Welcome to

Matrices & Determinants

Table of contents

Session 01	03	Session 04	64	Session 08	141
<u>Introduction</u>	04	Co-factor of an Element	65	Properties of Inverse of Matrix	143
<u>Order of Matrix</u>	08	<u>Value of 3 x 3 Matrix Determinant</u>	67		
Types of Matrices	09	Value of Determinant in terms of Minor and Cofactor	69	Secretary 22	163
Principal Diagonal of Matrix	15	Properties of Determinant	74	Session 09	103
<u>Trace of Matrix</u>	16	Session 05	81	Inverse of a Matrix by elementary transformations	164
<u>Types of Matrices</u>	18	Properties of Determinant	82	System of Linear Equations	175
Session 02	27	Properties of Determinant	8 7	<u>Cramer's Rule</u>	179
<u>Algebra of Matrices</u>	28	Some important Formulae	97		
<u>Properties of Addition/</u> Subtraction of Matrices	32	Session 06	98	Session 10	190
Matrix Multiplication	34	Some important Determinants	99	<u>Cramer's Rule</u>	195
Properties of Matrix	37	<u>Product of Two Determinants</u>	103	System of Linear Equations(203
Multiplication Power of a Square Matrix	41	Application of Determinants	107	Matrix Inversion) Homogeneous System of	206
1 OWE OF A SQUARE MACHIN	11	<u>Differentiation of Determinant</u>	112	<u>Linear Equations(Matrix</u>	200
Session 03	48	<u>Integration/ Summation of</u> Determinant	114	Inversion)	
Polynomial Equation in Matrix	45	Consider OT	119		
<u>Transpose of a Matrix</u>	47	Session 07		Session 11	208
<u>Symmetric and Skew</u>	51	Singular/Non-Singular Matrix	120	Characteristic Polynomial and	209
Symmetric Matrices Draparties of Trace of a Matrix	60	Cofactor Matrix & Adjoint Matrix	121	<u>Characteristic Polynormal and</u> <u>Characteristic Equation</u>	209
<u>Properties of Trace of a Matrix</u> <u>Determinants</u>	60 62	<u>Properties of Adjoint Matrix</u>	124	<u>Cayley-Hamilton Theorem</u>	210
Minor of an element	63	<u>Inverse of a Matrix</u>	134	Special Types of Matrices	216
		<u>Matrix Properties</u>	138	<u>special rypes of Matrices</u>	210

Session 01

Introduction to Matrices

• A rectangular arrangement of $m \cdot n$ numbers (real or complex) or expressions (real or complex valued), having m rows and n columns is called a matrix. $(m, n \in N)$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \cdots a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots a_{mn} \end{bmatrix}$$
Rows

An element of a matrix is denoted by
 a_{ij}: Element of ith row & jth column.

A rectangular arrangement of $m \cdot n$ numbers (real or complex) or expressions (real or complex valued), having m rows and n columns is called a matrix. $(m, n \in N)$

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \cdots a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & a_{m3} \cdots a_{mn} \end{bmatrix}$$
 Rows

- Number of elements in a matrix
 - = Number of rows x Number of columns
 - $= m \times n$

$$A = \begin{bmatrix} 1 & 0 & 5 \\ -2 & 3 & -8 \end{bmatrix}$$

Solution:

$$a_{11} = 1$$

$$a_{12} = 0$$

$$a_{13} = 5$$

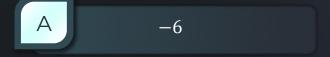
$$a_{21} = -2$$

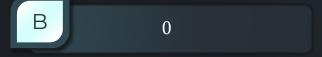
$$a_{22} = 3$$

$$a_{23} = -8$$

Find the value a_{23} in the following matrix

$$A = \begin{pmatrix} 3 & -4 & 0 \\ -2 & 7 & 10 \\ 5 & -6 & 9 \end{pmatrix}$$

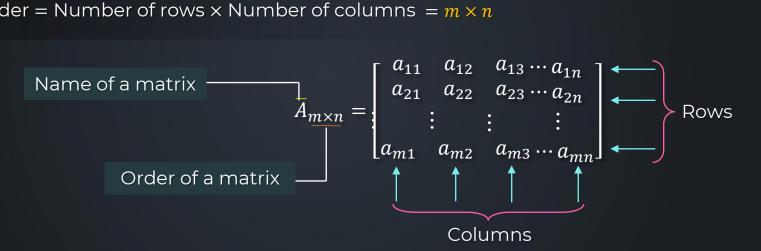




Order of a matrix

Order or dimension of a matrix denotes the arrangement of elements as number of rows and number of columns.

• Order = Number of rows \times Number of columns = $m \times n$



Thus, a matrix can also be represented as $A = [a_{ij}]_{m \times n}$ or $(a_{ij})_{m \times n}$

Types of Matrix:

Row Matrix (row vector): A matrix having a single row is called a row matrix.

$$A = [a_{ij}]_{1 \times n} = [a_{11} \quad a_{12} \quad a_{13} \cdots a_{1n}]_{1 \times n}$$

Example:
$$B = [a \ b \ c]_{1\times 3}$$

 Column Matrix (column vector): A matrix having a single column is called a column matrix.

Example:
$$B = \begin{bmatrix} a \\ b \\ c \\ d \end{bmatrix}_{4 \times 1}$$

$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times 1} = \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{bmatrix}_{m \times 1}$$

• Matrices consisting of one row or one column are called vectors.

Types of Matrix:

• Zero Matrix (null matrix): If all the elements of a matrix are zero, then it is called zero or null matrix

$$A = \left[a_{ij}\right]_{m \times n}$$

 $A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$ is called a zero matrix, if $a_{ij} = 0$, $\forall i \& j$.

$$A = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Vertical Matrix

A matrix of order $m \times n$ is known as vertical matrix if m > n, where m is equal to the number of rows and n is equal to the number of columns.

• In the matrix example given the number of rows (m) = 4, whereas the number of columns (n) = 2.

Therefore, this makes the matrix a vertical matrix.

Horizontal Matrix

A matrix of order $m \times n$ is known as vertical matrix if n > m, where m is equal to the number of rows and n is equal to the number of columns.

Example:
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 5 & 1 & 1 \end{bmatrix}$$

• In the matrix example given the number of rows (m) = 2, whereas the number of columns (n) = 4.

Therefore, this makes the matrix a horizontal matrix.

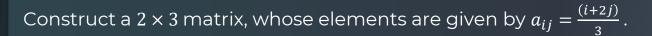
If a matrix has 12 elements, then what are the possible orders it can have?

Solution:

Number of elements = Number of rows x Number of columns

$$12 = m \times n \ (m, n \in N)$$

Possible Order =
$$1 \times 12$$
, 2×6 , 3×4 , 4×3 , 6×2 , 12×1



Solution:

$$a_{ij} = \frac{(i+2j)}{3}$$

$$a_{11} = 1$$

$$a_{12} = \frac{5}{3}$$

$$a_{11} = 1$$
 $a_{12} = \frac{5}{3}$ $a_{13} = \frac{7}{3}$

$$a_{21} = \frac{4}{3}$$
 $a_{22} = 2$ $a_{23} = \frac{8}{3}$

$$a_{22} = 3$$

$$a_{23} = \frac{8}{3}$$

$$A = \begin{pmatrix} 1 & \frac{5}{3} & \frac{7}{3} \\ \frac{4}{3} & 2 & \frac{8}{3} \end{pmatrix}$$

Principal Diagonal of a Matrix: Diagonal containing the elements a_{ij} , where i = j is called principal Examples: diagonal of a matrix

$$A = \begin{bmatrix} 2 & -6 & 10 \\ 5 & 0 & 7 \\ 19 & -3 & -8 \end{bmatrix}_{3\times 3} \qquad B = \begin{pmatrix} 2 & 3 & 4 & -5 \\ 1 & 4 & 0 & 6 \\ -3 & 7 & 8 & 9 \end{pmatrix}_{3\times 4}$$

Types of Matrix:

 Square Matrix: A matrix where number of rows = number of columns is called square matrix.

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \cdots a_{1n} \\ a_{21} & a_{22} & a_{23} \cdots a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & a_{n3} \cdots a_{nn} \end{bmatrix}_{n \times n}$$
Example:
$$A = \begin{bmatrix} -4 & 5 & 0 \\ 8 & -1 & 3 \\ 9 & 7 & 2 \end{bmatrix}_{3 \times 3}$$

$$A = \begin{bmatrix} -4 & 5 & 0 \\ 8 & -1 & 3 \\ 9 & 7 & 2 \end{bmatrix}_{3 \times}$$

 Trace of a Matrix: Sum of all elements in the principal diagonal of a matrix is called trace of a matrix.

$$Tr(A) = \sum_{i=1}^{n} a_{ii}$$

$$A = \begin{bmatrix} 2 & -6 & 1 \\ 15 & 9 & 0 \\ -7 & 3 & -8 \end{bmatrix}_{3 \times 3} \Rightarrow Tr(A) = 2 + 9 - 8 = 3$$

$$B = \begin{pmatrix} 0 & -3 & 5 & 1 \\ -2 & 3 & 6 & -9 \\ 11 & -8 & -5 & 10 \end{pmatrix}_{3 \times 4} \Rightarrow Tr(B) = 0 + 3 - 5 = -2$$

If $A = [a_{ij}]_{3\times 3}$ where $a_{ij} = i^2 + j^2$. Then the trace of matrix A is

Solution:

Trace is sum of elements in principle diagonal

Types of Matrix:

• Diagonal Matrix: A square matrix $\left[a_{ij}\right]_n$ is said to be a diagonal matrix if

$$a_{ij} = 0$$
 , $\forall i \neq j$.

 \blacktriangleright A diagonal matrix is represented as: $A = diag.(a_{11}, a_{22},..., a_{nn})$

$$A = \begin{bmatrix} -3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -10 \end{bmatrix}_{3 \times 3}$$

$$A = diag.(-3,2,-10)$$

$$B = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}_{4 \times 4}$$

$$B = diag.(1,2,0,-4)$$

Scalar Matrix: A diagonal matrix whose all diagonal elements are equal is called scalar matrix

$$A = [a_{ij}]_n$$
 is a scalar matrix if

$$a_{ij} = 0$$
 , $\forall \ i \neq j$ $a_{ij} = k$, $\forall \ i = j$

$$A = \begin{pmatrix} a & 0 \\ 0 & a \end{pmatrix}$$

- Unit Matrix (identity matrix): A diagonal matrix whose all diagonal elements are equal to 1 is called identity matrix
- Unit matrix of order n is denoted by $I_n(I)$.

$$I_n = [a_{ij}]_n$$
 such that

$$a_{ij} = 0$$
, $\forall i \neq j$

$$a_{ij} = 1, \forall i = j$$

$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 $I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Types of Matrix:

- Triangular Matrix:
 - (i) Upper Triangular Matrix

A matrix in which all the elements below the principal diagonal are zero is called an upper triangular matrix.

$$P = [a_{ij}]_n$$
 such that $a_{ij} = 0$, $\forall i > j$

$$A = \begin{pmatrix} 1 & 3 & 0 \\ 0 & -4 & 9 \\ 0 & 0 & -5 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & -3 & 5 & 1 \\ 0 & 3 & 6 & -9 \\ 0 & 0 & -5 & 10 \end{pmatrix}$$

Types of Matrix:

- Triangular Matrix:
 - (ii) Lower Triangular Matrix

A matrix in which all the elements above the principal diagonal are zero is called a lower triangular matrix

$$P = [a_{ij}]_n$$
 such that $a_{ij} = 0$, $\forall i < j$

$$A = \begin{pmatrix} -7 & 0 & 0 \\ 3 & 4 & 0 \\ -2 & 10 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ -3 & 8 & 6 & 0 \end{pmatrix}$$

Comparable Matrix:

Two matrices A & B are said to be comparable if,

order of matrix A = order of matrix B

Example: If matrices $A_{3\times 5}$ & $B_{m\times n}$ are comparable, then $(m,n)\equiv (3,5)$

Equal Matrix:

Two matrices are said to be equal if,

- (i) They are comparable.
- (ii) corresponding elements of them are equal.

Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n}$$
 and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_{p \times q}$

Then A = B, if m = p; $n = q \& a_{ij} = b_{ij}$, $\forall i \& j$

Let
$$A = \begin{bmatrix} \sin \theta & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \cos \theta \\ \cos \theta & \tan \theta \end{bmatrix}$$
 and $B = \begin{bmatrix} \frac{1}{\sqrt{2}} & \sin \theta \\ \cos \theta & \cos \theta \\ \cos \theta & -1 \end{bmatrix}$. Find θ so that $A = B$.

Solution: Order is same.

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \cos \theta = -\frac{1}{\sqrt{2}}$$

$$\Rightarrow \tan \theta = -1 \Rightarrow \theta = \frac{3\pi}{4}$$

 $\frac{\pi}{4}$

 $\frac{3\pi}{4}$

 $\frac{5\pi}{4}$

 $\frac{7\pi}{4}$

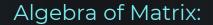
If
$$\begin{bmatrix} x-y & 1 & z \\ 2x-y & 0 & w \end{bmatrix} = \begin{bmatrix} -1 & 1 & 4 \\ 0 & 0 & 5 \end{bmatrix}$$
, then $x+y+z+w$ is

Solution:

$$2x - y = 0$$

$$\Rightarrow x = 1, y = 2$$

$$z = 4, w = 5$$
Thus, $x + y + z + w = 12$



Multiplication of Matrix by a scalar

• Let k be a scaler (real or complex) and $A=\left[a_{ij}\right]_{m\times n}$ thus $kA=\left[b_{ij}\right]_{m\times n}$, where $b_{ij}=k$ a_{ij} \forall i & j

Example: If
$$A = \begin{pmatrix} -1 & 2 & -6 \\ 3 & -4 & 7 \end{pmatrix}$$
, then $-A$ is:

Solution:
$$-A = (-1)A = -1 \times \begin{pmatrix} -1 & 2 & -6 \\ 3 & -4 & 7 \end{pmatrix}$$
$$= \begin{pmatrix} 1 & -2 & 6 \\ -3 & 4 & -7 \end{pmatrix}$$

-A is the negative of matrix A

Session 02

Algebra of Matrices and Multiplication of Matrices

Algebra of Matrix:

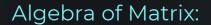
Addition/Subtraction of Matrices:

• Let A & B are two comparable matrices, then

$$A \pm B = \left[a_{ij}\right]_{m \times n} \pm \left[b_{ij}\right]_{m \times n} = \left[c_{ij}\right]_{m \times n}$$
, where $c_{ij} = a_{ij} \pm b_{ij} \ \forall \ i \ \& \ j$.

Example: If
$$A = \begin{pmatrix} 2 & -3 & 4 \\ 0 & 1 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} -6 & 0 & -2 \\ 1 & 7 & -8 \end{pmatrix}$, find $A + B$, $A - B$.

$$A + B = \begin{pmatrix} -4 & -3 & 2 \\ 1 & 8 & -3 \end{pmatrix}$$
$$A - B = \begin{pmatrix} 8 & -3 & 6 \\ -1 & -6 & 13 \end{pmatrix}$$



Properties of Addition/Subtraction of Matrices:

• Let A & B are two comparable matrices having order $m \times n$, then

$$A + B = B + A$$
 (commutative)

$$A - B \neq B - A$$

Algebra of Matrix:

Example: Let
$$A = \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix}$

$$A + B = \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} + \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ -3 & 9 \\ -3 & 4 \end{pmatrix}$$

$$B + A = \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} + \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ -3 & 9 \\ -3 & 4 \end{pmatrix} = B - A = \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ -13 & 16 \end{pmatrix}$$

$$\Box$$
 $A + B = B + A$ (commutative)

$$A + B = \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} + \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} = \begin{pmatrix} 4 & 7 \\ -3 & 9 \\ -3 & 4 \end{pmatrix} \begin{vmatrix} A - B = \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} - \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} = \begin{pmatrix} 2 & -7 \\ 1 & -1 \\ 13 & -16 \end{pmatrix}$$

$$B - A = \begin{pmatrix} 1 & 7 \\ -2 & 5 \\ -8 & 10 \end{pmatrix} - \begin{pmatrix} 3 & 0 \\ -1 & 4 \\ 5 & -6 \end{pmatrix} = \begin{pmatrix} -2 & 7 \\ -1 & 1 \\ -13 & 16 \end{pmatrix}$$

$$\Box$$
 $A-B \neq B-A$

If
$$\begin{pmatrix} x^2 + x & x \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -x + 1 & x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix}$$
 then, x is equal to:

Solution:

$$\begin{pmatrix} x^2 + x & x \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 0 & -1 \\ -x + 1 & x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix}$$

$$\begin{pmatrix} x^2 + x & x - 1 \\ -x + 4 & 2 + x \end{pmatrix} = \begin{pmatrix} 0 & -2 \\ 5 & 1 \end{pmatrix}$$

$$x^2 + x = 0 \qquad \Rightarrow x = 0, -1$$

$$x - 1 = -2$$
 $\Rightarrow x = -1$

$$-x + 4 = 5$$
 $\Rightarrow x = -1$

$$2 + x = 1$$
 $\Rightarrow x = -1$

$$\therefore x = -1$$

Key Takeaways

Algebra of Matrix:

Properties of Addition/Subtraction of Matrices:

• Let A , B & C are two comparable matrices having order $m \times n$, then

$$A + (B + C) = (A + B) + C$$
 (associative)

• Let A is a matrix of order $m \times n$, then

$$A + O = O + A = A$$
 ($O = O_{m \times n}$ is the additive identity)

$$A + (-A) = 0 = (-A) + A$$
 ($(-A)$ is the additive inverse of A)

Key Takeaways

Algebra of Matrix:

Properties of Scalar Multiplication:

- Let A & B are two comparable matrices having order $m \times n$, then
 - \Box kA = Ak, k is a scalar
 - $k(A \pm B) = kA \pm kB$, k is a scalar
 - lacksquare $(k_1\pm k_2)A=k_1A\pm k_2A$; k_1 , k_2 are scalars
 - $k(\alpha A) = (k\alpha)A = \alpha(kA)$; k, α are scalars

Key Takeaways

Multiplication of Matrix:

Matrix Multiplication:

• Product of two matrices A & B will exist only when number of columns of A is same as number of rows of B.

i.e. let
$$A = \left[a_{ij}\right]_{m \times p}$$
 and $B = \left[b_{ij}\right]_{p \times n}$

$$A_{m imes p}$$
 . $B_{p imes n} = \mathcal{C}_{m imes n} = \left[c_{ij}
ight]_{m imes n}$, where $c_{ij} = \sum_{k=1}^p a_{mk} b_{kn}$

Multiplication of Matrix:

•
$$A_{m \times p}$$
 . $B_{p \times n} = C_{m \times n} = \left[c_{ij}\right]_{m \times n}$, where $c_{ij} = \sum_{k=1}^p a_{mk} b_{kn}$

Example:
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & -4 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ -7 & -2 \end{bmatrix}$

$$C = AB = \begin{bmatrix} 2 & 0 & -1 \\ 3 & -4 & 6 \end{bmatrix}_{2\times3} \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ -7 & -2 \end{bmatrix}_{3\times2} \quad c_{ij} = \text{Dot product of } i^{th} \text{ row vector of } A \text{ with } j^{th}$$

$$= \begin{bmatrix} 2 \cdot 1 + 0 + (-1) \cdot (-7) & 2(-3) + 0 + (-1) \cdot (-2) \\ 3 \cdot 1 + 0 + 6(-7) & 3(-3) - 4 \cdot 5 + 6(-2) \end{bmatrix}_{2\times2}$$

$$= \begin{bmatrix} 9 & -4 \\ -39 & -41 \end{bmatrix}_{2\times2}$$

If
$$A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & -4 & 6 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ -7 & -2 \end{bmatrix}$. Find the matrix BA .

