z+wis



Algebra of Matrix:

Multiplication of Matrix by a scalar

* Letk beascaler (real or complex) and 4 = [a;;] _thus kA =[b;]

where bl] = kal]Vl&]

Example: If A= (_31 _24 _76) ,then —A4is:
Solution: — A= (-4 =P (—31 _24 —76)
K (—13 _42 —67)

—A is the negative of matrix A

Return To Top




on of Matrices




Algebra of Matrix:

Addition/Subtraction of Matrices :

°* Let A &B are two comparable matrices, then

A+B =ay] byl  =lel .. ., wherec;=aj+b;Vi&j.

Example: IfA=(g ‘13 g) ,B=(_16 g :g),ﬁndA+B,A—B.

Return To Top




Algebra of Matrix:

Properties of Addition/Subtraction of Matrices:

¢ Let A & B are two comparable matrices having order m X n , then

A+ B =B+ A (commutative )

A—B#B-—-A




-7
—il
—16

2
(:
13

)

7
-2 5
-8 10

1

1
—2

~
N~ — ©
R
_
~
Il
O
04_
3‘|_‘5
~—
|
~
~ 1 S
—
7

S~
I
<
[
Sa]

O A-B+B-A




— 7

) then, x is equal to:

o [ o [ - S



Algebra of Matrix:
Properties of Addition/Subtraction of Matrices:
° LetA,B&C aretwo comparable matrices having order m X n , then
A+ (B+C)=(A+B)+ C (associative)
* Letd isamatrixoforderm xn, then

A+0=0+A=4 (0 = Opxn IS the additive identity )

A+ (A =0=(-A)+A ((—A) isthe additive inverse of 4)

Return To Top




Algebra of Matrix:
Properties of Scalar Multiplication :

¢ Let A&B are two comparable matrices having order m X n, then

O kA= Ak,kis a scalar

9 k(4+B)=kA+ kB, kisascalar

Q (kg +k)A=kiA+ kA ky, k, are scalars

= k(ad A) = (ka)A = a(kA); k,a are scalars

Return To Top




Multiplication of Matrix:
Matrix Multiplication :

* Product of two matrices 4 & B will exist only when number of columns of A
is same as number of rows of B .

ie.letd = [aij]mxp and B = [bij]pxn

- - — \'P
Amxp 'Ban = men = [Cij]an P where Cij = Zk:l amkbkn



[ ] Amxp . Bpx»n

Multiplication of Matrix:

i A _vp
= Cpxn = [Cij]mxn , Where ¢ i =0 S b

¢;j =Dot product of i*" row vector of 4 with j*
213%2 column vector of B

7) 2(=3)+0+ (-1)-(=2)
7) 3(-3)—4-5+ 6(-2)

2X2



-3
5 ] . Find the matrix BA.
-2

—74 12 —-19

—20 8 )

3X3



where [, 8

fl

w—




(A + B) (4

(_.{4_ + _8)(_{41 ‘Jr" D)_. /l_. _J_, )l—d _]_,JA

_B)=A

4% —

AB + BA — B*




=12 (
ddd \ s

)

B & BA = A, then A% + B? is:

Q. aa

2AB

2BA

A+ B

AB



0]

J then a value of a for which 4% = B is:

‘ No real values



dentity.



y matrix of order n .

az I”.



= (A + B)?




of Determinants




Polynornial Ecjtzitian I Ierefe

een two matrix polynomials,



'fA:[_Zl g]&f(x)=x2—4x+7,t

) =x=—4x+7

fA) = A2 =44+ 71

e I e R

f(4) =0

A

71



Tine matrix ebtain
IS called Transpo:

Example:

A

£




W [C(_)SZH —3lu 29] and A+ AT = I where I is 2 x 2 unit matrix and AT is the
sin260  cos26

transpose of 4, then the value of 0 is equal to

- [CDSZFJ —51:123]
- Lsin26  cos26.

o ld

[WN
n a
w | N |



r comparable matrices 4;

AB) = B'A’









and Y = AB — BA, then XYT is equal to

If A and B are symmetric matrices of the same order and X = AB + BA L

XY

YX

None of these



[t IS symmetric

X =Y

and A = A"

J(;] and A = AT, then which of the following is correct

Qa



diagonal elements are zero .



