Welcome to

Qutalesh DBYuvs NOTES

Mechanical properties of fluid

- Substance that continually flows or deforms when subjected to a shear stress

- State of matter that cannot withstand or resist shear stress when it is at rest

Fluid Mechanics

Fluid Statics
Fluid Dynamics

Fluid in a state of rest
(Velocity $v=0$)

Fluid in a state of motion
(Velocity $v \neq 0$)

- Density of a substance or object is defined as its mass per unit volume

$$
\text { Density }(\rho)=\frac{\text { Mass }}{\text { Volume }}=\frac{m}{V}
$$

Standard values of density:

- Scalar quantity

$$
\begin{aligned}
& \rho_{\text {water }}=1000 \mathrm{~kg} \mathrm{~m}^{-3}=1 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \rho_{\text {air }}=1.225 \mathrm{~kg} \mathrm{~m}^{-3}=0.001225 \mathrm{~g} \mathrm{~cm}^{-3} \\
& \rho_{H g}=13600 \mathrm{~kg} \mathrm{~m}^{-3}=13.6 \mathrm{~g} \mathrm{~cm}^{-3}
\end{aligned}
$$

$$
\text { - SI unit }=k g m^{-3}
$$

Density of Mixture: Masses given,

- For a mixture of non-reacting fluids

$$
\rho_{m i x}=\frac{m_{\operatorname{mix}}}{V_{\operatorname{mix}}}
$$

- When masses of fluids are given

$$
\begin{aligned}
\rho_{\text {mix }} & =\frac{m_{1}+m_{2}}{V_{1}+V_{2}} \\
\rho_{\text {mix }} & =\frac{m_{1}+m_{2}}{\frac{m_{1}}{\rho_{1}}+\frac{m_{2}}{\rho_{2}}} \\
\rho_{\text {mix }} & =\frac{2 \rho_{1} \rho_{2}}{\rho_{1}+\rho_{2}} \quad\left(\text { For } m_{1}=m_{2}\right)
\end{aligned}
$$

- For a mixture of non-reacting fluids

$$
\rho_{m i x}=\frac{m_{m i x}}{V_{m i x}}
$$

- When volumes of fluids are given

$$
\rho_{m i x}=\frac{m_{1}+m_{2}}{V_{1}+V_{2}}
$$

$$
\rho_{m i x}=\frac{V_{1} \rho_{1}+V_{2} \rho_{2}}{V_{1}+V_{2}}
$$

$$
\rho_{m i x}=\frac{\rho_{1}+\rho_{2}}{2} \quad\left(\text { For } V_{1}=V_{2}\right)
$$

Density of Mixture of n Fluids

$$
\rho_{\operatorname{mix}}=\frac{m_{\operatorname{mix}}}{V_{m i x}}=\frac{m_{1}+m_{2}+\cdots+m_{n}}{V_{1}+V_{2}+\cdots+V_{n}}
$$

- Case 1: Masses given

$$
\rho_{m i x}=\frac{m_{1}+m_{2}+\cdots+m_{n}}{\frac{m_{1}}{\rho_{1}}+\frac{m_{2}}{\rho_{2}}+\cdots+\frac{m_{n}}{\rho_{\mathrm{n}}}}
$$

$$
\left(\text { For } m_{1}=m_{2}=\cdots=m_{n}\right)
$$

$$
\left(\text { For } V_{1}=V_{2}=\cdots=V_{n}\right)
$$

$$
\frac{1}{\rho_{m i x}}=\frac{1}{n}\left[\frac{1}{\rho_{1}}+\frac{1}{\rho_{2}}+\cdots \cdot+\frac{1}{\rho_{n}}\right]
$$

$$
\rho_{m i x}=\frac{\rho_{1}+\rho_{2}+\cdots+\rho_{n}}{n}
$$

Two liquids of densities ρ and 3ρ having volumes $3 V$ and V are mixed. Find the density of the mixture.