Solution:

$$A = \begin{bmatrix} 2 & 0 & -1 \\ 3 & -4 & 6 \end{bmatrix}, B = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ -7 & -2 \end{bmatrix}$$

$$BA = \begin{bmatrix} 1 & -3 \\ 0 & 5 \\ -7 & -2 \end{bmatrix}_{3 \times 2} \begin{bmatrix} 2 & 0 & -1 \\ 3 & -4 & 6 \end{bmatrix}_{2 \times 3}$$

$$= \begin{bmatrix} 2-9 & 0+12 & -1-18 \\ 0+15 & 0-20 & 0+30 \\ -14-6 & 0+8 & 7-12 \end{bmatrix} = \begin{bmatrix} -7 & 12 & -19 \\ 15 & -20 & 30 \\ -20 & 8 & -5 \end{bmatrix}_{3\times 3}$$

Properties of Multiplication

• In general, $AB \neq BA$

If
$$AB = BA$$
, then $A \& B$ are said to be commute.

If
$$AB = -BA$$
, then A & B are said to be anti – commute.

- AO = OA = O, whenever defined.
- Let $A = \left[a_{ij}\right]_{m \times n}$. Then $AI_n = A \& I_m A = A$, where $I_m \& I_n$ are identity matrices of order m & n respectively.
- If k is a scalar and product of matrices A & B is defined, then (kA)B = A(kB) = k(AB).

Properties of Multiplication

- A(BC) = (AB)C, whenever defined. (associative)
- $A(B \pm C) = AB \pm AC$, whenever defined. (left distributive)
- $(B \pm C)A = BA \pm CA$, whenever defined. (right distributive)
- $(A + B)^2 = (A + B)(A + B) = A^2 + AB + BA + B^2$
- $(A + B)(A B) = A^2 AB + BA B^2$

If A & B be two matrices such that AB = B & BA = A, then $A^2 + B^2$ is:

Solution: AB = B (given)

Pre-multiply B on both sides.

$$\Rightarrow BAB = B^2$$

$$\Rightarrow AB = B^2$$

$$\Rightarrow B = B^2 \dots (i)$$
 $(\because AB = B)$

BA = A (given)

Pre-multiply A on both sides.

$$ABA = A^2$$

$$\Rightarrow BA = A^2$$

$$\Rightarrow A = A^2 \dots (ii)$$
 (: $BA = A$)

$$A^2 + B^2 = A + B$$

2*AB*

2BA

A + B

AB

If
$$A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$ then a value of α for which $A^2 = B$ is:

Solution: $A = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix}$

$$A^{2} = \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \alpha & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} \alpha^{2} & 0 \\ \alpha + 1 & 1 \end{bmatrix}$$

$$A^2 = B$$

$$\Rightarrow \begin{bmatrix} \alpha^2 & 0 \\ \alpha + 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 5 & 1 \end{bmatrix}$$

$$\Rightarrow \alpha^2 = 1 \& \alpha + 1 = 5$$

No real values

A

1

В

-1

С

4

No real values

Power of a Square Matrix

If A is a square matrix of order n,

- $AI_n = I_n A = A$, I_n is called the multiplicative identity.
- $A^2 = A.A$
- $A^n = A \cdot A \cdots A$ (up to n times), $n \in N$
- $A^nA^m = A^{m+n}$, m, $n \in N$

Power of a Square Matrix

• If $A=\operatorname{diag}\left(a_1,a_2,\cdots,a_n\right)$, then $A^k=\operatorname{diag}\left(a_1^k,a_2^k,\cdots,a_n^k\right)$

Proof: Let
$$A = \text{diag}$$
. $(a_1, a_2, a_3) = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$

$$A^{2} = \begin{pmatrix} a_{1} & 0 & \dots & \dots & 0 \\ 0 & a_{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n} \end{pmatrix} \begin{pmatrix} a_{1} & 0 & \dots & \dots & 0 \\ 0 & a_{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n} \end{pmatrix} = \begin{pmatrix} a_{1}^{2} & 0 & \dots & \dots & 0 \\ 0 & a_{2}^{2} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n}^{2} \end{pmatrix}$$

$$\Rightarrow A^{k} = \begin{pmatrix} a_{1}^{k} & 0 & \dots & \dots & 0 \\ 0 & a_{2}^{k} & \dots & \dots & 0 \\ \vdots & \vdots & & \vdots & & \vdots \\ 0 & 0 & \dots & \dots & a_{n}^{k} \end{pmatrix}$$

• $I^k = I$, where I is identity matrix of order n.

If A, B, C are given square matrices of same order such that

$$AB = 0 \& BC = I$$
. Then $(A + B)^2(A + C)^2$ is equal to:

Solution:
$$BC = I$$
, pre multiplying by A

$$ABC = AI \quad (\because AB = 0)$$

$$\Rightarrow 0 = A$$

$$(A+B)^2(A+C)^2 = (B)^2(C)^2$$

$$= BBCC$$

$$=BIC$$

$$= BC$$

$$\Rightarrow (A+B)^2 (A+C)^2 = I$$

Session 03

Transpose of Matrix and Introduction of Determinants

Polynomial Equation in Matrix

A matrix polynomial equation is an equality between two matrix polynomials, which holds for specific matrices.

• If
$$f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$$
, then

$$f(A) = a_0 A^n + a_1 A^{n-1} + \dots + a_n I$$
, where A is a square matrix.

• If f(A) = 0, then A is called zero divisor of the polynomial.

If
$$A = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} & f(x) = x^2 - 4x + 7$$
, then the $f(A)$ is:

Solution:

$$f(x) = x^2 - 4x + 7$$

$$f(A) = A^2 - 4A + 7I$$

$$A^2 = \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix}$$

$$f(A) = \begin{bmatrix} 1 & 12 \\ -4 & 1 \end{bmatrix} - 4 \begin{bmatrix} 2 & 3 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

$$f(A) = 0$$

A

7*I*

0

A - I

Transpose of a Matrix:

The matrix obtained by interchanging rows and columns of a matrix A is called Transpose of matrix A.

Let
$$A=\left[a_{ij}\right]_{m\times n}$$
, then its transpose is denoted by A' or $A^T=\left[b_{ij}\right]_{n\times m}$, where $b_{ij}=a_{ji}$, $\forall~i~\&~j$

Example:

$$A = \begin{pmatrix} z & a & x \\ c & e & f \end{pmatrix}_{2 \times 3}$$

Its transpose is:
$$A' = \begin{pmatrix} z & c \\ a & e \\ x & f \end{pmatrix}_{3 \times 2}$$

If $A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$ and $A + A^T = I$ where I is 2×2 unit matrix and A^T is the

transpose of A, then the value of θ is equal to

Solution:

We have
$$A = \begin{bmatrix} \cos 2\theta & -\sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$\Rightarrow A^T = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{bmatrix}$$

$$\Rightarrow A + A^{T} = \begin{bmatrix} 2\cos 2\theta & 0 \\ 0 & 2\cos 2\theta \end{bmatrix} = I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow 2\cos 2\theta = 1$$

$$\Rightarrow \cos 2\theta = \frac{1}{2} = \cos \frac{\pi}{3}$$

$$\Rightarrow 2\theta = 2n\pi + \frac{\pi}{3}$$

$$\therefore \theta = \frac{\pi}{6}$$

A

 $\frac{\pi}{6}$

В

 $\frac{\pi}{2}$

С

 $\frac{\pi}{3}$

 $\frac{3\pi}{2}$

Properties of transpose of a matrix:

- □ Let k is a scalar and A is a matrix. Then (kA)' = kA'
- \square $(A_1 \pm A_2 \pm \cdots \pm A_n)' = {A_1}' \pm {A_2}' \pm \cdots \pm {A_n}'$, for comparable matrices A_i
- \square Let $A = [a_{ij}]_{m \times p} \& B = [b_{ij}]_{p \times n}$, then (AB)' = B'A'

Properties of transpose of a matrix:

Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_{m \times n} \& B = \begin{bmatrix} b_{ij} \end{bmatrix}_{n \times n}$$
 then $(AB)' = B'A'$

Example:

$$A = \begin{pmatrix} 2 & 0 & -1 \\ 4 & -3 & 5 \end{pmatrix}$$
 and $B = \begin{pmatrix} -2 & 1 \\ 0 & -6 \\ 3 & -1 \end{pmatrix}$

$$AB = \begin{pmatrix} 2 & 0 & -1 \\ 4 & -3 & 5 \end{pmatrix} \begin{pmatrix} -2 & 1 \\ 0 & -6 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} -7 & 3 \\ 7 & 17 \end{pmatrix}$$

$$(AB)' = \begin{pmatrix} -7 & 7 \\ 3 & 17 \end{pmatrix}$$

$$A' = \begin{pmatrix} 2 & 4 \\ 0 & -3 \\ -1 & 5 \end{pmatrix} B' = \begin{pmatrix} -2 & 0 & 3 \\ 1 & -6 & -1 \end{pmatrix}$$

$$B'A' = \begin{pmatrix} -2 & 0 & 3 \\ 1 & -6 & -1 \end{pmatrix} \begin{pmatrix} 2 & 4 \\ 0 & -3 \\ -1 & 5 \end{pmatrix} = \begin{pmatrix} -7 & 7 \\ 3 & 17 \end{pmatrix} \quad \therefore (AB)' = B'A'$$

$$\square$$
 $(A_1A_2...A_n)' = A_n'A_{n-1}'...A_2'A_1'$, whenever product is defined.

Symmetric and skew symmetric Matrix:

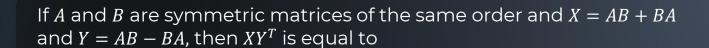
A square matrix A is said to be symmetric if, A' = A

Let
$$A = [a_{ij}]_n$$
, then $a_{ij} = a_{ji}$, $\forall i \& j$

Example:

$$\begin{array}{cccc}
 a_{12} & = a_{21} \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 &$$

$$A' = \begin{pmatrix} 3 & -1 & 2 \\ -1 & 4 & 5 \\ 2 & 5 & 7 \end{pmatrix} = A$$



Solution: Given: A and B are symmetric.

Then,
$$A^T = A$$
 and $B^T = B$

$$XY^T = (AB + BA)(AB - BA)^T$$

$$= (AB + BA)((AB)^T - (BA)^T)$$

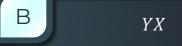
$$= (AB + BA)(B^TA^T - A^TB^T)$$

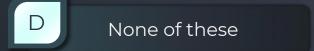
$$= (AB + BA)(BA - AB)$$

$$= -(AB + BA)(AB - BA)$$

$$=-XY$$

$$\therefore XY^T = -XY$$





If $A = \begin{bmatrix} 3 & x \\ y & 0 \end{bmatrix}$ and $A = A^T$, then which of the following is correct

Solution:

Given:
$$A = \begin{bmatrix} 3 & x \\ y & 0 \end{bmatrix}$$
 and $A = A^T$

It is symmetric

$$\therefore x = y$$

$$x=0,y=3$$

$$x + y = 3$$

$$x = y$$

$$x = -y$$

Symmetric and skew symmetric Matrix:

A square matrix A is said to be skew symmetric if, A' = -A

Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_n$$
, then $a_{ij} = -a_{ji}$, $\forall i \& j$

Example:

$$A = \begin{pmatrix} 0 & -3 & 2 \\ 3 & 0 & -6 \\ -2 & 6 & 0 \end{pmatrix}$$

$$A' = \begin{pmatrix} 0 & 3 & -2 \\ -3 & 0 & 6 \\ 2 & -6 & 0 \end{pmatrix} = -A$$

In skew – symmetric matrix, all diagonal elements are zero .

$$a_{ij} = -a_{ji} \Rightarrow a_{ii} = -a_{ii} \Rightarrow a_{ii} = 0$$

If the matrix
$$A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ h & 1 & 0 \end{bmatrix}$$
 is skew-symmetric, then

Solution:

Given:
$$A = \begin{bmatrix} 0 & a & -3 \\ 2 & 0 & -1 \\ b & 1 & 0 \end{bmatrix}$$
 is skew-symmetric

$$A^{T} = \begin{bmatrix} 0 & 2 & b \\ a & 0 & 1 \\ -3 & -1 & 0 \end{bmatrix}$$

We know that A is skew symmetric if $A = -A^T$

$$a = -2$$

$$\Rightarrow -3 = -b$$

$$\therefore b = 3$$

$$a = -2$$

$$a = 2$$

$$b = 3$$

$$b = -3$$

Symmetric and skew symmetric Matrix:

All positive integral power of a symmetric matrix is a symmetric matrix.

Proof:

$$A = A^T$$

Let $B = A^n$, $n \in N$

$$B^T = (A^n)^T$$

$$B^T = A^T A^T \dots A^T$$
 (up to n times)

$$B^T = AA \dots A$$
 (up to n times) = A^n

$$B^T = B \Rightarrow (A^n)^T = A^n \Rightarrow \text{symmetric matrix}$$

Symmetric and skew symmetric Matrix:

All odd positive integral power of a skew – symmetric matrix is a skew – symmetric matrix.

All even positive integral power of a skew – symmetric matrix is a symmetric matrix.

Proof:

$$A = -A^T$$

Let
$$C = A^n$$
, $n \in N$

$$C^T = (A^n)^T = A^T A^T \dots A^T$$
 (up to n times)

$$C^{T} = (-A)(-A)...(-A)$$
 (up to n times) = $(-1)^{n}A^{n}$

Proof:

$$C^T = (-A)(-A)...(-A)$$
 (up to n times) = $(-1)^n A^n$

Let
$$C = A^n$$
, $n \in N$ $C^T = (-1)^n A^n$ A^n , n is even
$$-A^n$$
, n is odd

$$C^T = \begin{cases} \mathcal{C}, n \text{ is even} \rightarrow \text{symmetric matrix} \\ -\mathcal{C}, n \text{ is odd} \rightarrow \text{skew} - \text{symmetric matrix} \end{cases}$$

Symmetric and skew symmetric Matrix:

Every square matrix can be written as sum of a symmetric and a Skew - symmetric matrix.

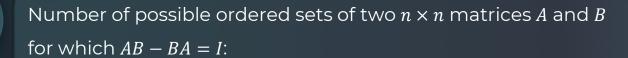
$$A = \frac{1}{2}(A + A^{T}) + \frac{1}{2}(A - A^{T})$$

Symmetric Skew – symmetric matrix matrix

Properties of Trace of a Matrix

Let
$$A = \begin{bmatrix} a_{ij} \end{bmatrix}_n$$
 , and $B = \begin{bmatrix} b_{ij} \end{bmatrix}_n$

- Tr.(A) = Tr.(A')
- Tr.(kA) = k Tr.(A), k is scalar
- $Tr.(A \pm B) = Tr.(A) \pm Tr.(B)$
- Tr.(AB) = Tr.(BA)



Solution:

$$Tr.(AB - BA) = Tr.(I)$$

$$Tr.(AB) - Tr.(BA) = n$$

$$n = 0$$

$$Tr.(A \pm B) = Tr.(A) \pm Tr.(B)$$

$$Tr.(AB) = Tr.(BA)$$

nfinite

 n^2

1!

zero

Determinants

• A determinant is a scalar value that is a function(real or complex valued) of entries of a square matrix .

Let a matrix be: $A = [a_{ij}]_n$, then its determinant is denoted as $\det(A) = |A|$

If
$$A = [a]_{1X1}$$
, $|A| = a$

If
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
, $|A| = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = ad - bc$

Example:
$$A = \begin{bmatrix} 5 & -1 \\ 4 & 3 \end{bmatrix}$$
, its determinant is

$$|A| = 15 - (-4) = 19$$

Minor of an Element

Let Δ be a determinant

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Minor, of an element a_{ij} , denoted by M_{ij} is defined as determinant of a sub – matrix obtained by deleting the i^{th} row and j^{th} column, in which the element is present, of Δ .

$$M_{11} = d$$

$$M_{12} = c$$

$$M_{21} = b$$

$$M_{22} = a$$

$$\begin{vmatrix} a & b \\ c & d \end{vmatrix} \qquad \begin{vmatrix} a & b \\ c & d \end{vmatrix} \qquad \begin{vmatrix} a & b \\ c & -d \end{vmatrix}$$

Session 04

Properties of Determinants

Co-factor of an Element

• Let Δ be a determinant

$$\Delta = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

Co – factor, of an element a_{ij} , denoted by \mathcal{C}_{ij} is defined as

$$C_{ij} = (-1)^{i+j} M_{ij}$$

$$C_{11} = M_{11} = d$$

$$C_{12} = -M_{12} = -c$$

$$C_{21} = -M_{21} = -b$$

$$C_{22} = M_{22} = a$$

Find the minor and co – factors of elements a_{11} , a_{12} , a_{23} , a_{33} of the determinant.

$$\Delta = \begin{vmatrix} -1 & 2 & 4 \\ 0 & -5 & 3 \\ 6 & -7 & -9 \end{vmatrix}$$

Solution:

$$M_{11} = \begin{vmatrix} -5 & 3 \\ -7 & -9 \end{vmatrix} = 66 \qquad C_{11} = 66$$

$$M_{12} = \begin{vmatrix} 0 & 3 \\ 6 & -9 \end{vmatrix} = -18$$
 $C_{12} = 18$

$$M_{23} = \begin{vmatrix} -1 & 2 \\ 6 & -7 \end{vmatrix} = -5$$
 $C_{23} = 5$

$$M_{33} = \begin{vmatrix} -1 & 2 \\ 0 & -5 \end{vmatrix} = 5$$
 $C_{33} = 5$

Value of 3×3 order determinant

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

Expansion of determinant can be done by any row or column.