Ifthe matrix 4 =

0 a
2 0
b 1

—3
—1
0

] Is skew-symmetric, then

a=—2
a=2
b=3



riX is a symmetric matrix.






metric matrix






® Tr.(kA) =kTr.(4

® Tr.(A+B)=Tr.(4)

e Tr.(AB) = Tr.(BA)



rices A and B

Tr.(A) £ Tr.(B)

Tr.(BA)

Zero



e Adeterminantis a scalar value that is a function( real or complex

valued ) of entries of a square matrix .
Let a matrix be: A = [aif]n , then its determinant is denoted as det(4) = |4]|
If A=lalix1,|Al =a

IfAz[? Z,|A|=|Z Z|=ad—bc

5

Example: A = [4

_31] _its determinant is
|Al = 15 — (—=4) = 19

Return To Top
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a b

A:=|c d

Minor, of an element q;;, denoted by M;; is defined as determinant of a
sub - matrix obtained by deleting the it" row and j* column, in which
the element is present, of A.

M1 =d
M12 =C
M21 = b

M22=a

e Let A beadeterminant

¢ d

a--b

& dl

c--d|

2



Determinants




® |etAbeadeterminant

a b

A=|c d

Co - factor, of an element q;; , denoted by (;; is defined as
Cj = GGURES

C11 =My =d

Ci2 = =My = —c

Ca1 = MRS

Crp =My, =a

rn To Top




5,053,033 Of the determinant. %




a1z Aas3
A= |Az1 Q22 QA3

az1 Qazz d4szs
Expansion of determinant can be done by any row or column.
By 15¢ row :

= ay;(aa33 — a3as;) — a12(az1033 — A31023) + a13(az1a3; — az1a;;)

By 2™ row :

= —ay;(a;pa33 — aj3asy) + az,(aja33 — az1a;3) — a3(ai1as; — az1a;;)

Return To Top




5(12 — 7)

k= klog, x

1
kX = Elogax



)+ ai3(azias; — azia;;)



13) - a23(a11a32 . a31a12)



mn) and corresponding co —

ow (column) and corresponding
ther row (column) is zero.

a;3C,3 =0

mn) gives value of determinant.



31a13) + a;3(aa3; — ag1as;)



&

A
. XM21—yM22+ZM23=A

aC11+bC12+CC13=O

C
. XCy =y Cpt+zC;=A

pMyy —qMi; +7 M3 =A




e Determinant of upper or lower triangular square matrix is equal
to product of its diagonal elements.

Example:
a d e d e
b
A=<0 b f) = b f =a|0 £|+0+0
0 0 c 0 c
= |A| = abc

The determinant of the transpose of a square matrix is equal to the
determinant of the matrix.

Return To Top




® The determinant of the transpose of a square matrix is equal to the
determinant of the matrix.

Example:
aj1 Q12 Qg3 a1 Q1 Aaszp
A= |21 Q32 QAz3 A= |a12 azz as;
asz1 d4azz dass 13 Qz3 dzs

By 15t row, A = a;1 My, — a;,M;, + a;3M;5

By 15t column, A" = a; My, — a;o;M;5 + a;3M;3
A=A

Value of determinant doesn’t change

by interchanging rows with column
Return To Top







® |f corresponding elements of any two rows (or columns) are identical
(or proportional), then value of determinant is zero .

Example:
a1 a1 413
A= |Gz1 Qaz1 Qaz3

az1 4azp; dass

= A=ay,(az1a33 — az3a3;1) — ay1(az1a33 — aza,3) + a3(az1a3; — aza;q)

Return To Top




¢ |fall the elements of a row or column are zero, then the value of
determinant is zero.

Example:

0] 0] 0]
A= 0z ay; ap;
31 Aaszy dass

= A= ay1(aza33 — ay3a3;) — a12(az1033 — A310;33)
+ay3(az1as, — azayz;)

$A=O'M11_0’M12+0'M13

Return To Top




t of unity, then the value of A is:




Return To Top

its value gets multiplied by (—1).

c g h
A=|d e f A'=|d e
g h i a b
Proof:
a;; A12 Qi3
A= |21 Gz QA3
asz; 0dzz ds3

= A= a3 My, — a;,My; + a;3My3

® Ifany of two rows ( or columns) of a determinant are interchanged, then

[
f > A' ==
c
Ri <R,
Qz1 Q22 0423
A= Q11 Q12 Qj3
az1 043z dAzz

With respect to second row
= Ay = —ay1My1 + a;,My; — ay3M3

=4 AZ - _Al



Determinants




Return To Top

If elements of a row (or column ) are multiplied by a constant, then value
of determinant also gets multiplied by the same constant .