By 1^{st} row:

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

By 2^{nd} row:

$$= -a_{21}(a_{12}a_{33} - a_{13}a_{32}) + a_{22}(a_{11}a_{33} - a_{31}a_{13}) - a_{23}(a_{11}a_{32} - a_{31}a_{12})$$

Evaluate value of the determinants

$$(i) \Delta = \begin{vmatrix} \log_3 8 & \log_3 512 \\ \log_2 \sqrt{3} & \log_4 9 \end{vmatrix} \quad (ii) \Delta = \begin{vmatrix} 1 & -3 & 5 \\ 2 & -1 & 0 \\ -7 & 6 & 8 \end{vmatrix}$$

$$(i) \Delta = \begin{vmatrix} \log_3 8 & \log_3 512 \\ \log_2 \sqrt{3} & \log_4 9 \end{vmatrix}$$

$$= \log_3 8 \log_4 9 - \log_2 \sqrt{3} \log_3 512$$

$$= 3 \log_3 2 \log_2 3 - \frac{1}{2} \log_2 3 \cdot \log_3 2^9$$

$$= 3 - \frac{9}{2} = -\frac{3}{2}$$

$$(ii) \Delta = \begin{vmatrix} 1 & -3 & 5 \\ 2 & -1 & 0 \\ 7 & 6 & 9 \end{vmatrix}$$

= 1(-8) - (-3)(16) + 5(12 - 7)

$$\log_a x^k = k \log_a x$$

$$\log_{a^k} x = \frac{1}{k} \log_a x$$

= 65

By 1^{st} row:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

In terms of minor

$$\Delta = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$$

In terms of co – factor

$$\Delta = a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13}$$

By 2^{nd} row:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= -a_{21}(a_{12}a_{33} - a_{13}a_{32}) + a_{22}(a_{11}a_{33} - a_{31}a_{13}) - a_{23}(a_{11}a_{32} - a_{31}a_{12})$$

In terms of minor

$$\Delta = -a_{21}M_{21} + a_{22}M_{22} - a_{23}M_{23}$$

In terms of co – factor

$$\Delta = a_{21}C_{21} + a_{22}C_{22} + a_{23}C_{23}$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

 Sum of product of elements of a row (column) and corresponding co – factors of elements of the same row (column) gives value of determinant.

$$a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = \Delta$$

 Sum of product of elements of a row (column) and corresponding co – factors of elements of any other row (column) is zero.

$$a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$$

Proof:
$$a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23}$$

$$= a_{11}(a_{32}a_{13} - a_{12}a_{33}) + a_{12}(a_{11}a_{33} - a_{31}a_{13}) + a_{13}(a_{12}a_{31} - a_{11}a_{32})$$

$$= 0$$

If
$$\Delta = \begin{bmatrix} p & q & r \\ x & y & z \\ a & b & c \end{bmatrix}$$
 then:

Solution:

By property,

$$a C_{11} + b C_{12} + c C_{13} = 0$$

$$p M_{11} - q M_{12} + r M_{13} = \Delta$$

$$a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$$

$$a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = \Delta$$

$$A M_{21} - y M_{22} + z M_{23} = \Delta$$

$$B \qquad a C_{11} + b C_{12} + c C_{13} = 0$$

$$x C_{21} - y C_{22} + z C_{23} = \Delta$$

$$p M_{11} - q M_{12} + r M_{13} = \Delta$$

 Determinant of upper or lower triangular square matrix is equal to product of its diagonal elements.

Example:

$$A = \begin{pmatrix} a & d & e \\ 0 & b & f \\ 0 & 0 & c \end{pmatrix} \Rightarrow \begin{vmatrix} +a \\ 0 \\ 0 & 0 \end{vmatrix} \begin{pmatrix} d & e \\ b & f \\ 0 & c \end{vmatrix} = a \begin{vmatrix} b & f \\ 0 & c \end{vmatrix} + 0 + 0$$

$$\Rightarrow |A| = abc$$

The determinant of the transpose of a square matrix is equal to the determinant of the matrix.

• The determinant of the transpose of a square matrix is equal to the determinant of the matrix.

Example:

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad \Delta' = \begin{vmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \end{vmatrix}$$

By
$$1^{st}$$
 row, $\Delta = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$

By
$$1^{st}$$
 column, $\Delta' = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13}$

$$\Delta = \Delta'$$

Value of determinant doesn't change by interchanging rows with column

If
$$\Delta_1 = \begin{vmatrix} -1 & 2 & 4 \\ 5 & -3 & 9 \\ 6 & 7 & -8 \end{vmatrix}$$
, $\Delta_2 = \begin{vmatrix} -1 & 5 & 6 \\ 2 & -3 & 7 \\ 4 & 9 & -8 \end{vmatrix}$; then

Solution:

Value of determinant and its transpose is same.

$$\Delta_1 = \Delta_2$$

$$\Rightarrow \frac{\Delta_1}{\Delta_2} = 1$$

$$\Delta_1 + \Delta_2 = 0$$

$$\frac{\Delta_1}{\Delta_2} = 2$$

$$\frac{\Delta_1}{\Delta_2} = 1$$

$$\frac{\Delta_1}{\Delta_2} = -2$$

• If corresponding elements of any two rows (or columns) are identical (or proportional), then value of determinant is zero.

Example:

$$\Delta = \begin{vmatrix} a_{11} & a_{11} & a_{13} \\ a_{21} & a_{21} & a_{23} \\ a_{31} & a_{31} & a_{33} \end{vmatrix}$$

$$\Rightarrow \Delta = a_{11}(a_{21}a_{33} - a_{23}a_{31}) - a_{11}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{31} - a_{31}a_{21})$$

$$\Rightarrow \Delta = 0$$

$$\Delta = \begin{bmatrix} \sqrt{3} & \sqrt{5} & \sqrt{7} \\ 1 & 2 & 3 \\ \sqrt{3} & \sqrt{5} & \sqrt{7} \end{bmatrix} = 0$$

• If all the elements of a row or column are zero, then the value of determinant is zero.

Example:

$$\Delta = \begin{vmatrix} 0 & 0 & 0 \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Rightarrow \Delta = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

$$\Rightarrow \Delta = 0 \cdot M_{11} - 0 \cdot M_{12} + 0 \cdot M_{13}$$

$$\Rightarrow \Delta = 0$$

If
$$A = \begin{bmatrix} \omega^{501} & \omega^{502} & \omega^{503} \\ \omega^{1101} & \omega^{1102} & \omega^{1102} \\ \omega^{1501} & \omega^{1502} & \omega^{1503} \end{bmatrix}$$
, where ω is cube root of unity, then the value of A is:

$$\omega^{3n+1} = \omega, \omega^{3n+2} = \omega^2, \omega^3 = 1$$

$$A = \begin{vmatrix} 1 & \omega & \omega^2 \\ 1 & \omega & \omega^2 \\ \omega & \omega^2 & 1 \end{vmatrix}$$

- ∵Two rows are same
- : Determinant is zero

If any of two rows (or columns) of a determinant are interchanged, then its value gets multiplied by (-1).

$$\Delta = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} \qquad \Delta' = \begin{vmatrix} g & h & i \\ d & e & f \\ a & b & c \end{vmatrix} \qquad \Rightarrow \Delta' = -\Delta$$

Proof:

$$\Delta_1 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_2 = \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

 $R_1 \leftrightarrow R_2$

With respect to second row

$$\Rightarrow \Delta_1 = a_{11}M_{11} - a_{12}M_{12} + a_{13}M_{13} \qquad \Rightarrow \Delta_2 = -a_{11}M_{11} + a_{12}M_{12} - a_{13}M_{13}$$
$$\Rightarrow \Delta_2 = -\Delta_1$$

Session 05

Some Special Determinants

• If elements of a row (or column) are multiplied by a constant, then value of determinant also gets multiplied by the same constant.

Proof:

$$\Delta_{1} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \qquad \Delta_{2} = \begin{vmatrix} ka_{11} & a_{12} & a_{13} \\ ka_{21} & a_{22} & a_{23} \\ ka_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_2 = k \Delta_1$$

$$\Delta_2 = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_1 = a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31}$$

Key Takeaways

Proof:
$$\Delta_1 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 $\Delta_2 = \begin{vmatrix} ka_{11} & a_{12} & a_{13} \\ ka_{21} & a_{22} & a_{23} \\ ka_{31} & a_{32} & a_{33} \end{vmatrix}$ $\Delta_2 = k \Delta_1$

$$\Delta_2 = k \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_1 = a_{11} M_{11} - a_{21} M_{21} + a_{31} M_{31}$$

With 1st column

$$\Delta_2 = ka_{11}M_{11} - ka_{21}M_{21} + ka_{31}M_{31}$$

$$\Delta_2 = k(a_{11}M_{11} - a_{21}M_{21} + a_{31}M_{31}) = k\Delta_1$$

Let a, b, c be such that $b(c + a) \neq 0$. If

$$\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \\ (-1)^{n+2}a & (-1)^{n+1}b & (-1)^nc \end{vmatrix} = 0$$
. Then the value of n is:

Solution:

$$\begin{vmatrix} a & a+1 & a-1 \\ -b & b+1 & b-1 \\ c & c-1 & c+1 \end{vmatrix} + \begin{vmatrix} (-1)^{n+2}a & a+1 & a-1 \\ (-1)^{n+1}b & b+1 & b-1 \\ (-1)^nc & c-1 & c+1 \end{vmatrix} = 0$$

$$\Delta_{1} \qquad \Delta_{2} = \begin{vmatrix} (-1)^{n+2}a & (-1)^{n+1}b & (-1)^{n}c \\ a+1 & b+1 & c-1 \\ a-1 & b-1 & c+1 \end{vmatrix} = \begin{vmatrix} (-1)^{n+2}a & a+1 & a-1 \\ (-1)^{n+1}b & b+1 & b-1 \\ (-1)^{n}c & c-1 & c+1 \end{vmatrix}$$

$$\Delta_{1} + \Delta_{2} = 0$$

n is odd integer

Zero

Any even integer

Any odd integer

Any integer

$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} & \& \Delta_2 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$
, then $\Delta_2 - \Delta_1$ is:

Solution:

$$\Delta_2 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$
 $\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}$

Multiply 1^{st} column by a and divide Δ_2 by a.

Multiply 2^{nd} column by b and divide Δ_2 by b.

Multiply 3^{rd} column by c and divide Δ_2 by c.

$$\Delta_{2} = \frac{1}{abc} \begin{vmatrix} a & a^{2} & abc \\ b & b^{2} & abc \\ c & c^{2} & abc \end{vmatrix} = \frac{abc}{abc} \begin{vmatrix} a & a^{2} & 1 \\ b & b^{2} & 1 \\ c & c^{2} & 1 \end{vmatrix} = - \begin{vmatrix} a & 1 & a^{2} \\ b & 1 & b^{2} \\ c & 1 & c^{2} \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} \qquad \Delta_2 = \Delta_1$$

$$(a+b+c)\,\Delta_1$$

$$\mathsf{B}$$

$$\Delta_1 = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} & \& \Delta_2 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$
, then $\Delta_2 - \Delta_1$ is:

Solution:

$$\Delta_2 = \begin{vmatrix} 1 & a & bc \\ 1 & b & ca \\ 1 & c & ab \end{vmatrix}$$

$$\Delta_{1} = \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^{2} & b^{2} & c^{2} \end{vmatrix}$$

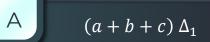
Multiply 1^{st} column by a and divide Δ_2 by a.

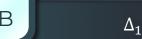
Multiply 2^{nd} column by b and divide Δ_2 by b.

Multiply 3^{rd} column by c and divide Δ_2 by c.

$$\Delta_2 = \frac{1}{abc} \begin{vmatrix} a & a^2 & abc \\ b & b^2 & abc \\ c & c^2 & abc \end{vmatrix} = \frac{abc}{abc} \begin{vmatrix} a & a^2 & 1 \\ b & b^2 & 1 \\ c & c^2 & 1 \end{vmatrix} = - \begin{vmatrix} a & 1 & a^2 \\ b & 1 & b^2 \\ c & 1 & c^2 \end{vmatrix} = \begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix}$$

$$\Delta_2 = \Delta_1$$





Key Takeaways

Properties of Determinants

• If each element of any row (or column) can be expressed as sum of two terms, then the determinant can also be expressed as sum of two determinants.

$$\Delta = \begin{vmatrix} a+x & b+y & c+z \\ d & e & f \\ g & h & i \end{vmatrix} = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix} + \begin{vmatrix} x & y & z \\ d & e & f \\ g & h & i \end{vmatrix}$$

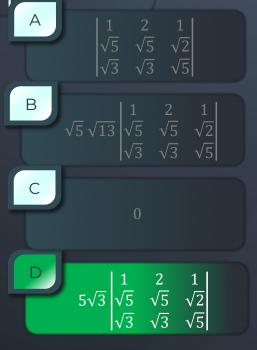
Proof:

$$\Delta = (a + x)M_{11} - (b + y)M_{12} + (c + z)M_{13}$$
$$= aM_{11} - bM_{12} + cM_{13} + xM_{11} - yM_{12} + zM_{13}$$

$$\begin{vmatrix} \sqrt{13} + \sqrt{3} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{26} & 5 & \sqrt{10} \\ 3 + \sqrt{65} & \sqrt{15} & 5 \end{vmatrix}$$
:

Solution:
$$\begin{vmatrix} \sqrt{13} + \sqrt{3} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} + \sqrt{26} & 5 & \sqrt{10} \\ 3 + \sqrt{65} & \sqrt{15} & 5 \end{vmatrix} = \begin{vmatrix} \sqrt{13} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{26} & 5 & \sqrt{10} \\ \sqrt{65} & \sqrt{15} & 5 \end{vmatrix} + \begin{vmatrix} \sqrt{3} & 2\sqrt{5} & \sqrt{5} \\ \sqrt{15} & 5 & \sqrt{10} \\ 3 & \sqrt{15} & 5 \end{vmatrix} = \sqrt{5}\sqrt{13} \begin{vmatrix} 1 & 2\sqrt{5} & 1 \\ \sqrt{2} & 5 & \sqrt{2} \\ \sqrt{5} & \sqrt{15} & \sqrt{5} \end{vmatrix} + 5\sqrt{3} \begin{vmatrix} 1 & 2 & 1 \\ \sqrt{5} & \sqrt{5} & \sqrt{5} \\ \sqrt{3} & \sqrt{3} & \sqrt{5} \end{vmatrix} = 5\sqrt{3} \begin{vmatrix} 1 & 2 & 1 \\ \sqrt{5} & \sqrt{5} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} & \sqrt{5} \end{vmatrix}$$

$$= \sqrt{5}\sqrt{13} \times 0 + 5\sqrt{3} \begin{vmatrix} 1 & 2 & 1 \\ \sqrt{5} & \sqrt{5} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} & \sqrt{5} \end{vmatrix} = 5\sqrt{3} \begin{vmatrix} 1 & 2 & 1 \\ \sqrt{5} & \sqrt{5} & \sqrt{2} \\ \sqrt{3} & \sqrt{3} & \sqrt{5} \end{vmatrix}$$



Key Takeaways

Properties of Determinants

• If $A = \begin{bmatrix} a_{ij} \end{bmatrix}_n$, then $|kA| = k^n |A|$ where k is a scalar.

Example:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \quad kA = \begin{bmatrix} ka_{11} & ka_{12} & ka_{13} \\ ka_{21} & ka_{22} & ka_{23} \\ ka_{31} & ka_{32} & ka_{33} \end{bmatrix}$$
$$\Rightarrow |kA| = k^{3} \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} \Rightarrow |kA| = k^{3}|A|$$

• If $A = [a_{ij}]_n$, $B = [b_{ij}]_n$, then |AB| = |A||B| $|A^k| = |A|^k$ $\Rightarrow |A \cdot A \cdot A \cdot \cdots A| = |A| \cdot |A| \cdot |A| \cdot \cdots |A| = |A|^k$ $k \text{ times} \qquad k \text{ times}$

If A & B are square matrices of order n , such that |A|=3 , |B|=5, then the value of ||2A|B| is :

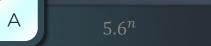
Solution:

$$||2A|B|| = |2A|^n|B|$$
 Since $|kA| = k^n|A|$

$$= (2^n|A|)^n|B|$$

$$=2^{n^2}|A|^n\cdot|B|$$

$$=2^{n^2}\cdot 3^n\cdot 5$$





Key Takeaways

Properties of Determinants

• Determinant of an odd order skew – symmetric matrix is zero.

Proof:

$$|A| = |-A^T| \qquad A = -A^T$$
$$= (-1)^n |A^T|$$

If n is odd,

$$|A| = -|A| \Rightarrow |A| = 0$$

Example: Value of determinant $\begin{vmatrix} 0 & p-q & q-r \\ q-p & 0 & r-p \\ r-q & p-r & 0 \end{vmatrix}$ is 0.

Statement 1: Determinant of a skew-symmetric matrix of odd order is zero.

Statement 2 : For any matrix A , $det(A^T) = det(A)$ & det(-A) = -det(A) .

where det(B) denotes determinant of matrix B . Then

Solution:

Let A is a skew-symmetric matrix $\Rightarrow A^T = -A \cdots (i)$

Taking determinant of (i), we get

$$|A^T| = |-A| \Rightarrow |A| = (-1)|A| \quad (: |A| = |A^T|)$$

 $\Rightarrow |A| = (-1)^n |A|$ where n is order of matrix

Since n = 3 is odd

$$\Rightarrow |A| = -|A| \Rightarrow 2|A| = 0$$

Therefore, statement 1 is true.

Hence, option 'C' is correct.

Statement 2 is incorrect det(A) = -(det(A)) for odd order matrix only

Both statement are true

Both statement are false

Statement 1 is true, statement 2 is false

Statement 2 is true, statement 1 is false

Key Takeaways

Properties of Determinants

 The value of determinant is not altered by adding to the elements of any row (or column) a constant multiple of corresponding elements of any other row (or column).

$$\Delta_1 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 $R_1 \to R_1 + pR_2$, where p is a scalar.

$$\Delta_2 = \begin{vmatrix} a_{11} + pa_{21} & a_{12} + pa_{22} & a_{13} + pa_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$\Delta_1 = \Delta_2$$

Key Takeaways

Properties of Determinants

 $\Delta_2 = \Delta_1$

• The value of determinant is not altered by adding to the elements of any row (or column) a constant multiple of corresponding elements of any other row (or column).

Proof:

$$\Delta_{2} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} pa_{21} & pa_{22} & pa_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + \begin{vmatrix} pa_{21} & pa_{22} & pa_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + p \begin{vmatrix} a_{21} & a_{22} & a_{23} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + p \times 0$$

$$\Delta_{2} = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} + p \times 0$$

$$\Delta_1 = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

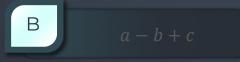
If a, b, c are all different and $\begin{vmatrix} a & a^3 & a^4 - 1 \\ b & b^3 & b^4 - 1 \\ c & c^3 & c^4 - 1 \end{vmatrix} = 0$, then the value of abc(ab + bc + ca) is equal to:

Solution:

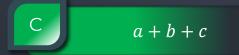
$$\Rightarrow \begin{vmatrix} a & a^3 & a^4 \\ b & b^3 & b^4 \\ c & c^3 & c^4 \end{vmatrix} + \begin{vmatrix} a & a^3 & -1 \\ b & b^3 & -1 \\ c & c^3 & -1 \end{vmatrix} = 0$$

A = a - b - c

Taking a, b, c from the first determinant and apply $R_2 \rightarrow R_2 - R_1$, $R_3 \rightarrow R_3 - R_1$ in both determinants



$$\Rightarrow abc \begin{vmatrix} 1 & a^2 & a^3 \\ 0 & b^2 - a^2 & b^3 - a^3 \\ 0 & c^2 - a^2 & c^3 - a^3 \end{vmatrix} - \begin{vmatrix} a & a^3 & 1 \\ b - a & b^3 - a^3 & 0 \\ c - a & c^3 - a^3 & 0 \end{vmatrix} = 0$$



As a, b, c are all distinct and cancelling out b-a and c-a

$$\Rightarrow abc \begin{vmatrix} b+a & b^2+a^2+ab \\ c+a & c^2+a^2+ac \end{vmatrix} = \begin{vmatrix} 1 & b^2+a^2+ab \\ 1 & c^2+a^2+ac \end{vmatrix}$$

If a, b, c are all different and $\begin{vmatrix} a & a^3 & a^4 - 1 \\ b & b^3 & b^4 - 1 \\ c & c^3 & c^4 - 1 \end{vmatrix} = 0$, then the value of abc(ab + bc + ca) is equal to:

Solution:

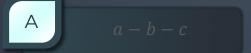
$$\Rightarrow abc \begin{vmatrix} b+a & b^2+a^2+ab \\ c+a & c^2+a^2+ac \end{vmatrix} = \begin{vmatrix} 1 & b^2+a^2+ab \\ 1 & c^2+a^2+ac \end{vmatrix}$$

Applying $R_2 \rightarrow R_2 - R_1$ and then cancelling c-b on both sides, we get

$$\Rightarrow abc \begin{vmatrix} b+a & b^2+a^2+ab \\ 1 & a+b+c \end{vmatrix} = \begin{vmatrix} 1 & b^2+a^2+ab \\ 0 & a+b+c \end{vmatrix}$$

$$\therefore abc(ab + b^2 + bc + a^2 + ab + ac - b^2 - c^2 - ab) = a + b + c$$

$$\Rightarrow abc(ab + bc + ca) = a + b + c$$



Some Important Formula

•
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

Proof:

$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} \quad C_2 \to C_2 - C_1$$

$$= \begin{vmatrix} 1 & 0 & 0 \\ a & b - a & c - a \\ a^2 & b^2 - a^2 & c^2 - a^2 \end{vmatrix}$$

$$= (b - a)(c - a) \begin{vmatrix} 1 & 0 & 0 \\ a & 1 & 1 \\ a^2 & b + a & c + a \end{vmatrix} = (a - b)(b - c)(c - a)$$

Session 06

Application of Determinants

<u>Return To Top</u>

Some Important Determinants

•
$$\begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(a+b+c)$$

Degree = 4 Degree = 3 Linear term

Proof:

$$\Delta = 1 \left(b^1 c^3 - b^3 c \right)$$

Put
$$a = b \Rightarrow \Delta = 0 \Rightarrow (a - b)$$
 is a factor of Δ

$$b = c \Rightarrow \Delta = 0 \Rightarrow (b - c)$$
 is a factor of Δ

$$c = a \Rightarrow \Delta = 0 \Rightarrow (c - a)$$
 is a factor of Δ

Some Important Determinants

$$\begin{vmatrix} 1 & 1 & 1 \\ a^2 & b^2 & c^2 \\ a^3 & b^3 & c^3 \end{vmatrix} = (a-b)(b-c)(c-a)(ab+bc+ca)$$

Degree = 5 Degree =
$$3 2^{nd}$$
 degree terms

Put
$$a = b$$
 or $b = c$ or $c = a$

$$\Rightarrow \Delta = 0$$

Some Important Determinants

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc - a^3 - b^3 - c^3 = -(a+b+c)(a^2+b^2+c^2-ab-bc-ca)$$

Proof:

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} \qquad C_1 \rightarrow C_1 + C_2 + C_3$$

$$= \begin{vmatrix} a+b+c & b & c \\ a+b+c & c & a \\ a+b+c & a & b \end{vmatrix} = (a+b+c) \begin{vmatrix} 1 & b & c \\ 1 & c & a \\ 1 & a & b \end{vmatrix}$$

$$= (a + b + c)(ab + bc + ca - a^2 - b^2 - c^2)$$

$$= -(a + b + c)(a^{2} + b^{2} + c^{2} - ab - bc - ca)$$

Let $a, b, c \in R$ be all non – zero and satisfy $a^3 + b^3 + c^3 = 2$. If the matrix

$$A = \begin{pmatrix} a & b & c \\ b & c & a \\ c & a & b \end{pmatrix}$$
 satisfies $A^T A = I$, then a value of abc can be:

Solution: $A^T A = I$

$$\Rightarrow |A^T A| = |I|$$

$$\Rightarrow |A^T||A| = 1$$

$$\Rightarrow |A|^2 = 1$$

$$\Rightarrow |A| = \pm 1$$

$$\begin{vmatrix} a & b & c \\ b & c & a \\ c & a & b \end{vmatrix} = 3abc - a^3 - b^3 - c^3$$

$$\Rightarrow 3abc - a^3 - b^3 - c^3 = \pm 1$$

$$\Rightarrow 3abc = 1, 3 \Rightarrow abc = \frac{1}{3}, 1$$

Α

 $\frac{2}{3}$

В

 $-\frac{1}{3}$

С

3

D

 $\frac{1}{3}$

Product of Two Determinants

• Let the two determinants of 2X2 order be:

$$\Delta_1 = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix}$$
 and $\Delta_2 = \begin{vmatrix} l_1 & l_2 \\ m_1 & m_2 \end{vmatrix}$

then their product Δ will be:

$$\Delta = \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \begin{vmatrix} l_1 & l_2 \\ m_1 & m_2 \end{vmatrix} = \begin{vmatrix} a_1 l_1 + a_2 m_1 & a_1 l_2 + a_2 m_2 \\ b_1 l_1 + b_2 m_1 & b_1 l_2 + b_2 m_2 \end{vmatrix}$$

Note: Multiplication of same order determinants can be done in four ways –

$$R \times R, R \times C, C \times C, C \times R$$

Evaluate
$$\begin{vmatrix} 1 & -2 & 4 \\ 5 & 0 & -6 \\ -3 & 7 & 1 \end{vmatrix} \times \begin{vmatrix} 6 & -1 & 3 \\ -4 & 2 & 8 \\ 0 & -9 & 5 \end{vmatrix}$$

Solution:

$$\begin{vmatrix} 1 & -2 & 4 \\ 5 & 0 & -6 \\ -3 & 7 & 1 \end{vmatrix} \times \begin{vmatrix} 6 & -1 & 3 \\ -4 & 2 & 8 \\ 0 & -9 & 5 \end{vmatrix}$$

$$= \begin{vmatrix} 6+8+0 & -1-4-36 & 3-16+20 \\ 30+0+0 & -5+0+54 & 15+0-30 \\ -18-28+0 & 3+14-9 & -9+56+5 \end{vmatrix}$$

$$= \begin{vmatrix} 14 & -41 & 7 \\ 30 & 49 & -15 \\ -46 & 8 & 52 \end{vmatrix}$$

Evaluate
$$\begin{vmatrix} 1 & \cos(B-A) & \cos(C-A) \\ \cos(A-B) & 1 & \cos(C-B) \\ \cos(A-C) & \cos(B-C) & 1 \end{vmatrix}$$

$$\begin{vmatrix} 1 & \cos(B-A) & \cos(C-A) \\ \cos(A-B) & 1 & \cos(C-B) \\ \cos(A-C) & \cos(B-C) & 1 \end{vmatrix}$$

$$= \begin{vmatrix} \cos(A-A) & \cos(B-A) & \cos(C-A) \\ \cos(A-B) & \cos(B-B) & \cos(C-B) \\ \cos(A-C) & \cos(B-C) & \cos(C-C) \end{vmatrix}$$

A
$$\cos A \cos B \cos C$$

$$D = cosA + cosB + cosC$$

$$= \begin{vmatrix} \cos A \cos A + \sin A \sin A & \cos B \cos A + \sin B \sin A & \cos C \cos A + \sin C \sin A \\ \cos A \cos B + \sin A \sin B & \cos B \cos B + \sin B \sin B & \cos C \cos B + \sin C \sin B \\ \cos A \cos C + \sin A \sin C & \cos B \cos C + \sin B \sin C & \cos C \cos C + \sin C \sin C \end{vmatrix}$$

$$= \begin{vmatrix} \cos A & \sin A & 1 \\ \cos B & \sin B & 1 \\ \cos C & \sin C & 1 \end{vmatrix} \times \begin{vmatrix} \cos A & \cos B & \cos C \\ \sin A & \sin B & \sin C \\ 0 & 0 & 0 \end{vmatrix} = 0$$

If $\alpha, \beta \neq 0$ and $f(n) = \alpha^n + \beta^n$ and

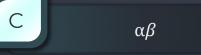
$$\begin{vmatrix} 3 & 1+f(1) & 1+f(2) \\ 1+f(1) & 1+f(2) & 1+f(3) \\ 1+f(2) & 1+f(3) & 1+f(4) \end{vmatrix} = k(1-\alpha)^2(1-\beta)^2(\alpha-\beta)^2, \text{ then } k \text{ is equal to :}$$

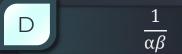
Solution:

$$\begin{vmatrix} 1+1+1 & 1+\alpha+\beta & 1+\alpha^2+\beta^2 \\ 1+\alpha+\beta & 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 \\ 1+\alpha^2+\beta^2 & 1+\alpha^3+\beta^3 & 1+\alpha^4+\beta^4 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \beta \\ 1 & \alpha^2 & \beta^2 \end{vmatrix} \times \begin{vmatrix} 1 & 1 & 1 \\ 1 & \alpha & \alpha^2 \\ 1 & \beta & \beta^2 \end{vmatrix} \qquad \qquad \because \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix} = (a-b)(b-c)(c-a)$$

$$= ((1-\alpha)(\alpha-\beta)(\beta-1))^2 \Rightarrow k=1$$





Application of determinants:

• Area of triangle with vertices $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ is:

$$\Delta = \begin{vmatrix} 1 & x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

Note: If $\Delta = 0$, then points are collinear.

• Equation of straight line passing through points $(x_1, y_1) \& (x_2, y_2)$ is:

$$\begin{vmatrix} x & y & 1 \\ x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \end{vmatrix} = 0$$

Application of determinants:

• The lines:

$$a_1x + b_1y + c_1 = 0$$

 $a_2x + b_2y + c_2 = 0$ are concurrent if,
 $a_3x + b_3y + c_3 = 0$

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

Note: The converse is not true

• The general 2 – degree equation $ax^2 + by^2 + 2hxy + 2gx + 2fy + c = 0$, represents a pair of straight lines if,

$$\begin{vmatrix} a & h & g \\ h & b & f \\ g & f & c \end{vmatrix} = 0 \quad \text{or } abc + 2hgf - af^2 - bg^2 - ch^2 = 0$$

Consider the lines given by

$$L_1$$
: $x + 3y - 5 = 0$
 L_2 : $3x - ky - 1 = 0$

$$L_3$$
: $5x + 2y - 12 = 0$

(A)
$$L_1, L_2, L_3$$
 are concurrent, if

$$\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$$

$$L_1$$
: $x + 3y - 5 = 0$
 L_2 : $3x - ky - 1 = 0$
 L_3 : $5x + 2y - 12 = 0$

$$\begin{vmatrix} 1 & 3 & -5 \\ 3 & -k & -1 \\ 5 & 2 & -12 \end{vmatrix} = 0$$

$$\Rightarrow (12k+2) - 3(-36+5) - 5(6+5k) = 0$$

COLUMN I	COLUMN II
(A) L_1, L_2, L_3 are concurrent, if	(p) k = -9
One of L_1, L_2, L_3 is parallel to at least (B) one of the other two, if	$(q) k = -\frac{6}{5}$
(C) L_1, L_2, L_3 form a triangle, if	$(r) k = \frac{5}{6}$
(D) L_1, L_2, L_3 do not form a triangle, if	(s) k = 5

Consider the lines given by

$$L_1$$
: $x + 3y - 5 = 0$

$$L_2$$
: $3x - ky - 1 = 0$

$$L_3: 5x + 2y - 12 = 0$$

$$\Rightarrow 12k + 2 + 93 - 30 - 25k = 0$$

$$\Rightarrow 65 - 13k = 0$$

$$\Rightarrow k = 5$$

$$(A) \rightarrow (s)$$

(B)One of L_1, L_2, L_3 is parallel to

$$\frac{3}{k} = -\frac{1}{3} \text{ or } -\frac{5}{2}$$

$$k = -9 \text{ or } -\frac{6}{5}$$

$$(B) \rightarrow (p), (q)$$

C	COLUMN I	COLUMN II

- (A) L_1, L_2, L_3 are concurrent, if (p) k = -9
- One of L_1, L_2, L_3 is parallel to at least (q) $k = -\frac{6}{5}$
- (C) L_1, L_2, L_3 form a triangle, if $(r) k = \frac{5}{6}$
- (D) L_1, L_2, L_3 do not form a triangle, if (s) k = 5

Consider the lines given by

$$L_1$$
: $x + 3y - 5 = 0$

$$L_2$$
: $3x - ky - 1 = 0$

$$L_3$$
: $5x + 2y - 12 = 0$

Solution:

(C) L_1, L_2, L_3 form triangle, if neither they are concurrent nor parallel

$$\Rightarrow k \neq 5, -9, -\frac{6}{5}(C) \rightarrow (r)$$

(D) L_1, L_2, L_3 do not form a triangle, if they are parallel or concurrent

$$\Rightarrow k = 5 \text{ or } -9 \text{ or } -\frac{6}{5} \qquad (D) \rightarrow (p), (q), (s)$$

	COLUMN I	COLUMN II	
(A)	L_1, L_2, L_3 are concurrent, if	$(p) \ k = -9$	
(B)	One of L_1, L_2, L_3 is parallel to at least one of the other two, if	$(q) k = -\frac{6}{5}$	
(C)	L_1, L_2, L_3 form a triangle, if	$(r) \ k = \frac{5}{6}$	
(D)	L_1, L_2, L_3 do not form a triangle, if	(s) $k = 5$	

Differentiation of determinant

• If
$$\Delta(x) = \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix}$$

$$\Delta'(x) = \begin{vmatrix} f_1'(x) & f_2'(x) & f_3'(x) \\ g_1(x) & g_2(x) & g_3(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1'(x) & g_2'(x) & g_3'(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1'(x) & g_2'(x) & g_3'(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix} + \begin{vmatrix} f_1(x) & f_2(x) & f_3(x) \\ g_1'(x) & g_2'(x) & g_3'(x) \\ h_1(x) & h_2(x) & h_3(x) \end{vmatrix}$$

(differentiation can also be done column - wise)

If
$$y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}$$
, $x \in \mathbb{R}$, then $\frac{d^2y}{dx^2} + y$ is equal to:

$$y(x) = \begin{vmatrix} \sin x & \cos x & \sin x + \cos x + 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}, \text{ differentiate w.r.t } x$$

$$y'(x) = \begin{vmatrix} \cos x & -\sin x & -\sin x + \cos x \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}$$

$$y'(x) = \begin{vmatrix} \cos x & -\sin x & -\sin x + \cos x \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}$$
, differentiate w.r.t x

$$y''(x) = \begin{vmatrix} -\sin x & -\cos x & -\cos x - \sin x \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix}$$

$$y(x) + y''(x) = \begin{vmatrix} 0 & 0 & 1 \\ 23 & 17 & 13 \\ 1 & 1 & 1 \end{vmatrix} = 6$$

4

-10

0

Integration/Summation of determinant

• If
$$\Delta(x) = \begin{vmatrix} f_1(x) & g_1(x) & h_1(x) \\ a & b & c \\ d & e & f \end{vmatrix}$$

$$\sum \Delta(x) = \begin{vmatrix} \sum f_1(x) & \sum g_1(x) & \sum h_1(x) \\ a & b & c \\ d & e & f \end{vmatrix}$$

Note: If variable is present in more than one row (or column), then first expand the determinant and then apply summation or integration.