Proof:
a1 A1z A43 kai,
Aj=|Q21 Gz QA3 A,= |kay,
a3 0azz 04zs kas,
A2= k Al

a1 Q12 Qg3
A, =k|A21 Q2 A3z
az1 dazz dassz

A= a1 My, —az My + az; Mz,

a2
az;
as;



_ Qir Gz Qa3 kaj1 a;; ag3
Proof: Aj= (@21 @2 Q23| A =|kay,
A3 Aot kas,

A, Q3
asz; 0aszs
Az - k Al

a1 Q12 Qg3
A, =k|A21 Q22 Q33
az1 0Qazz dass
Ay=a; My — a1 My + az M3y

With 15 column

Ay = kay My — kay My + kaz; M3,

A, = k(a; My — a1 My + a3 M3q) = kA

Return To Top




c—1
c+1
(=D"c

=0.Then thevalueofnis:

a+1 a-—-1

= DR ﬂ Any even integer
J

A .
(—1)"+22a a+1 a—1 ‘ Any odd integer

=|[(-D"™' b+1 b-1
(—D"¢ c¢—-1 c+1 ﬂ .
Any Iinteger

Return To Top




(a+b+c)A;

Ay

abc A4

N

a T Q
N N

Return To Top




Return To Top

o JOS - -

(a+b+c)A;

Ay

abc A4



)

FIDEErMINants

» expressed as sum of two terms,
s sum of two determinants.

SHENRS
~ % N




V5
V10|
5

S
w2
-§€ o

2v/5
5
V15

3
V26

Return To Top




k is a scalar.

12 kags
ap, kays
kasz, kaszs

Al = k34|



ch
th
a
t|A| =
—
,|B]
=5

5.

271

.3n



matrix is zero.



metric matrix of odd order is zero.
det(A) & det(—A) = —det(4) .
atrix B . Then

T'=—A4-()
s 1Al = 1AT]) ﬂ

of matrix

- ‘ Statement 1 is true, statement
i 2 is false

correct det(4) = —(det(A4)) for odd

rix only

Return To Top




Ing to the elements of any row
(or column ) a constant of corresponding elements of any other

[OW. ((or column).

here pis a scalar.



dding to the elements of any row
ponding elements of any other row
(or column ) .

)z,  Pazs
a a a1 Q12 QAg3
22 23
o o A= |Q21 Az A3
32 33

a3y dz; dss
Az, d4zz
Az, Q3

aszp; dadsz




a*—1

ct—1

1 a® : i 1
= 42 |0 B — o 0

and cancellingoutb —aandc—a

b*+a*+ab| _ |1 b*+a*+ab
a c*+a*+ac 1 c?2+a%®+ac

Return To Top

b% — 1| = 0, then the value of

v
s

a+b+c



t—1
4 _ 1| = 0, then the value of

b? + a?® + ab g a+b+c

+ab+ac—b?*—c?>—ab)=a+b+c

ca)=a+b+c

Return To Top




=(a—b)(b—c)(c—a)




Determinants




s a factor of A



e terms



c? —ab — bc — ca)

+ b% + ¢? — ab — bc — ca)



3 = 2. If the matrix

wIinN



Multiplication of same order determinants
can be done in four

RXRRXC,CXC,CXR






COSA cosB cosC

COSA+cosB+cosC

Qaaa
[N

0sBcosA+sinBsinA cosCcosA+sinCsind
cosBcosB +sinBsinB cosCcosB +sinCsinB
cosBcosC +sinBsinC cosCcosC +sinCsinC

C

nAdA 1

PosB sinB 1

cosC sinC 1

cosA cosB cosC
sinA sinB sinC
0 0 (0]

X =0

Return To Top




1

(a — B)? thenkisequalto:

=



r_,(\ll]-].i.‘ y C .
EQUaCION (‘T:“]:r:'r' + |iy )
straight line passing through points (x1,y;) & (x5, y
1 1) ( i
27 2) IS :

oy A
j’ YV =0
X2 V2 1






N

COLUMN I COLUMN IT
oncurrent, if .
(A) L, Ly Lz are concurrent, if (@) k=-9
One of L,,L,,Ls is parallel to at least o — 6
one of the other two, if q 5