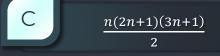
$$\Delta(r)=egin{array}{cccc} 1&x&n+1\ r&y&rac{n(n+1)}{2}\ 2r-1&z&n^2-1 \end{array}$$
 , then $\sum_{r=0}^n\Delta(r)$ is equal to:

$$\sum_{r=0}^{n} \Delta(r) = \begin{vmatrix} \sum_{r=0}^{n} 1 & x & n+1 \\ \sum_{r=0}^{n} (r) & y & \frac{n(n+1)}{2} \\ \sum_{r=0}^{n} (2r-1) & z & n^2-1 \end{vmatrix}$$

$$= \begin{vmatrix} n+1 & x & n+1 \\ \frac{n(n+1)}{2} & y & \frac{n(n+1)}{2} \\ n^2 - 1 & z & n^2 - 1 \end{vmatrix}$$

$$= 0$$





If
$$\Delta(r) = \begin{vmatrix} 2^{r-1} & 2.3^{r-1} & 4.5^{r-1} \\ \alpha & \beta & \gamma \\ 2^n - 1 & 3^n - 1 & 5^n - 1 \end{vmatrix}$$
, then the value of $\sum_{r=1}^n \Delta(r)$

$$\sum_{r=1}^{n} \Delta(r) = \begin{vmatrix} \sum_{r=1}^{n} 2^{r-1} & \sum_{r=1}^{n} 2 \cdot 3^{r-1} & \sum_{r=1}^{n} 4 \cdot 5^{r-1} \\ \alpha & \beta & \gamma \\ 2^{n} - 1 & 3^{n} - 1 & 5^{n} - 1 \end{vmatrix} \qquad S_{n} = \frac{a(1 - r^{n})}{1 - r}$$

$$= \begin{vmatrix} 2^{n} - 1 & 3^{n} - 1 & 5^{n} - 1 \\ \alpha & \beta & \gamma \\ 2^{n} - 1 & 3^{n} - 1 & 5^{n} - 1 \end{vmatrix}$$

$$= 0$$

0

αβγ

С

 $\alpha + \beta + \gamma$

D

 $\alpha 2^n + \beta 3^n + \gamma 4^n$

Let
$$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2 x + \cot x \csc x \\ \cos^2 x & \cos^2 x & \csc^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}$$
, Prove that : $\int_0^{\pi/2} f(x) \, dx = -\left(\frac{\pi}{4} + \frac{8}{15}\right)$

$$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2 x + \cot x \csc x \\ \cos^2 x & \cos^2 x & \csc^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}$$

Operate $R_1 \rightarrow R_1 - \sec x \ R_3$

$$f(x) = \begin{vmatrix} 0 & 0 & \sec^2 x + \cot x \csc x \\ \cos^2 x & \cos^2 x & \csc^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}$$

$$= (\sec^2 x + \cot x \csc x) (\cos^4 x - \cos^2 x)$$

$$f(x) = \left(1 + \frac{\cos^3 x}{\sin^2 x} - \cos^3 x\right) \left(\cos^2 x - 1\right) = -\sin^2 x \frac{\sin^2 x + \cos^3 x - \cos^3 x \sin^2 x}{\sin^2 x}$$

Let
$$f(x) = \begin{vmatrix} \sec x & \cos x & \sec^2 x + \cot x \csc x \\ \cos^2 x & \cos^2 x & \csc^2 x \\ 1 & \cos^2 x & \cos^2 x \end{vmatrix}$$
, Prove that : $\int_0^{\pi/2} f(x) dx = -\left(\frac{\pi}{4} + \frac{8}{15}\right)$

$$f(x) = \left(1 + \frac{\cos^3 x}{\sin^2 x} - \cos^3 x\right) (\cos^2 x - 1)$$
$$= -\sin^2 x \frac{\sin^2 x + \cos^3 x - \cos^3 x \sin^2 x}{\sin^2 x}$$
$$f(x) = -(\sin^2 x + \cos^5 x)$$

$$\int_0^{\pi/2} f(x) \, dx = \int_0^{\pi/2} (\sin^2 x + \cos^5 x) \, dx$$
$$= -\left(\frac{1}{2} \cdot \frac{\pi}{2} + \frac{4 \cdot 2}{5 \cdot 3}\right) = -\left(\frac{\pi}{4} + \frac{8}{15}\right)$$

Session 07

Adjoint of Matrix and Inverse of a Matrix

Singular/Non-singular Matrices

A square matrix A is said to be singular or non – singular according as |A| = 0 or $|A| \neq 0$ respectively.

Co-factor matrix and Adjoint (Adjugate) matrix

- Let $A = [a_{ij}]_n$ be a square matrix
 - The matrix obtained by replacing each element of A by corresponding co factor is called a co factor matrix.

$$C = [c_{ij}]_n$$
, where c_{ij} is co factor of a_{ij} , $\forall i \& j$

Transpose of co factor matrix of A is called adjoint of matrix A, and is denoted by adj(A).

$$adj(A) = [d_{ij}]_n$$
, where $d_{ij} = c_{ji}$, $\forall i \& j$

Co-factor matrix and Adjoint (Adjugate) matrix

• Let $A = [a_{ij}]_n$ be a square matrix

$$\mathcal{C} = \left[c_{ij}
ight]_n$$
 , where c_{ij} is co factor of a_{ij} , $orall$ $i \& j$

$$adj(A) = \left[d_{ij}\right]_n$$
 , where $d_{ij} = c_{ji}$, $\forall i \& j$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} , C = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix}$$

$$adj(A) = C^T = \begin{bmatrix} c_{11} & c_{21} \\ c_{12} & c_{22} \end{bmatrix} = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$$

Note:

For
$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
 $adj(A) = \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$

Example:

Find adjoint of matrix
$$A = \begin{pmatrix} 2 & 5 & 6 \\ 1 & 3 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$
.

$$A = \begin{pmatrix} 2 & 5 & 6 \\ 1 & 3 & 1 \\ 2 & 2 & 3 \end{pmatrix} \begin{cases} C_{11} = 7; & C_{12} = -1; & C_{13} = -4; & C_{21} = -3; & C_{22} = -6; & C_{23} = 6; \\ C_{31} = -13; & C_{32} = 4; & C_{33} = 1 \end{cases}$$

$$\Rightarrow C = \begin{pmatrix} 7 & -1 & -4 \\ -3 & -6 & 6 \\ -13 & 4 & 1 \end{pmatrix}$$

$$\Rightarrow adj(A) = C^{T} = \begin{pmatrix} 7 & -3 & -13 \\ -1 & -6 & 4 \\ -4 & 6 & 1 \end{pmatrix}$$

If
$$A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}$$
, then $adj (3A^2 + 12A)$ is equal to:

$$A = \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}$$

$$\Rightarrow 3A^2 = 3\begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix}\begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} = 3\begin{pmatrix} 16 & -9 \\ -12 & 13 \end{pmatrix} = \begin{pmatrix} 48 & -27 \\ -36 & 39 \end{pmatrix}$$

$$12 A = 12 \begin{pmatrix} 2 & -3 \\ -4 & 1 \end{pmatrix} = \begin{pmatrix} 24 & -36 \\ -48 & 12 \end{pmatrix}$$

$$3A^2 + 12 A = \begin{pmatrix} 72 & -63 \\ -84 & 51 \end{pmatrix}$$

$$adj (3A^2 + 12 A) = \begin{pmatrix} 51 & 63 \\ 84 & 72 \end{pmatrix}$$

$$\begin{pmatrix} 72 & -84 \\ -63 & 51 \end{pmatrix}$$

$$\begin{pmatrix}
51 & 63 \\
84 & 72
\end{pmatrix}$$

$$\begin{pmatrix}
51 & 84 \\
63 & 72
\end{pmatrix}$$

$$\begin{bmatrix}
72 & -63 \\
-84 & 51
\end{bmatrix}$$

Properties of adjoint matrix

• Let $A = [a_{ij}]_n$ be a square matrix.

$$adj (A^T) = (adj A)^T$$

Proof:

$$L.H.S = adj (A^T) = (C^T)^T = C$$

$$R.H.S = (adj A)^T = ((C)^T)^T = C$$

$$adj (A^T) = (adj A)^T$$

Properties of adjoint matrix

• Let $A = [a_{ij}]_n$ be a square matrix.

$$A \ adj \ (A) = |A|I_n = adj \ (A) \ A$$

Proof:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \Rightarrow C = \begin{bmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{bmatrix}$$

$$adj(A) = C^{T} = \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}$$

$$A \ adj \ (A) = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix}$$

 $a_{11}C_{21} + a_{12}C_{22} + a_{13}C_{23} = 0$

Properties of adjoint matrix

• Let $A = [a_{ij}]_n$ be a square matrix.

$$A adj(A) = |A|I_n = adj(A) A$$

Proof:

$$A \ adj \ (A) = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} c_{11} & c_{21} & c_{31} \\ c_{12} & c_{22} & c_{32} \\ c_{13} & c_{23} & c_{33} \end{bmatrix} \qquad a_{11}C_{11} + a_{12}C_{12} + a_{13}C_{13} = \Delta$$

$$A \ adj \ (A) \ = \begin{bmatrix} |A| & 0 & 0 \\ 0 & |A| & 0 \\ 0 & 0 & |A| \end{bmatrix}$$

$$A \ adj \ (A) = |A|I_n$$

If $A = [a_{ij}]_{3X3}$ is a scalar matrix with $a_{11} = a_{22} = a_{33} = 2$ and $A \, adj(A) = kI_3$, then k is equal to :

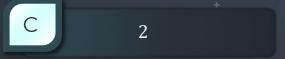
Solution:

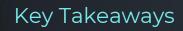
$$A = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad A \ adj \ (A) = |A|I_n$$

$$A \ adj(A) = 8I_3$$

$$A \ adj(A) = kI_3$$

$$k = 8$$





Properties of adjoint matrix

• Let $A = [a_{ij}]_n$ be a square matrix.

$$|adj(A)| = |A|^{n-1}$$

Proof:

We know, $A adj(A) = \overline{|A|I_n}$

$$\Rightarrow |A \ adj \ (A)| = ||A|I_n|$$

$$\Rightarrow |A||adj(A)| = |A|^n$$

$$\Rightarrow |adj(A)| = |A|^{n-1}$$

Note:

$$|C| = |adj(A)| = |A|^{n-1}$$

If
$$P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$
 is adjoint of a 3×3 matrix A and $|A| = 4$, then α is equal to :

$$P = \begin{bmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{bmatrix}$$

$$|P| = \begin{vmatrix} 1 & \alpha & 3 \\ 1 & 3 & 3 \\ 2 & 4 & 4 \end{vmatrix} \qquad R_2 \to R_2 - R_1$$

$$\begin{vmatrix} 1 & \alpha & 3 \\ 0 & 3 - \alpha & 0 \\ 2 & 4 & 4 \end{vmatrix} = (3 - \alpha)(4 - 6) = 2\alpha - 6$$

: P is the adjoint of the matrix A

$$\Rightarrow |P| = |A|^2 = 16$$
 $|adj(A)| = |A|^{n-1}$

$$\Rightarrow 2\alpha - 6 = 16 \Rightarrow \alpha = 11$$

If A is a square matrix of order n, then $\left|adj(adj(A))\right|$ is :

$$adj(adj(A)) = |A|^{n-2}A$$

$$\Rightarrow \left| adj \left(adj(A) \right) \right| = \left| |A|^{n-2} A \right|$$

$$\Rightarrow \left| adj \left(adj(A) \right) \right| = |A|^{(n-2)n} |A|$$

$$\Rightarrow \left| adj \left(adj \left(A \right) \right) \right| = |A|^{(n-1)^2}$$

$$|A|^{n^2-2n}$$

$$|A|^{n^2-n}$$

$$|A|^{(n-1)^2}$$

Properties of adjoint matrix

• Let $A = [a_{ij}]_n$ be a square matrix.

$$adj(adj(A)) = |A|^{n-2}A$$

Proof:

$$A \ adj(A) = |A|I$$

$$\Rightarrow adj(A)adj(adj(A)) = |adj(A)|I$$

 $A \rightarrow adj(A)$

 $|adj(A)| = |A|^{n-1}$

 $A adj(A) = |A|I_n = adj(A) A$

$$\Rightarrow A \ adj(A)adj(adj(A))$$

$$\Rightarrow |A|adj(adj(A)) = A|A|^{n-1}$$

$$\Rightarrow adj(adj(A)) = |A|^{n-2}A$$

If the matrices
$$A = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{bmatrix}$$
, $B = adj(A)$ and $C = 3A$, then $\frac{|adj(B)|}{|C|}$ is equal to:

JEE MAIN JAN 2019

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 1 & 3 & 4 \\ 1 & -1 & 3 \end{vmatrix}$$

$$R_3 \rightarrow R_3 - R_1$$

$$R_2 \rightarrow R_2 - R_1$$

$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 0 & 2 & 2 \\ 0 & -2 & 1 \end{vmatrix} = 6$$

$$\frac{|adj(B)|}{|C|} = \frac{|adj(adj(A))|}{|3A|} = \frac{|A|^{(3-1)^2}}{3^3|A|} = \frac{6^3}{3^3}$$

$$\Rightarrow \frac{|adj(B)|}{|C|} = 8$$

Properties of adjoint matrix

• If A is a symmetric matrix, then adj (A) is also a symmetric matrix.

$$A = \begin{bmatrix} a & b \\ b & c \end{bmatrix} \Rightarrow adj (A) = \begin{bmatrix} c & -b \\ -b & a \end{bmatrix}$$

• If A is a singular matrix, then adj(A) is also a singular matrix.

$$|A| = 0 \Rightarrow |adj(A)| = 0 \qquad |adj(A)| = |A|^{n-1}$$

Inverse of a matrix (Reciprocal matrix)

• If A, B are square matrices of order n and $|A| \neq 0$,

$$AB = I_n = BA$$
, then B is multiplicative inverse of A i.e. $B = A^{-1}$

$$\Rightarrow AA^{-1} = I = A^{-1}A$$

To find inverse of a matrix:

We know,
$$A adj(A) = |A|I_n = adj A \cdot A$$

$$\Rightarrow A \cdot \left(\frac{adj A}{|A|}\right) = I_n = \left(\frac{adj A}{|A|}\right) \cdot A$$

$$\Rightarrow A \cdot A^{-1} = I_n = A^{-1} \cdot A \Rightarrow A^{-1} = \frac{adj(A)}{|A|}$$

Note: For a matrix to be invertible, it must be non – singular.

Find the inverse of matrix $A \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$:

$$|A| = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{vmatrix} \quad R_3 \to R_3 - R_1$$

$$|A| = \begin{vmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 0 & 0 & 1 \end{vmatrix} \Rightarrow |A| = 1$$

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix} \begin{cases} C_{11} = 7; & C_{12} = -1; & C_{13} = -1; & C_{21} = -3; & C_{22} = 1; & C_{23} = 0; \\ C_{31} = -3; & C_{32} = 0; & C_{33} = 1 \end{cases}$$

$$C = \begin{pmatrix} 7 & -1 & -1 \\ -3 & 1 & 0 \\ -3 & 0 & 1 \end{pmatrix}; \quad adj(A) = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$$

Find the inverse of matrix $A \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$:

$$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

$$adj(A) = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad A^{-1} = \frac{adj(A)}{|A|}$$

$$A^{-1} = \begin{pmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix} \qquad |A| = 1$$

If
$$|A| = \begin{vmatrix} e^{-t} & e^{-t}\cos t & e^{-t}\sin t \\ e^{-t} & -e^{-t}\cos t - e^{-t}\sin t & e^{-t}\cos t - e^{-t}\sin t \\ e^{-t} & 2e^{-t}\sin t & -2e^{-t}\cos t \end{vmatrix}$$
, then A is

$$|A| = \begin{vmatrix} e^{-t} & e^{-t} \cos t & e^{-t} \sin t \\ e^{-t} & -e^{-t} \cos t - e^{-t} \sin t & e^{-t} \cos t - e^{-t} \sin t \\ e^{-t} & 2e^{-t} \sin t & -2e^{-t} \cos t \end{vmatrix}$$

$$\Rightarrow |A| = e^{-3t} \begin{vmatrix} 1 & \cos t & \sin t \\ 1 & -\cos t - \sin t & \cos t - \sin t \\ 1 & 2\sin t & -2\cos t \end{vmatrix}$$

$$R_1 = R_1 + R_2 + \frac{1}{2}R_3$$

$$\Rightarrow |A| = e^{-3t} \begin{vmatrix} \frac{5}{2} & 0 & 0 \\ 1 & -\cos t - \sin t & \cos t - \sin t \\ 1 & 2\sin t & -2\cos t \end{vmatrix}$$

$$\Rightarrow |A| = e^{-3t} \cdot \frac{5}{2} (2\cos^2 t + 2\sin t \cos t - 2\sin t \cos t + 2\sin^2 t)$$

$$\Rightarrow |A| = e^{-3t}(5) \neq 0$$
 $\therefore A$ is invertible for all $t \in \mathbb{R}$

Matrix Properties:

• adj(AB) = adj(B) Adj(A)

Proof:

$$(AB)^{-1} = \frac{adj(AB)}{\det(AB)}$$

Or $adj(AB) - (AB)^{-1} \cdot \det(AB) \cdots (1)$

It is also known = $(AB)^{-1} \cdot \det(AB)$

And $det(AB) = det(A) \cdot det(B) \cdots (2)$

Also,
$$A^{-1} = \frac{adj(A)}{\det(A)} B^{-1} = \frac{adj(B)}{\det(B)}$$

Or $adj(B) \cdot adj(A) = \det A \cdot \det B \cdot B^{-1} \cdot A^{-1} \cdots (3)$

Matrix Properties:

Proof:

$$adj(AB) - (AB)^{-1} \cdot \det(AB) \cdots (1)$$

$$\det(AB) = \det(A) \cdot \det(B) \cdots (2)$$

$$adj(B) \cdot adj(A) = \det A \cdot \det B \cdot B^{-1} \cdot A^{-1} \cdots (3)$$

Putting (2) in equation (1)

$$adj (AB) = \det(A) \cdot \det(B) \cdot B^{-1} \cdot A^{-1} \cdots (4)$$

From (3) and (4)

$$adj(AB) = adj(B) \cdot adj(A)$$

Matrix Properties:

• adj(0) = 0

Proof:

As we know that |0| = 0

Also, cofactors of $a_{ij} = 0$ for all i and j.