Ly, Ly, Ly form a triangle, if ) k= g

Ly, L,, L; do not form a triangle, if (s) k=5

Return To Top




N

COLUMN [ COLUMN IT
Ly, Ly, L are concurrent, if (@) k=-9
One of L,,L,,Ls is parallel to at least = _5
one of the other two, if () e = 5

Ly, Ly, Ly form a triangle, if ) k= g

Ly, L,, L; do not form a triangle, if (s) k=5

(B) ~ (1), (9)

Return To Top




A\ K

COLUMN I COLUMN I1
Ly, Ly, L are concurrent, if (@) k=—
One of Ly,L,, Ls is parallel to at least 3
(B) one of the other two, if (@) k=—3
(C) Ly, Ly, Ls form a triangle, if ) k =§
triangle, It they ar (D) Ly, L, L; donot form a triangle, if (s) k=5

concurrent

S [ =50r—90r—§ (D)*(p):(CI)r (S)

Return To Top




1(X) J2(%)  J3(X)
i Ax) = 9:1(x) g2(%) g3(%)
i!!('!) i!z(:) i!_;(.‘.')

T B 53000 = 31 (X0) i) f2(0)  fz(x) i) 20 fz3(x)
A = 9:(0) g:(x) g3(x) + g/'(x) g,/ (x) g5’ () + g1(x) g.(x) gs(x)
11 (x0) hz(x) h3(x) hy (%) 2(x)  h3(x) hy'(x)  hy'(x) hs'(x)

[differentiation can also be done column - wise)



[iFy()

Selution:

y~ (%)

y() +y" () = 23
1

2

tiate w.rtx

, differentiate w.rt x

n——=+y IS equal to:

5
B
D

—10



Note: [fvariable is present in more than one row (or column), then first

the determinant and then apply summation or integration .



FD

—

n+ 1
nin+1)
2

A 1
nc —1

'n 1
~T=0 —

'I!
_lf

'
r=0\:

)
2r — 1)

4

Z

en Y=o A(7) is equal to:

n+1
n(n+1)

rn

2

2

Qaa

.

n*(n+1)

n(2n+1)(3n+1)

2



!r

e value of Z;}=1 A(r)

g -
B oo



/2 %

T 8
ove that: B
\ X f(x) dx <4+15>

X — cos? x)

S 72 3 3 CEND)
g SIin“ x+Cc0sS” X—Co0S” x SIn“ x
cos’x —1) = —sin?x

sinZ x



/2 %

T 8
e that: — [
\ X f(x) dx <4+15>



of a Matrix




SIhEUIEINCRESIIGUIER Matrices

® A square matrix 4 is said to be singular or non — singular according as
|A| = 0 or |A| # 0 respectively.

EirmatixiandrAdjeint (Adjugate) matrix

o LetA=[a;]| beasquare matrix

» The matrix obtained by replacing each element of A by corresponding
co factor is called a co factor matrix .

C = [Cif]n , Where ¢;; is co factor of a;;, Vi &j

» Transpose of co factor matrix of A is called adjoint of matrix 4,
and is denoted by adj (4).

adj (A) = [dij]n ,Whered;; =cj; ,Vi&j

Return To Top




matrix

* LetA = [a;] be asquare matrix

= [cij] ., where ¢;; is co factor of a;;, Vi &
ad] (A) = [dl]]n ,Where dl] = Cji 4 [ &]

[an a12] [011 C12]
az1 G221 C21 C22

adj (4) = ¢ =[0I
Note:
Fora=[0 22 agjay=[2 ]

Return To Top




Return To Top

2 5 6
Find adjoint of matrix 4 = (1 3 1).
20N

(2 5 6) C11 =7 Cip=-1; Ci3=—4; C;y =-3; Co2 = =6; C3=6;
—

C31 = _13, C32 = 4‘; C33 = 1l

-13 4 1

7 -3 -13

> adj(A)=CT=|-1 -6 4
-4 6 1






® |etd= [aij]n

adj (AT) =
Proof:
L.H.S = adj (A7) =

RH.S = (adj A)T = ({
adj (A7) = (adj A)T



® LetA=[a;| beasquare matrix.