So,
$$adj(0) = 0$$

• adj(I) = I

Proof: As we know that [I] = 1

Also, cofactors of $a_{ij} = 1$ when i = j and 0 when $i \neq j$.

So,
$$adj(I) = [a_{ij}]' = I' = I$$

Session 08

Properties of Inverse Matrix

If
$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$$
, then the inverse of $\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$ is :

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1+2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1+2+3 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 0 & 1 \end{bmatrix} \dots \begin{bmatrix} 1 & n-1 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1+2+\dots+(n-1) \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & \frac{n(n-1)}{2} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 78 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow \frac{n(n-1)}{2} = 78 \Rightarrow n = 13$$
Inverse of
$$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$$

$$A \qquad \begin{bmatrix} 1 & 0 \\ 12 & 1 \end{bmatrix}$$

JEE MAIN APRIL 2019

$$\begin{bmatrix} 1 & 2 \\ 13 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -12 \\ 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$$

Inverse of
$$\begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 13 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -13 \\ 0 & 1 \end{bmatrix}$$

$$\Rightarrow |B| = 1 \Rightarrow B^{-1} = Adj B$$

Key Takeaways

B

Properties of Inverse of a matrix

If A is a non – singular matrix,

 $\det(A \cdot B) = \det(A) \cdot \det(B)$

det(I) = 1

•
$$|A^{-1}| \neq 0$$

$$AA^{-1} = I$$

$$\Rightarrow \det(A \cdot A^{-1}) = \det(I)$$

$$\Rightarrow |A| |A^{-1}| = 1$$

$$\Rightarrow |A^{-1}| = \frac{1}{|A|} \ (\because |A| \neq 0)$$

$$\Rightarrow |A^{-1}| = \frac{1}{|A|} \rightarrow \text{non singular}$$

Let A & B be two invertible matrices of order 3×3 . If $det(ABA^T) = 8$ and $det(AB^{-1}) = 8$, then $det(BA^{-1}B^T)$ is equal to :

JEE MAIN JAN 2019

Solution:

$$|ABA^T| = 8$$

$$\Rightarrow |A| |B| |A^T| = 8$$

$$\Rightarrow |A|^2|B| = 8$$

$$\det(AB^{-1}) = 8$$

$$|AB^{-1}| = 8$$

$$\Rightarrow |A||B^{-1}| = 8$$

$$\Rightarrow \frac{|A|}{|B|} = 8$$

$$|A|^3 = 64$$

$$\Rightarrow |A| = 4 \& |B| = \frac{1}{2}$$

 $\det(BA^{-1}B^T)$

$$= |B| \cdot \frac{1}{|A|} \cdot |B|$$

$$=\frac{1}{2}\cdot\frac{1}{4}\cdot\frac{1}{2}$$

$$=\frac{1}{16}$$

16

1

 $\frac{1}{16}$

 $\frac{1}{4}$

Properties of Inverse of a matrix

If A is a non – singular matrix, $\Rightarrow A^{-1}$ is also non singular

•
$$(A^{-1})^{-1} = A$$
 Let $B = A^{-1}$

$$BB^{-1} = I \Rightarrow A^{-1}(A^{-1})^{-1} = I$$
 (Pre multiply by A on both sides)

$$AA^{-1}(A^{-1})^{-1} = AI$$

$$\Rightarrow (A^{-1})^{-1} = A$$

• If $A = \text{diag}(a_1, a_2, ..., a_n)$, then $A^{-1} = \text{diag}(a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$

$$A = \begin{bmatrix} a_1 & \cdots & \cdots \\ \cdots & a_2 & \cdots \\ \cdots & \cdots & a_3 \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} \frac{1}{a_1} & \cdots & \cdots \\ \cdots & \frac{1}{a_2} & \cdots \\ \cdots & \cdots & \frac{1}{a_2} \end{bmatrix}$$

Properties of Inverse of a matrix

If A is a non – singular matrix,

$$(A^{-1})^{-1} = A$$

• If
$$A = \text{diag}(a_1, a_2, ..., a_n)$$
, then $A^{-1} = \text{diag}(a_1^{-1}, a_2^{-1}, ..., a_n^{-1})$

Proof:
$$A = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}$$
 $|A| = a_1 \cdot a_2 \cdot a_3$, $|A| \neq 0 \Rightarrow A^{-1} = \frac{adj(A)}{|A|}$

$$\Rightarrow adj (A) = \begin{pmatrix} a_2 a_3 & 0 & 0 \\ 0 & a_1 a_3 & 0 \\ 0 & 0 & a_2 a_1 \end{pmatrix} \Rightarrow A^{-1} = \frac{1}{a_1 a_2 a_3} \begin{pmatrix} a_2 a_3 & 0 & 0 \\ 0 & a_1 a_3 & 0 \\ 0 & 0 & a_2 a_1 \end{pmatrix} \Rightarrow A^{-1} = \begin{pmatrix} \frac{1}{a_1} & 0 & 0 \\ 0 & \frac{1}{a_2} & 0 \\ 0 & 0 & \frac{1}{a_3} \end{pmatrix}$$

If $A = \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$ & $B = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}$ and X be a matrix such that A = BX, then X is equal to :

$$A = BX$$

$$X = B^{-1}A$$

$$X = \frac{1}{2} \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 3 & -5 \end{pmatrix}$$

$$\Rightarrow X = \frac{1}{2} \begin{pmatrix} 2 & 4 \\ 3 & -5 \end{pmatrix}$$

Since,
$$|B| \neq 0$$

$$B^{-1} = \frac{adj(B)}{|B|}$$

$$adj(B) = \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$$

$$\frac{1}{2}\begin{pmatrix} 2 & 4 \\ 3 & -5 \end{pmatrix}$$

$$\frac{1}{2}\begin{pmatrix} -2 & 4\\ 3 & 5 \end{pmatrix}$$

$$\begin{array}{ccc}
 & \begin{pmatrix}
2 & 4 \\
3 & -5
\end{pmatrix}$$

$$\begin{array}{ccc}
 & \begin{pmatrix}
-2 & 4 \\
3 & 5
\end{pmatrix}$$

Properties of Inverse of a matrix

If matrix A is invertible, then

$$\bullet \quad A^{-k} = (A^{-1})^k, k \in \mathbb{N}$$

$$A^{-2} = (A^{-1})^2 = A^{-1} \cdot A^{-1}$$

$$A^{-3} = (A^{-1})^3 = A^{-1} \cdot A^{-1} \cdot A^{-1}$$

If
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
, then the matrix A^{-50} when $\theta = \frac{\pi}{12}$, is equal to :

$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \qquad A^{-1} = \frac{adj(A)}{|A|}$$

$$|A| = \cos^2 \theta + \sin^2 \theta = 1$$

$$adj(A) = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \Rightarrow A^{-1} = adj A$$

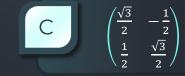
$$A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

$$A^{-2} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix}$$

$$A^{-3} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ -\sin 2\theta & \cos 2\theta \end{pmatrix} \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix} = \begin{pmatrix} \cos 3\theta & \sin 3\theta \\ -\sin 3\theta & \cos 3\theta \end{pmatrix}$$

Similarly,
$$A^{-50} = \begin{pmatrix} \cos 50\theta & \sin 50\theta \\ -\sin 50\theta & \cos 50\theta \end{pmatrix}$$

JEE MAIN JAN 2019



If
$$A = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$
, then the matrix A^{-50} when $\theta = \frac{\pi}{12}$, is equal to:

JEE MAIN JAN 2019

Solution:
$$A^{-1} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

Similarly,
$$A^{-50} = \begin{pmatrix} \cos 50\theta & \sin 50\theta \\ -\sin 50\theta & \cos 50\theta \end{pmatrix}$$

$$A^{-50}_{\theta = \frac{\pi}{12}} = \begin{pmatrix} \cos\frac{\pi}{6} & \sin\frac{\pi}{6} \\ -\sin\frac{\pi}{6} & \cos\frac{\pi}{6} \end{pmatrix}$$

$$A^{-50}_{\theta = \frac{\pi}{12}} = \begin{pmatrix} \frac{\sqrt{3}}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}$$

Properties of Inverse of a matrix

If matrix A is invertible, then

•
$$(A^{-1})^T = (A^T)^{-1}$$

Proof:

$$A^{-1} = \frac{adj(A)}{|A|}$$

$$(A^{-1})^T = \frac{(adj(A))^T}{|A|} \qquad (adj(A))^T = adj(A^T)$$
$$= \frac{adj(A^T)}{|A^T|}$$
$$= (A^T)^{-1}$$

$$BB^{t} = A^{-1}A^{T}(A^{-1}A^{T})^{T}$$

$$= A^{-1}A^{T}A(A^{-1})^{T}$$

$$= A^{-1}AA^{T}(A^{-1})^{T}$$

$$= IA^{T}(A^{-1})^{T}$$

$$= I$$

JEE MAIN 2014

 B^{-1}

 $A^{-1}A = I = AA^{-1}$

 $(A^{-1})^T = (A^T)^{-1}$

 $(B^{-1})^T$

I + B

Ι

Properties of Inverse of a matrix

If matrix A is invertible, then

•
$$(kA)^{-1} = \frac{1}{k}A^{-1}$$
, Where k is a scalar

Proof:
$$(kA)(kA)^{-1} = I$$

$$\Rightarrow A \cdot (kA)^{-1} = \frac{1}{k} \cdot I \ (\because |A| \neq 0) \qquad \text{Premultiply by } A^{-1}$$

$$\Rightarrow A^{-1} \cdot A \cdot (kA)^{-1} = \frac{1}{k} \cdot (A^{-1} \cdot I)$$

 $AA^{-1} = I$

$$(kA)^{-1} = \frac{1}{k}A^{-1}$$

If $|B| = \frac{1}{3}$, then $(3A)^{-1}A \ adj(B)$ is equal to:

Solution:

$$(3A)^{-1}A \ adj(B) = \frac{1}{3}(A)^{-1}A \cdot adj B$$
$$= \frac{1}{3} \cdot I \cdot B^{-1} \cdot |B|$$
$$= \frac{1}{3} \cdot I \cdot B^{-1} \cdot \frac{1}{3}$$

$$=\frac{1}{9}B^{-1}$$

$$(kA)^{-1} = \frac{1}{k}A^{-1}$$

$$adj\left(A\right) = |A|A^{-1}$$

$$3B^{-1}$$

$$B^{-1}$$

$$\frac{1}{9}B^{-1}$$

Ι

Properties of Inverse of a matrix

If matrix A is invertible, then

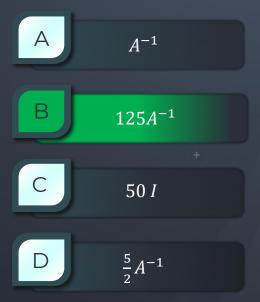
• $adj(kA) = k^{n-1}adj(A)$, where k is scalar & n is the order of matrix

Proof:
$$adj (kA) = |kA|(kA)^{-1}$$
 $adj (A) = |A|A^{-1}$
 $= k^n |A| \frac{1}{k} A^{-1}$ $|kA| = k^n |A|$
 $= k^{n-1} |A|A^{-1}$ $(kA)^{-1} = \frac{1}{k} A^{-1}$

 $adj(kA) = k^{n-1}adj(A)$

If A is a square matrix of order 4 and |A| = 2, then $\frac{1}{2} adj$ (5A) equals:

$$\frac{1}{2} adj (5A) = \frac{1}{|A|} 5^3 adj(A) \qquad \frac{1}{|A|} adj (A) = A^{-1}$$
$$= 5^3 A^{-1}$$
$$= 125A^{-1}$$



Properties of Inverse of a matrix

If matrix A is invertible, then

•
$$(AB)^{-1} = B^{-1}A^{-1}$$

Proof:
$$(AB)(AB)^{-1} = I$$

$$A^{-1}(AB)(AB)^{-1} = A^{-1}I$$

 $AA^{-1} = I$

$$B(AB)^{-1} = A^{-1}I$$

$$B^{-1}B(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

Let M & N be two $2n \times 2n$ non singular, skew symmetric matrices such that MN = NM. If P^T denotes the transpose of P, then $M^2N^2(M^TN)^{-1}(MN^{-1})^T$ is equal to: **IIT JEE 2011**

Solution:

$$M^T = -M$$
 $N^T = -N$ $MN = NM$

$$M^2N^2(M^TN)^{-1}(MN^{-1})^T$$

$$= M^2 N^2 N^{-1} (M^T)^{-1} (N^{-1})^T M^T$$

$$= -M^2N^2N^{-1}M^{-1}N^{-1}M$$

$$= -M^2 N M^{-1} N^{-1} M$$

$$=-MNN^{-1}M$$

$$=-M^2$$

$$MN = NM$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(AB)^T = B^T A^T$$

$$(A^{-1})^T = (A^T)^{-1}$$

В

MN

 M^2

 $-N^2$

Properties of Inverse of a matrix

If $|A|, |B| \neq 0$, then

• adj(AB) = (adj B)(adj A)

Proof: $(AB)^{-1} = B^{-1}A^{-1}$

$$\frac{adj(AB)}{|AB|} = \frac{adj(B)}{|B|} \frac{adj(A)}{|A|}$$

$$adj(AB) = (adj B)(adj A)$$

Note: $adj(A_1 \cdot A_2 \cdots A_n) = (adj A_n) \cdots (adj A_2)(adj A_1)$

Properties of Inverse of a matrix

Generally, $AB = 0 \Rightarrow A = 0$ or B = 0

$$AB = 0$$
 both are singular matrices if one is non singular, other will be a null matrix.

Proof: AB = 0

$$\Rightarrow |AB| = 0 \Rightarrow |A| \cdot |B| = 0$$

If A is non singular $|A| \neq 0 \Rightarrow A^{-1}$ exists

$$A \cdot B = 0$$
 (Premultiply by A^{-1})

$$A^{-1}AB = 0 \Rightarrow B = 0$$



If A is a non-singular matrix, then

$$AB = AC \Rightarrow B = C$$

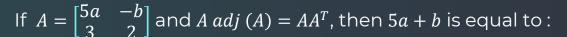
Proof: AB = AC

$$\Rightarrow AB - AC = 0 \Rightarrow A(B - C) = 0$$

Since A is non singular

$$\Rightarrow$$
 $(B-C)=0$ (has to be null)

$$\Rightarrow B = C$$



AB = AC

 $\Rightarrow B = C$

JEE MAIN 2016

$$A adj (A) = AA^T$$

$$adj(A) = A^T$$

$$\Rightarrow \begin{bmatrix} 2 & b \\ -3 & 5a \end{bmatrix} = \begin{bmatrix} 5a & 3 \\ -b & 2 \end{bmatrix}$$

$$5a = 2$$
; $b = 3$

$$\Rightarrow 5a + b = 5$$

Session 09

System of Linear Equations

Inverse of a matrix by elementary transformations:

- Elementary row/column transformation include the following operations:
 - (i) Interchanging two rows (columns).
 - (ii) Multiplication of all elements of a row (column) by a non zero scalar.
 - (iii) Addition of a constant multiple of a row (column) to another row(column).

Note:

Two matrices are said to be equivalent if one is obtained from other using elementary transformation $A \approx B$.

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$A = IA$$
 By applying transformation, reduce to convert 'A' matrix into 'I' matrix

$$\begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \qquad R_1 \leftrightarrow R_2$$

$$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \qquad \begin{bmatrix} 0 & 1 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A$$

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 3 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \qquad R_3 \to R_3 - 3R_1$$

$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A \qquad R_1 \to R_1 - 2R_2$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$$

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A \qquad R_3 \to R_3 - 5R_2$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A \qquad R_3 \to \frac{1}{2}R_3$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A$$

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A \qquad R_1 = R_1 + R_3$$

$$R_1 = R_2 - 2R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{7}{2} & \frac{1}{2} \end{bmatrix} A$$

$$=A^{-1}$$

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & -5 & -8 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & -3 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ 5 & -3 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A$$

$$R_3 \to R_3 + 5R_2$$

$$R_3 \to \frac{1}{2}R_3$$

Inverse of a matrix by elementary transformations:

Example: By using elementary row transformation, find inverse of $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 2 & 3 \\ 3 & 1 & 1 \end{bmatrix}$ Solution:

$$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 1 & 0 & 0 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A \qquad R_1 = R_1 + R_3$$

$$R_2 = R_2 - 2R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix} A$$

$$A^{-1} = \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -4 & 3 & -1 \\ \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

$$R_1 = R_1 + R_3$$

$$R_2 = R_2 - 2R_3$$

The inverse of
$$\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
 is

$$\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_1 \rightarrow R_1 + R_2$$

$$\begin{bmatrix} 5 & 0 & 0 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_1 o rac{R_1}{5}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

A
$$\begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 1 \end{bmatrix}$$
 B
$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
\frac{2}{5} & \frac{3}{5} & -1 \\
-\frac{1}{5} & \frac{3}{5} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{5} & \frac{2}{5} & 0 \\
-\frac{3}{5} & \frac{3}{10} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}$$

The inverse of
$$\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
 is

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_2 \rightarrow R_2 - 2 R_1$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{2}{5} & \frac{3}{5} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_2 \rightarrow -\frac{1}{2} R_2$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & -\frac{3}{10} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

A
$$\begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 1 \end{bmatrix}$$
 B
$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1\\ -\frac{1}{5} & \frac{3}{10} & 1\\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
\frac{2}{5} & \frac{3}{5} & -1 \\
-\frac{1}{5} & \frac{3}{5} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{5} & \frac{2}{5} & 0 \\
-\frac{3}{5} & \frac{3}{10} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}$$

The inverse of
$$\begin{bmatrix} 3 & 0 & 2 \\ 2 & 0 & -2 \\ 0 & 1 & 1 \end{bmatrix}$$
 is

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & -\frac{3}{10} & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot A$$

$$R_2 \longleftrightarrow R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ 0 & 0 & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix} \cdot A$$

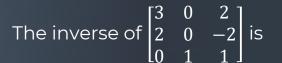
$$R_2 \rightarrow R_2 - R_3$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix} \cdot A$$

A
$$\begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 1 \end{bmatrix}$$
 B
$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1\\ -\frac{1}{5} & \frac{3}{10} & 1\\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
-\frac{1}{5} & \frac{2}{5} & 0 \\
-\frac{3}{5} & \frac{3}{10} & 1 \\
\frac{1}{2} & -\frac{3}{2} & 0
\end{bmatrix}$$



$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix} \cdot A$$

This is of the form $I = A^{-1} \cdot A$

$$A^{-1} = \begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0\\ -\frac{1}{5} & \frac{3}{10} & 1\\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

A
$$\begin{bmatrix} \frac{1}{5} & \frac{1}{5} & 0 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 1 \end{bmatrix}$$
 B
$$\begin{bmatrix} -\frac{1}{5} & \frac{1}{5} & 1 \\ -\frac{1}{5} & \frac{3}{10} & 1 \\ \frac{1}{5} & -\frac{3}{10} & 0 \end{bmatrix}$$

$$\begin{bmatrix}
\frac{2}{5} & \frac{3}{5} & -1 \\
-\frac{1}{5} & \frac{3}{5} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}
\begin{bmatrix}
-\frac{1}{5} & \frac{2}{5} & 0 \\
-\frac{3}{5} & \frac{3}{10} & 1 \\
\frac{1}{5} & -\frac{3}{10} & 0
\end{bmatrix}$$

System of linear equations (Cramer's rule):

Two variables:

Consider system of equations

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$

$$\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1 b_2 - a_2 b_1$$

$$\Delta_1(\Delta_x) = \begin{vmatrix} c_1 & b_1 \\ c_2 & b_2 \end{vmatrix} = c_1b_2 - c_2b_1$$

$$\Delta_2(\Delta_y) = \begin{vmatrix} a_1 & c_1 \\ a_2 & c_2 \end{vmatrix} = a_1c_2 - a_2c_1$$

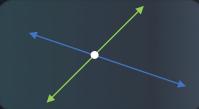
Solution:
$$x = \frac{\Delta_x}{\Delta}$$
; $y = \frac{\Delta_y}{\Delta}$

Two variables:

$$\begin{vmatrix} a_1x + b_1y = c_1 \\ a_2x + b_2y = c_2 \end{vmatrix} \Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$$

Consistent System:

(i) If $\frac{a_1}{a_2} \neq \frac{b_1}{b_2}$, then system of equations has unique solution.



(ii) If $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then system of equations has infinite solution.

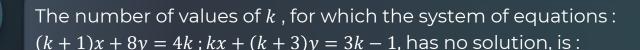
Two variables:

$$a_1x + b_1y = c_1$$

 $a_2x + b_2y = c_2$ $\Delta = \begin{vmatrix} a_1 & b_1 \\ a_2 & b_2 \end{vmatrix} = a_1b_2 - a_2b_1$

Inconsistent System:

If $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$, then system of equations has no solution.



$$(k+1)x + 8y = 4k$$

(k+1)x + 8y = 4k kx + (k+3)y = 3k - 1no solution

Infinite

For no solution : $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$

 $\frac{k+1}{k} = \frac{8}{k+3} \neq \frac{4k}{3k-1}$

2

 $\frac{k+1}{k} = \frac{8}{k+3} \Rightarrow k = 1,3$

3

For k = 1 $\frac{8}{1+3} = \frac{4 \times 1}{3 \times 1 - 1}$

(not possible)

For k = 3 $\frac{8}{3+3} \neq \frac{4\times3}{3\times3-1}$

(possible)

System of linear equations (Cramer's rule):

Two variables:

Consider system of equations

$$a_1x + b_1y = c_1$$
$$a_2x + b_2y = c_2$$
$$a_3x + b_3y = c_3$$

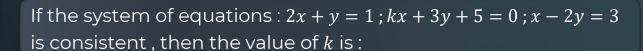
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

Two variables:

i) For consistent system, $\Delta = 0$ (concurrent lines)

$$a_1x + b_1y = c_1$$
 $a_2x + b_2y = c_2$
 $a_3x + b_3y = c_3$
 $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

ii) For inconsistent system , $\Delta \neq 0$



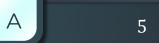
Solution:

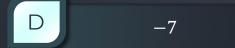
For consistent system : $\Delta = 0$

$$\begin{vmatrix} 2 & 1 & 1 \\ k & 3 & -5 \\ 1 & -2 & 3 \end{vmatrix} = 0$$

$$\Rightarrow -5k + 30 - 40 = 0$$

$$\Rightarrow k = -2$$





System of linear equations (Cramer's rule):

Three variables: Consider system of equations

$$\begin{vmatrix} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{vmatrix} \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

$$\Delta_{x} = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix} \qquad \Delta_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix} \qquad \Delta_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

Solution:
$$x = \frac{\Delta_x}{\Delta}$$
; $y = \frac{\Delta_y}{\Delta}$; $z = \frac{\Delta_z}{\Delta}$

$$\Delta \neq 0$$

System of linear equations (Cramer's rule):

Three variables: Consider system of equations

$$\begin{vmatrix} a_1x + b_1y + c_1z = d_1 \\ a_2x + b_2y + c_2z = d_2 \\ a_3x + b_3y + c_3z = d_3 \end{vmatrix} \Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

For (0,0,0)

$$a_1x + b_1y + c_1z = 0$$

 $a_2x + b_2y + c_2z = 0$
 $a_3x + b_3y + c_3z = d_3$

If d_1 , d_2 , d_3 all are zero simultaneously, then we have HOMOGENEOUS SYSTEM.

Note: (x, y, z) = (0,0,0) is always a solution of this equation and it's called Trivial solution.

System of linear equations (Cramer's rule):

Three variables: HOMOGENEOUS SYSTEM

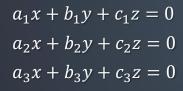
$$a_1x + b_1y + c_1z = 0$$

$$a_2x + b_2y + c_2z = 0$$

$$a_3x + b_3y + c_3z = 0$$

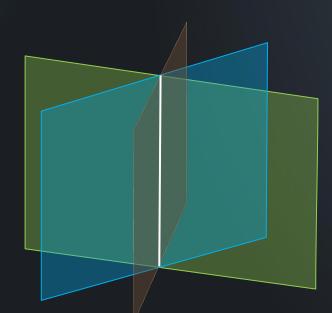
$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

- (i) If $\Delta \neq 0$, then system has trivial solution.
- (ii) If $\Delta = 0$, then system has non trivial solution (infinitely many solutions).



$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

(ii) If $\Delta = 0$, then system has non - trivial solution (infinitely many solutions).



$$a_1x + b_1y + c_1z = 0$$

 $a_2x + b_2y + c_2z = 0$
 $a_3x + b_3y + c_3z = 0$

$$\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$$

The number of values of $\theta \in (0,\pi)$ for which the system of linear equations x + 3y + 7z = 0; $\sin 3\theta x + \cos 2\theta y + 2z = 0$; -x + 4y + 7z = 0, has a non – trivial solution, is:

Solution:

$$\theta \in (0,\pi)$$

$$x + 3y + 7z = 0$$

$$\sin 3\theta x + \cos 2\theta y + 2z = 0$$

$$-x + 4y + 7z = 0$$
non – trivial solution

н

Four

В

Three

For non – trivial solution:

$$\Delta = 0$$

$$\begin{vmatrix} 1 & 3 & 7 \\ -1 & 4 & 7 \\ \sin 3\theta & \cos 2\theta & 2 \end{vmatrix} = 0 \qquad R_1 \to R_1 + R_2$$

$$\begin{vmatrix} 0 & 7 & 14 \\ -1 & 4 & 7 \\ \sin 3\theta & \cos 2\theta & 2 \end{vmatrix} = 0 \qquad C_3 \to C_3 - 2C_2$$

$$\begin{vmatrix} 0 & 1 & 0 \\ -1 & 4 & -1 \\ \sin 3\theta & \cos 2\theta & 2 - 2\cos 2\theta \end{vmatrix} = 0$$

Two

D

One

The number of values of $\theta \in (0,\pi)$ for which the system of linear equations x + 3y + 7z = 0; $\sin 3\theta x + \cos 2\theta y + 2z = 0$; -x + 4y + 7z = 0, has a non – trivial solution, is:

Solution:

$$\theta \in (0,\pi)$$

$$\begin{vmatrix} 0 & 1 & 0 \\ -1 & 4 & -1 \\ \sin 3\theta & \cos 2\theta & 2 - 2\cos 2\theta \end{vmatrix} = 0$$

$$\Rightarrow -1(2-2\cos 2\theta) + \sin 3\theta = 0$$

$$\Rightarrow \sin 3\theta + 2\cos 2\theta = 2$$

$$\Rightarrow \sin 3\theta = 4\sin^2\theta$$

$$\Rightarrow 3\sin\theta - 4\sin^3\theta - 4\sin^2\theta = 0$$

$$\Rightarrow -\sin\theta (4\sin^2\theta + 4\sin\theta - 3) = 0$$

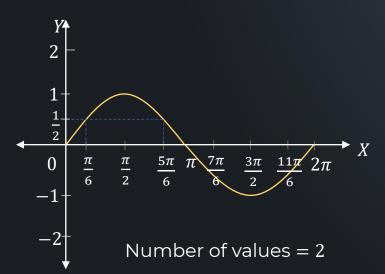
$$\Rightarrow \sin \theta = 0, \frac{1}{2}, -\frac{3}{2}$$

Two

One

The number of values of $\theta \in (0,\pi)$ for which the system of linear equations x + 3y + 7z = 0; $\sin 3\theta x + \cos 2\theta y + 2z = 0$; -x + 4y + 7z = 0, has a non – trivial solution, is:

$$\begin{vmatrix} 0 & 1 & 0 \\ -1 & 4 & -1 \\ \sin 3\theta & \cos 2\theta & 2 - 2\cos 2\theta \end{vmatrix} = 0 \Rightarrow \sin \theta = 0 \begin{vmatrix} \frac{1}{2} \\ -\frac{3}{2} \end{vmatrix}$$



Session 10 System of Linear Equations (Matrix Inversion) and

Homogeneous System of Equations

If the system of linear equations 2x + 3y - z = 0; x + ky - 2z = 0 &

2x - y + z = 0, has a non-trivial solution (x, y, z), then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to:

Solution:

$$2x + 3y - z = 0$$

$$x + ky - 2z = 0$$

$$2x - y + z = 0$$
non – trivial solution $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k = ?$

For non – trivial solution : $\Delta = 0$

$$\begin{vmatrix} 2 & 3 & -1 \\ 1 & k & -2 \\ 2 & -1 & 1 \end{vmatrix} = 0 \quad \begin{vmatrix} R_1 \to R_1 - 2R_2 \\ R_3 \to R_3 - 2R_2 \end{vmatrix} \Rightarrow \begin{vmatrix} 0 & 3 - 2k & 3 \\ 1 & k & -2 \\ 0 & -1 - 2k & 5 \end{vmatrix} = 0$$

$$\Rightarrow -1(15 - 2k + 3 + 6k) = 0 \Rightarrow 18 - 4k = 0$$

$$\Rightarrow k = \frac{9}{2}$$

JEE MAIN Apr 2019

$$\frac{3}{4}$$

$$-\frac{1}{4}$$

If the system of linear equations 2x + 3y - z = 0; x + ky - 2z = 0 &

2x - y + z = 0, has a non – trivial solution (x, y, z), then $\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k$ is equal to :

JEE MAIN Apr 2019

Solution:

So, the equations will be:

$$2x + 3y - z = 0 \cdots (i)$$

$$x + \frac{9}{2}y - 2z = 0 \cdots (ii)$$

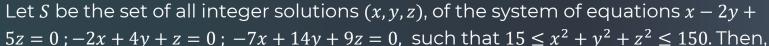
$$2x - y + z = 0 \cdots (iii)$$

$$(i) - (iii) : 4y = 2z$$
 $\Rightarrow \frac{y}{z} = \frac{1}{2}$

$$(i) + (iii) : 4x + 2y = 0 \Rightarrow \frac{x}{y} = -\frac{1}{2}$$

$$(i) + 3(iii) : 8x + 2z = 0 \qquad \Rightarrow \frac{z}{x} = -4$$

$$\frac{x}{y} + \frac{y}{z} + \frac{z}{x} + k = \frac{1}{2}$$



$$t 15 \le x^2 + y^2 + z^2$$

JEE MAIN Apr 2019

Solution:
$$x - 2y + 5z = 0 \cdots (i)$$

$$-2x + 4y + z = 0 \cdots (ii)$$

the number of elements in the set S is ____

$$15 \le x^2 + y^2 + z^2 \le 150$$

$$-7x + 14y + 9z = 0 \cdots (iii)$$

$$\Delta = \begin{vmatrix} 1 & -2 & 5 \\ -2 & 4 & 1 \\ -7 & 14 & 9 \end{vmatrix} = 0$$

Let
$$x = k$$
, in (i) & (ii)

$$k - 2y + 5z = 0 \qquad \Rightarrow 2y - 5z = k$$

$$\Rightarrow -2k + 4y + z = 0$$
 $\Rightarrow 4y + z = 2k$

$$\Rightarrow z = 0, y = \frac{k}{2}$$
 Since x, y, z are integers, $k = \text{even integer}$

Let *S* be the set of all integer solutions (x, y, z), of the system of equations x - 2y + 5z = 0; -2x + 4y + z = 0; -7x + 14y + 9z = 0, such that $15 \le x^2 + y^2 + z^2 \le 150$. Then, the number of elements in the set *S* is ____

B

JEE MAIN Apr 2019

Solution:

$$\Delta = \begin{vmatrix} 1 & -2 & 5 \\ -2 & 4 & 1 \\ -7 & 14 & 9 \end{vmatrix} \qquad \Delta = 0 \qquad x = k,$$

$$z = 0, y = \frac{k}{2}$$

Since x, y, z are integers, k = even integer

$$15 \le \frac{5k^2}{4} \le 150$$

$$\Rightarrow 12 \le k^2 \le 120 \quad \Rightarrow k^2 \in [12, 120]$$

$$k \in \{\pm 4, \pm 6, \pm 8, \pm 10\}$$

N number of elements in the set S is = 8.

System of linear equations (Cramer's rule):

ullet Three variables: NON-HOMOGENEOUS SYSTEM (If d_1,d_2,d_3 are not all simultaneously zero)

Consider system of equations

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$
 $\Delta = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix}$

$$\Delta_{x} = \begin{vmatrix} d_{1} & b_{1} & c_{1} \\ d_{2} & b_{2} & c_{2} \\ d_{3} & b_{3} & c_{3} \end{vmatrix} \qquad \Delta_{y} = \begin{vmatrix} a_{1} & d_{1} & c_{1} \\ a_{2} & d_{2} & c_{2} \\ a_{3} & d_{3} & c_{3} \end{vmatrix} \qquad \Delta_{z} = \begin{vmatrix} a_{1} & b_{1} & d_{1} \\ a_{2} & b_{2} & d_{2} \\ a_{3} & b_{3} & d_{3} \end{vmatrix}$$

Solution:
$$x = \frac{\Delta_x}{\Delta}$$
; $y = \frac{\Delta_y}{\Delta}$; $z = \frac{\Delta_z}{\Delta}$

System of linear equations (Cramer's rule):

(i) If $\Delta \neq 0$, system of equation is consistent and has unique solution

If at least one of Δ_x , Δ_y , $\Delta_z \neq 0$ Unique non-trivial solution.

If all Δ_x , Δ_y , $\Delta_z=0$ Unique trivial solution.

(ii) If $\Delta = \Delta_x = \Delta_y = \Delta_z = 0$, system of equation has infinite solution.

Example:

$$x + 2y + z = 1$$

$$2x + 4y + 2z = 2$$

 $4x + 8y + 4z = 4$

Infinite solution

System of linear equations (Cramer's rule):

(iii) If Δ = 0, but at least one of Δ_x , Δ_y , $\Delta_z \neq 0$, system of equations is inconsistent and has no solution.

Consistent system

Unique solution

$$\Delta = 0$$

 $\Delta_x = \Delta_y = \Delta_z = 0$ Consistent system

Infinite solution

at least one of Δ_x , Δ_y , $\Delta_z \neq 0$

Inconsistent system

No solution

Solution:
$$x + y + z = 2$$

 $2x + 3y + (a^2 - 1)z = a + 1$

$$2x + 3y + 2z = 5$$

$$2x + 3y + (a^2 - 1)z = a + 1$$

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 2 & 3 & a^2 - 1 \end{vmatrix} \quad R_3 \to R_3 - R_2 \Rightarrow \begin{vmatrix} 1 & 1 & 1 \\ 2 & 3 & 2 \\ 0 & 0 & a^2 - 3 \end{vmatrix} = 0$$
$$\Rightarrow |a| = \sqrt{3}$$

For
$$|a| = \sqrt{3}$$
, Equations become: $2x + 3y + 2z = 5$

$$2x + 3y + 2z = \pm\sqrt{3} + 1$$

x + y + z = 2

Inconsistent system

Has a unique solution for $|a| = \sqrt{3}$

Is inconsistent for $|a| = \sqrt{3}$

Has infinitely many solutions for a = 4

Is inconsistent for a = 4

Let S be the set of all $\lambda \in \mathbb{R}$ for which the system of linear equations 2x - y + 2z = 2; $x - 2y + \lambda z = -4$; $x + \lambda y + z = 4$, has no solution. Then the set S_

B

JEE MAIN Apr 2019

- A Contains more than two elements
- B Contains exactly two elements

Solution: S be the set of all $\lambda \in \mathbb{R}$

$$2x - y + 2z = 2$$

$$x - 2y + \lambda z = -4$$
No solution
$$x + \lambda y + z = 4$$

$$\Delta = \begin{vmatrix} 2 & -1 & 2 \\ 1 & -2 & \lambda \\ 1 & \lambda & 1 \end{vmatrix} = 0$$

Is a singleton

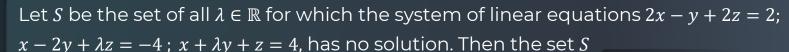
Is an empty set

$$C_1 \rightarrow C_1 - C_3$$

$$\Delta = \begin{vmatrix} 0 & -1 & 2 \\ 1 - \lambda & -2 & \lambda \\ 0 & \lambda & 1 \end{vmatrix} = 0$$

$$\Rightarrow (\lambda - 1)(-1 - 2\lambda) = 0$$

$$\Rightarrow \lambda = 1, -\frac{1}{2}$$



JEE MAIN Apr 2019

Solution: S be the set of all $\lambda \in \mathbb{R}$

$$2x - y + 2z = 2$$

$$x - 2y + \lambda z = -4$$

$$x + \lambda y + z = 4$$
No solution

If Δ = 0, but at least one of Δ_x , Δ_y , $\Delta_z \neq 0$, system of equations is inconsistent and has no solution.