Aadj (A) = AL, = adj (A) A

Proof:
ai1 Qg2 Qap3 €11 C12 (13
A=10z21 Az QA3 =>(C=|C1 C2 C23
asz1 dazz dass C31 C32 (33

C11 €21 (31
adj (A)=CT =|C12 €22 C3z
C13 Cy3 C33

a1 412 a13]1[C11 C31
Aadj (A) =|az1 azz azs||ciz C32
az1 4azz Aaszszfl€is C33

Return To Top




Aadj (A) = |A|l, = adj (A) A
Proof:

Aadj (A)=|A21 Qzz Qaz3||C12

A11 Q12 a13] [011
C13

4] 0 0
Aadj(A) =|0 |4 0
0 0 |4

Aadj (A) = |All,

Return To Top

® LetA=[a;| beasquare matrix.

C21
C22
C23

C31
C32
C33

] a11Cyq + a12C12 + a13C13 = A

a11C21 + a13C5; +a43C,5 =0






We know, A adj (
= |A adj (A)| = ||A|L,|
= |Alladj (A)| = |A["
= ladj (A)] = |A|"*

Note:
IC| = ladj (A)| = |A|"*



XA

(4] = 14"

|A| = 4, then a is equal to:

Qaa. a

11



IAIn—Z
|A|n2—2n
|A|n2—n

|A|(n—1)2



adj(adj(4)) = |A|" %A
Proof:
Aadj(A) = |A|l
= adj(A)adj(adj(4)) = |adj(A)|I
= A adj(A)adj(adj(A))
= |Aladj(adj(4)) = AlAI™?

= adj(adj(4)) = |A|" 24

Return To Top

* LetA=[a;] beasquare matrix.

A - adj (A)
ladj ()] = A"

Aadj (4) = |A|L, = adj(4) A



&

34, then % is equal to:

JEE MAIN JAN 2019

. :
D .
1
ﬂ 72




G CIRE MABTHX

¢ If Aisasymmetric matrix, then adj (4) is also a symmmetric matrix.

A= [Z ’Z] > adj (4) = [_Cb ‘ab]

¢ If Aisasingular matrix, then adj (4) is also a singular matrix.

|Al=0 =ladj (D=0 |adj(A)]=]4]"""



® If A, B are square matrices of ordern and |A| # 0,
AB = I, = BA, then B is multiplicative inverse of 4 i.e. B = A™*
= AAT" ==
To find inverse of a matrix:
We know , A adj (A) = |A|l, =adj A- A

adj A\ _ __(adj A .
= (IAI)_In_(IAI) =
=>A-A_1=In=A_1-A =>A_1=—ad|JA?A)

Note: For a matrix to be invertible, it must be non —singular .

Return To Top




1; 621=_3; CZZ=1; 623:();






,then A is

JEE MAIN JAN 2019

t cost —sin

—2cost Invertible for all t € R

D
”

t + 2sintcost — 2sintcost + 2 sin?t)

5)#0 ~Aisinvertibleforallt e R




A-detB-B~1-4°1... ®)






=jand 0 wheni #j.






e inverse of [0 1] IS

JEE MAIN APRIL 2019

nzl] [112
R = B

i+ (n— 1)]

N [(1) 718]

=78 =>n=13

mverseof[o - B

= |B|=1=>B"1=A4djB






3. If det(4BAT) = 8

JEE MAIN JAN 2019

|[ABA"| =

> [A2[B]

1
> (4] [BI}AT| = 8

&



gular

on both sides)



—1’. ,an—l)
4] #0 —=A4"1=941W
] Al
a,as 0 0
1
" 0 a,as 0
R0 0 aya



that A = BX, then X is equal to:







when 6 = % isequal to:

JEE MAIN JAN 2019

1 V3
G
31

N
N

by

N |- Nlél

sin6)=(c0529 sin29)
nfd cosél —sin260 cos?26

cos gz) (—C (s)isnga ELI;Z) i (—C (s)fn33?6 z:)r; ?;Z)

_so _ ( cos500 sin500
o (— sin 500 cosSOB)

&
@
&

N | =
Nél

Return To Top




&

0 =—, isequal to:
12

JEE MAIN JAN 2019

-1 — ( COS 0. Sin 6

—Sin6 coso.

Similarly, A== ( °05°2¢

— Sin 506







&

4 and B = A™1AT, then BBT equals:

JEE MAIN 2014

B—l

(A HT=UNH? ﬂ (B=H"




Proof:







adj (kA) = k™" adj (4)

» order of matrix



% adj ( 54) equals:

501

_A_






rn To Top

N

= NM
(AB)"! = B~14"!

(AB)T = BTAT

(A—l)T - (AT)—l

symmetric matrices such that
hen M2N2(MTN)"*(MN~DT is

T JEE 2011

MZ

MN



j Ay)(adj Aq)



ull matrix.






ual to:
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Linear
tions




lude the following operations:

W (column) by a non — zero scalar.

of a row (column) to another row(column).

quivalent if one is obtained from other

ormation A ~ B.






=Xample; By using elementary row transforma

Sollieny

ations :

tion, find inverse of A =




=Xample; By using elementary row transforma

Sollieny

ations :

0

tion, find inverse of A = |1

3

1
2
1

2
3
1



=X eIEs

Sollieny

By Using elementary row transforms

ations :

0

tion, find inverse of A = |1

3

1
2
1

2
3
1



Solltleny;

L
0

ations :

ion, find inverse of 4 =




Solltiany;

|
1)
U

§
0
0

J
L

Y

U
L

U

AT = |

1
A —
l\' WA = I
N

- O C
—_—
1
S —
N | U | N |-
g

|
N~

e ,l‘ N
e
oo
> = I.wlﬁ
wi = :

I
N

ations :
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“lwnm|S _1 Nl m|S _1
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| I | I
e — D ——
_——m— -
~—
e —
o «H e
o
on
= mlwnm]wn _1




< E— R
— — (en) o i (@]
o o
o o
“lwnm|S _1 Nl m|S _1
1 | =l m]n
| |
| I | I
e — D ——
_——m— -
~—
e —
o «H e
o
on
= mlwnm]wn _1
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“lwnm|S _1 Nl m|S _1
| | |l m|wn
— | |
| I I I
—
~—
—
o «H e
o
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ique solution.

ations has infinite solution.



o solution.



of equations:
solution, is:

(not possible)

(possible)

Infinite






\ 4










aneously, then we have HOMOGENEOUS SYSTEM.

Is always a solution of this equation and it's called Trivial solution.



ial solution



a1 x+byy+cz=0
ax + by +cz=10
azx + bzy +c3z =0



a1 x+by+ciz=0
ax + b,y +cz=0
azx + by +c3z =0



he system of linear O
2z2=0;—x+4y+7z=0,

Four
non — trivial solution
B Three
A =0
‘ Two
Ri > R{ +R,
>
C3 — C3 — 2C,
0

sin 360

cos280 2 —2cos26

rn To Top




he system of linear O
2z2=0;—x+4y+7z=0,

Four

Three

Two

sin@ — 4sin%0 = 0 One

Q. aa

0 (4sin?6 + 4sinf —3)=0

. 1 3
= sinf =0,-,—-
2’ 2

rn To Top




he system of linear

L]

N

—_—————
N W

---------------------

Number of values = 2

2z2=0;—x+4y+7z=0,

Q. aa

Four

Three

Two

One



10

r Equations
rsion) and
us System of
uations



=0;x+ky—2z=0&
y,2), then§+§+§+k is equal to:
JEE MAIN Apr 2019

N

»)
IR
L
N[
L
R IN
+
=
Il
-9
Sl w

6k)=0=18—4k =0

Return To Top




+ky—2z2=0& %

enZ+Z+Z4kisequalto:
y z x

JEE MAIN Apr 2019

U



the system of equations x — 2y +
hthat 15 < x2 + y? + z? < 150. Then,

JEE MAIN Apr 2019

<x?+y%+2z2<150

=>2y—5z=k
0 =>4y+z=2k

5 Since x, y, z are integers, k = even integer

&



the system of equations x — 2y + %
hthat 15 < x2 + y? + z? < 150. Then,

JEE MAIN Apr 2019



Return To Top

simultaneously zero)
Consider system of equations

a;x + by +ciz=d,

a;
ax + by +cz = d, A=la,
azx + b3y + c3z = dj as

di by ¢ a, dq
A,=|d, b, ¢ Ay=la, d,

d; bz c3 as ds

o B By A
Solution:x =—=;y = N

e Three variables: NON-HOMOGENEOUS SYSTEM (If d,,d,, d; are not all



If at least one of A, , A, , A, # 0

Unigque non-trivial solution.
() If A+ 0, system of equation is <

consistent and has unigque solution
v ifall A, A, , A, =0

= Unique trivial solution.

(ii) If A= A, = A, = A,= 0, system of equation has infinite solution.

Example:

x+2y+z=1
2x +4y+2z=2
4x+8y+4z =4

Infinite solution

Return To Top




(iii) If A= 0, but at least one of A, , A, , A, # 0,
system of equations is inconsistent and has no solution.