For
$$\lambda = 1$$

$$\Delta_{x} = \begin{vmatrix} 2 & -1 & 2 \\ -4 & -2 & 1 \\ 4 & 1 & 1 \end{vmatrix} \neq 0$$

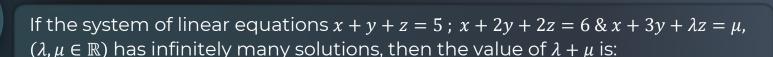
$$\Delta_x = -6$$

For
$$\lambda = \frac{1}{2}$$

$$\Delta_{x} = \begin{vmatrix} 2 & -1 & 2 \\ -4 & -2 & -\frac{1}{2} \\ 4 & -\frac{1}{2} & 1 \end{vmatrix} \neq 0$$

$$\Delta_{\chi} = \frac{27}{2}$$

Then the set S contains two values



Solution:
$$x + 3y + \lambda z = \mu$$

$$x + y + z = 5$$

$$x + 2y + 2z = 6$$

x + y + z = 5 infinitely many solutions

$$\Delta = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & \lambda \end{vmatrix} = 0 \quad \Rightarrow \lambda = 3 \quad \Delta = \Delta_x = \Delta_y = \Delta_z = 0$$

$$\Delta_z = \begin{vmatrix} 1 & 1 & 5 \\ 1 & 2 & 6 \\ 1 & 3 & \mu \end{vmatrix} = 0$$

$$\Rightarrow 2\mu - 18 - (\mu - 6) + 5(3 - 2) = 7$$

$$\Rightarrow \mu - 7 = 0 \Rightarrow \mu = 7$$

Putting
$$\lambda = 3$$
 and $\mu = 7$

If the system of linear equations x + y + z = 5; $x + 2y + 2z = 6 \& x + 3y + \lambda z = \mu$, $(\lambda, \mu \in \mathbb{R})$ has infinitely many solutions, then the value of $\lambda + \mu$ is:

Solution:

$$\Rightarrow \mu - 7 = 0 \quad \Rightarrow \mu = 7$$

Putting $\lambda = 3$ and $\mu = 7$

$$\Delta_{x} = \begin{vmatrix} 5 & 1 & 1 \\ 6 & 2 & 2 \\ 7 & 3 & 3 \end{vmatrix} = 0$$

$$\Delta_{y} = \begin{vmatrix} 1 & 5 & 1 \\ 1 & 6 & 2 \\ 1 & 7 & 3 \end{vmatrix} = 0$$

$$\lambda + \mu = 10$$

A	10	
В	9	
С	12	
	12	

System of linear equations (Matrix inversion):

• Consider system of equations (If d_1 , d_2 , d_3 are not all simultaneously zero)

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

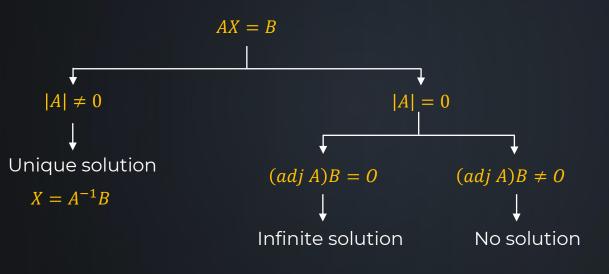
Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
, $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$

Thus, we have, in matrix form AX = B

where A is a square matrix.

System of linear equations (Matrix inversion):

Thus, we have, in matrix form AX = B where A is a square matrix.



Solve the system of equations :

$$x + y + z = 6$$
; $x - y + z = 2$; $2x + y - z = 1$, using matrix inverse.

Solution:

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix} \qquad X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } B = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$$

$$C_3 \to C_2 + C_3$$
 $|A| = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 2 & 1 & 0 \end{bmatrix}$ $|A| = 6$

$$|A| = 2(1+2) = 6 \neq 0$$
 (Unique solution)

$$\therefore X = A^{-1}B$$

Adj
$$A = \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$$
 $A^{-1} = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} \Rightarrow X = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 6 \\ 12 \\ 18 \end{bmatrix} \Rightarrow x = 1, y = 2, z = 3$$

Homogenous system of equations (Matrix inversion):

• Let
$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix}$$
 $X = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} d_1 \\ d_2 \\ d_3 \end{bmatrix}$

Thus, we have, in matrix form
$$AX = B$$

where A is a square matrix.

$$a_1x + b_1y + c_1z = 0$$

$$a_2x + b_2y + c_2z = 0$$

$$a_3x + b_3y + c_3z = 0$$

- If $|A| \neq 0$, then system has trivial solution (x, y, z) = (0, 0, 0) $A^{-1}AX = A^{-1} \cdot 0 \Rightarrow X = 0$
- ightharpoonup If |A| = 0, then system has non-trivial (infinite) solution.

The set of all values of λ for which the system of equations $x - 2y - 2z = \lambda x$; $x + 2y + z = \lambda y$; $-x - y = \lambda z$ has a non-trivial solution

JEE Main Jan 2019

Solution:

$$|A| = \begin{vmatrix} 1 - \lambda & -2 & -2 \\ 1 & 2 - \lambda & 1 \\ 1 & 1 & \lambda \end{vmatrix} = 0$$

$$(1 - \lambda)(\lambda(2 - \lambda) - 1) + 2(\lambda - 1) - 2(1 + \lambda - 2) = 0$$

$$\Rightarrow \lambda^3 - 3\lambda^2 + 3\lambda - 1 = 0$$

$$\Rightarrow (\lambda - 1)^3 = 0$$

$$\Rightarrow \lambda = 1$$

Is a singleton

В

Contains exactly two elements

С

Is an empty set

Contains more than two elements

Session 11

Cayley – Hamilton Theorem &
Special Types of Matrices

Characteristic polynomial and characteristic equation:

Let A be a square matrix.

The polynomial $|A - \lambda I|$ is called characteristic polynomial of A and equation $|A - \lambda I| = 0$ is called characteristic equation of A.

(here λ is called eigen value of A)

$$A = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} \Rightarrow A - \lambda I = \begin{bmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$|A - \lambda I| = \begin{vmatrix} a_1 - \lambda & b_1 & c_1 \\ a_2 & b_2 - \lambda & c_2 \\ a_3 & b_3 & c_3 - \lambda \end{vmatrix} = 0$$
 will be the characteristic equation .

• Cayley – Hamilton Theorem

Every square matrix A satisfies its characteristic equation $|A - \lambda I| = 0$.

If
$$a_0\lambda^n + a_1\lambda^{n-1} + \cdots + a_{n-1}\lambda + a_n = 0$$
 is the characteristic equation of A

$$\therefore a_0 A^n + a_1 A^{n-1} + \dots + a_{n-1} A + a_n I = 0$$

If
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 is a root of the polynomial $x^3 - 6x^2 + 7x + k = 0$, then the value of k is:

А

2

В

D

1

Solution: $x^3 - 6x^2 + 7x + k = 0$ $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 2 \end{pmatrix}$

$$A^3 - 6A^2 + 7A + kI = 0 \cdots (i)$$

In order to get characteristics equation $|A - \lambda I| = 0$

$$|A - \lambda| = \begin{vmatrix} 1 - \lambda & 0 & 2 \\ 0 & 2 - \lambda & 1 \\ 2 & 0 & 3 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (1 - \lambda) ((2 - \lambda)(3 - \lambda) - 0) + 2(0 - 2(2 - \lambda)) = 0$$

$$\Rightarrow (2-\lambda)\big((1-\lambda)(3-\lambda)-4\big)=0 \Rightarrow (2-\lambda)(\lambda^2-4\lambda-1)=0$$

$$\Rightarrow \lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0 \rightarrow$$
 characteristic equation

If
$$A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$$
 is a root of the polynomial $x^3 - 6x^2 + 7x + k = 0$, then the value of k is:

Solution:

$$A^{3} - 6A^{2} + 7A + kI = 0 \quad \cdots (i)$$
 $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{pmatrix}$

$$\Rightarrow \lambda^3 - 6\lambda^2 + 7\lambda + 2 = 0 \rightarrow \text{characteristic equation}$$

∴ By Cayley – Hamilton Theorem,

$$A^3 - 6A^2 + 7A + 2I = 0 \cdots (ii)$$

By (*i*)& (*ii*),
$$k = 2$$

If
$$A = \begin{pmatrix} 2 & 2 \\ 9 & 4 \end{pmatrix}$$
 and $I = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, then $10A^{-1}$ is equal to :

$$\Rightarrow \begin{vmatrix} 2 - \lambda & 2 \\ 9 & 4 - \lambda \end{vmatrix} = 0$$

$$\Rightarrow (2 - \lambda)(4 - \lambda) - 18 = 0$$

$$\Rightarrow \lambda^2 - 6\lambda + 8 - 18 = 0 \rightarrow \text{characteristic equation}$$

By Cayley - Hamilton theorem,

$$A^2 - 6A - 10I = 0$$

$$\Rightarrow A^{-1}A^2 - 6A^{-1}A - 10A^{-1}I = 0$$

$$\Rightarrow A - 6I - 10A^{-1} = 0$$

$$\Rightarrow 10A^{-1} = A - 6I$$

В

$$4I - A$$

$$6I - A$$

$$A - 4I$$

If
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$
 & $I = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $A^{-1} = \frac{1}{6}(A^2 + cA + dI)$, then the ordered pair (c, d) is:

Solution:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix} \quad A^{-1} = \frac{1}{6}(A^2 + cA + dI) \quad (c, d) = ?$$

$$|A - \lambda I| = 0$$

$$\begin{vmatrix} 1 - \lambda & 0 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & -2 & 4 - \lambda \end{vmatrix} = 0$$

$$(-6,11)$$

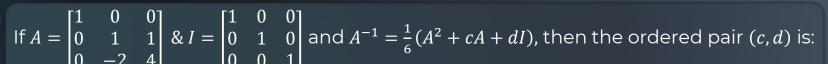
$$\Rightarrow (1 - \lambda) ((1 - \lambda)(4 - \lambda) + 2) = 0$$

$$\Rightarrow (1 - \lambda)(\lambda^2 - 5\lambda + 6) = 0$$

$$\Rightarrow \lambda^3 - 6\lambda^2 + 11\lambda - 6 = 0 \rightarrow \text{characteristic equation}$$

By Cayley - Hamilton theorem,

$$A^3 - 6A^2 + 11A - 6I = 0$$



Solution:

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & -2 & 4 \end{bmatrix}$$

$$A^3 - 6A^2 + 11A - 6I = 0$$

$$A^{-1}A^3 - 6A^{-1}A^2 + 11A^{-1}A - 6A^{-1}I = 0$$

$$6A^{-1} = A^2 - 6A + 11I$$

$$\Rightarrow A^{-1} = \frac{1}{6}(A^2 - 6A + 11I)$$

$$(c,d) \equiv (-6,11)$$

$$(-6,-11)$$

Special types of Matrices

Orthogonal Matrix

A square matrix A is said to be orthogonal if $AA^T = I = A^TA$

For orthogonal matrix A, $A^T = A^{-1}(|A| = \pm 1)$

Example: If A is orthogonal and $ABA = B^T$, then show that BA is symmetric.

$$ABA = B^T$$

Pre multiply A^T on both sides $A^TABA = A^TB^T$ $AA^T = I$

$$\Rightarrow I \cdot BA = A^T B^T \Rightarrow BA = A^T \cdot B^T$$

$$BA = (BA)^T \Rightarrow BA$$
 is symmetric.

Special types of Matrices

• Involutory matrix:

A square matrix A is said to be involutory if $A^2 = I$.

$$\Rightarrow A \cdot A = I \Rightarrow A = A^{-1}$$

$$\Rightarrow A^3 = A^2 \cdot A = I \cdot A$$

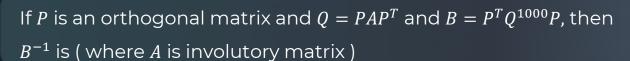
$$\Rightarrow A^3 = A$$

Note:

If A is involutory, then $A = A^{-1}$

$$A^3 = A$$
; $A^4 = I$

$$A^{2k} = I$$
 ; $A^{2k+1} = A$, $k \in Integer$



$$B = P^T O^{1000} P$$

$$= P^T (PAP^T)^{1000} P$$

$$= P^T P A P^T \cdot P A P^T \cdots P A P^T P \quad \mathbf{P}^T \mathbf{P} = \mathbf{I}$$

$$=A^{1000} = I$$

$$A^{2k} = I$$

$$B = I$$

$$B^{-1} = I$$

 \boldsymbol{A}

 A^{1000}

I

None of these

Special types of Matrices

Idempotent matrix

A square matrix A is said to be idempotent if $A^2 = A$.

Note:

If A is idempotent, then $A^n = A$, $\forall n \geq 2$, $n \in \mathbb{N}$

If A is idempotent and $(I + A)^{10} = I + kA$, then k is:

1023

В

2047

1024

2048

Solution:
$$(I+A)^{10} = {}^{10}C_0I + {}^{10}C_1I \cdot A + {}^{10}C_2I \cdot A^2 + \cdots + {}^{10}C_{10}A^{10}$$
 $A^n = A$

$$= I + {}^{10}C_1A + {}^{10}C_2A + \cdots + {}^{10}C_{10}A$$

$$= I + ({}^{10}C_1 + {}^{10}C_2 + \cdots + {}^{10}C_{10})A$$

$$= I + (2^{10} - 1)A$$

$$= I + (1024 - 1)A$$

$$\therefore k = 1023$$

Special types of Matrices

Nilpotent Matrix

A square matrix A is said to be nilpotent matrix of order p

If
$$A^p = 0$$
 and $A^{p-1} \neq 0$

Show that the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$ is nilpotent of order 3.

Solution:

$$A = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix}$$

$$A^{2} = \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix}$$

$$A^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 3 & 3 & 9 \\ -1 & -1 & -3 \end{pmatrix} \begin{pmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

 \therefore A is a nilpotent matrix of order 3.

Let $\omega \neq 1$, be a cube root of unity and S be the set of all non-singular

Let
$$\omega \neq 1$$
, be a cube root of unity and S be the set of all non-singular matrices of the form $\begin{bmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{bmatrix}$ where each of $a, b, \& c$ is either ω or ω^2 .

Then number of distinct matrices in set S is:

IIT JEE 2011

Solution:

$$\begin{vmatrix} 1 & a & b \\ \omega & 1 & c \\ \omega^2 & \omega & 1 \end{vmatrix} \neq 0$$

$$1 - a\omega - c\omega + ac\omega^2 \neq 0$$

$$\Rightarrow (1 - a\omega)(1 - c\omega) \neq 0 \Rightarrow a \neq \frac{1}{\omega} \& c \neq \frac{1}{\omega}$$

So,
$$a=c=\omega$$
 , while b can take ω or ω^2

Number of matrices = 2

If P is a 3 \times 3 matrix such that $P^T = 2P + I$, where P^T is transpose of P and I is the

Solution: $P^T = 2P + I$

$$P = 2P^T + I$$

$$=4P+3I$$

$$\Rightarrow P = -I$$

$$PX = -X$$

$$PX = X$$

$$PX = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$PX = -X$$

$$PX = 2X$$

matrix such that $P^{50} - Q = I$, then $\frac{q_{31} + q_{32}}{q_{21}}$ equals:

52

103

201

205

Solution:

$$P = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \qquad Q = \begin{bmatrix} q_{ij} \end{bmatrix} \qquad \frac{q_{31} + q_{32}}{q_{21}} = ?$$

$$Q = \lfloor q_{ij} \rfloor$$
$$P^{50} - Q = I$$

$$\frac{q_{31} + q_{32}}{q_{21}} = 3$$

$$P^{2} = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1 \end{bmatrix}$$

$$P^{3} = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 12 & 1 & 0 \\ 96 & 12 & 1 \end{bmatrix}$$

Solution:
$$P^3 = \begin{bmatrix} 1 & 0 & 0 \\ 8 & 1 & 0 \\ 48 & 8 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 16 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 12 & 1 & 0 \\ 96 & 12 & 1 \end{bmatrix}$$

Similarly,

$$P^{n} = \begin{bmatrix} 1 & 0 & 0 \\ 4n & 1 & 0 \\ 16\frac{n(n+1)}{2} & 4n & 1 \end{bmatrix}$$

$$\therefore P^{50} = \begin{bmatrix} 1 & 0 & 0 \\ 200 & 1 & 0 \\ 8 \cdot 50 \cdot 51 & 200 & 1 \end{bmatrix}$$

$$P^{50} - I = \begin{bmatrix} 0 & 0 & 0 \\ 200 & 0 & 0 \\ 8 \cdot 50 \cdot 51 & 200 & 0 \end{bmatrix}$$

$$\Rightarrow Q = \begin{bmatrix} 0 & 0 & 0 \\ 200 & 0 & 0 \\ 8 \cdot 50 \cdot 51 & 200 & 0 \end{bmatrix} \quad \therefore \frac{q_{31} + q_{32}}{q_{21}} = \frac{400 \cdot 51 + 200}{200} = 103$$

t

<u>Return To Top</u>