A+ 0 Consistent system Unique solution
Ay=A,=A,=0 Consistent system Infinite solution
=0 | ) $:
at least one of : :
Inconsistent system
Ag, by, A, #0 \% No solution

Return To Top




rn To Top

nt system

me:

;2x+3y+2z2=5;

E
x+y+z=2

I
()
QQa. 8

2x+3y+2z=5

2x +3y+2z=+V/3+1

Has a unique solution for

la| =3

Is inconsistent for |a| = V3

Has infinitely many solutions
fora =4

Is inconsistent for a = 4



em of linear equations 2x —y + 2z = 2;

on. Then theset S
JEE MAIN Apr 2019

Is a singleton
ﬂ Is an empty set

¢, —» C; — G5
0] -1 2
. A=[1-212 -2 21=0
solution 0 1 1

S>A-1D(=1-21) =0

>A=1-2
2




of linear equations 2x — y + 2z = 2;

hen the set S
JEE MAIN Apr 2019

, but at least one of A, , A, , A, # 0 ,system

2 -1 2

1
=t =2 —ol.p
4 -1 7

contains two values

&

uations is inconsistent and has no solution.



&

+2y+22=6&x+3y+Az=y,



+2y+22=6&x+3y+Az=y,
alue of 1 + uis:

A 10
B .
12
g



® Consider system of equations ( If d;, d,, d; are not all simultaneously zero)

ax + bly + C1Z = dl
ar,X + be + CrZ = dz
asXx + b3y + C3Z = d3

a; b el 7 dq
letA=|a, b, c3|, X= [)’] and B = |d;
as b3 C3 VA d3

Thus, we have, in matrix form AX = B

where A is a square matrix .

Return To Top




AX =B
|
I v
EX |A||= 0
. l . * ¢
Unique solution (adj A)B = 0 (adj A)B # 0

X=A"1B

} }

Infinite solution No solution

Thus, we have, in matrix form AX = B where A is a square matrix .



sing matrix inverse.



X inversion):

Consider system of equations

o letA=|a,
as by c3 Z ds a1 x +byy+ciz=0

. . a,x + b,y +c,z=0
Thus, we have, in matrix form AX = B

azx + b3y +c3z=0
where A is a square matrix.
> If |A| # 0, then system has trivial solution (x,y,z) = (0,0,0)

ATIAX=A4"1.0=>X=0

> If|A] =0, then system has non-trivial (infinite) solution.

Return To Top




f equations

non —trivial solution
JEE Main Jan 2019

Is a singleton

Contains exactly two elements

Is an empty set

Contains more than two
elements

Q8 a.



on Theorem

es of Matrices




polynomial of A
tic equation of A.

alled eigen value of A)



Caylay — Flelanllftonalsleifsinn]

aracteristic equation of A



AD—-0)+2(0-2(2-21))=0
JB-A-4)=0=>2-DUN%-41-1)=0

612 + 71 + 2 = 0 — characteristic equation



&

7x + k = 0, then the value of k is:

equation




ristic equation

4] — A

6l — A



2 + cA + dI), then the ordered pair (c,d) is:

(c,d) =? (—6,—11)
g .-

‘ (—6,11)

B

= 0 - characteristic equation
milton theorem,

+11A-6/=0

rn To Top




A + dI), then the ordered pair (¢, d) is:

B
”

(—6,—11)

(6,—11)

(—6,11)

(6,11)









B = _p'!'Q'_l(JUD_P

— _p'f' (P}lf,v')iooo?

PTPAPT . PAPT ... PAPTP P'P

A1000

None of these






2048






atrix of order 3.

nt of order 3.



> the set of all non-singular

h of a,b, & c is either w or w?.

T JEE -

B -

1-—cw)#0 Sat—&c#E—
w w
d,a=c=w, While bcan take w or w?

Number of matrices = 2

Return To Top




is transpose of P and I is the
X 0

atrix X = [y| # [0] such that
z 0

B
”
0




201

= [ql'j] q31tqs>

50_Q=I q21
0 1 0 0
ol =/ 8 1 0
16 1 48 8 1
011 0 0 I 0 0
1 0//4 1 0/ =12 1 0
48 8 1l/116 4 1. 96 12 1

=7

x of order 3. 1f Q = [q;;] is a

205



-50-51 200 O

|

, 431tq32

400-51+200

d21

200

aaaa

=103

52

103

201

205