Given: $\rho_{1}=\rho, \rho_{2}=3 \rho, V_{1}=3 V, \quad V_{2}=V$
To Find: $\rho_{m i x}$

Solution:

$$
\begin{aligned}
& \rho_{m i x}=\frac{m_{m i x}}{V_{\operatorname{mix}}}=\frac{\rho_{1} V_{1}+\rho_{2} V_{2}}{V_{1}+V_{2}} \\
& \rho_{m i x}=\frac{\rho \times 3 V+3 \rho \times V}{3 V+V}
\end{aligned}
$$

$$
\rho_{\operatorname{mix}}=\frac{3}{2} \rho
$$

\square
d. $\frac{5}{2} \rho$

- Ratio of the density of a substance to that of a standard substance (water at $4^{\circ} \mathrm{C}$)

$$
S G=\frac{\text { Density of a substance }}{\text { Density of water at } 4^{\circ} \mathrm{C}}
$$

- Also called Relative density (a dimensionless quantity)

$$
\begin{aligned}
& S G_{H g}=\frac{\rho_{H g}}{\rho_{\text {water }}}=\frac{13600 \mathrm{~kg} \mathrm{~m}^{-3}}{1000 \mathrm{~kg} \mathrm{~m}^{-3}} \\
& S G_{H g}=13.6
\end{aligned}
$$

```
Pressure
```

- Force applied per unit area normal to the surface over which that force is distributed

$$
\text { Pressure }(P)=\frac{d F_{\perp}}{d A}
$$

- Scalar quantity
- SI unit $=\mathrm{Nm}^{-2}$ or Pascal (Pa)

- If a force F is uniformly distributed over a surface area A, then,

$$
P=\frac{F_{\perp}}{A}
$$

- Cutting objects (like scissors, knife, axe etc.) needs periodic sharpening

- Pressure due to the Earth's atmosphere
- Changes with weather and elevation
- Normal atmospheric pressure at sea level is $1.013 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$ or Pa
- $1 \mathrm{~atm}=1.013 \times 10^{5} \mathrm{~Pa}$
- $1 \mathrm{bar}=10^{5} \mathrm{~Pa}$

Variation of Pressure with Depth

- The pressure at the free surface (exposed to atmosphere) of the liquid is $P_{\text {atm }}$

Consider a very small cubical element of fluid,

$$
\text { - } P_{\text {atm }} \approx 10^{5} \mathrm{~Pa}
$$

For equilibrium, $\sum F_{y}=0$

$$
\Rightarrow(P+d P) \delta A+d m g=P \delta A
$$

$$
\frac{d P}{d y}=-\rho g=\text { Pressure gradient }
$$

- Absolute pressure at a depth h

$$
P(h)=P_{o}+\rho g h
$$

$$
P_{a b s}=P_{a t m}+P_{g a u g e}
$$

$$
P \delta A+d P \delta A+(\rho \delta A d y) g=P \delta A
$$

Note: The term $\rho g h$ is called Gauge pressure

- Gauge pressure:

$$
P(h)=P_{o}+\rho g h
$$

Average Pressure on the wall of container:
$P_{a v g}=\frac{P(h=0)+P(h=h)}{2} \quad P_{a v g}=\frac{P_{o}+P_{o}+\rho g h}{2}=P_{o}+\frac{\rho g h}{2}$

$$
P_{1}=P_{2}=P_{3}=\rho g h+P_{a t m}
$$

- Independence from mass/shape of the fluid in a container is called Hydrostatic Paradox

Working of Barometer

- Measures the atmospheric pressure
- 76 cm of height in Hg column corresponds to 1 atm pressure.

$$
\begin{aligned}
\rho g h & =(13600)(9.8)(0.76) \\
& =1.01 \times 10^{5} \mathrm{~Pa} \\
& =1 \mathrm{~atm}
\end{aligned}
$$

- Units of pressure used in medicine and physiology:
$1 \mathrm{torr}=133 \mathrm{~Pa}=1 \mathrm{~mm}$ of Hg
- Barometer fluid:

Mercury is used as it is heavy
\Rightarrow It gives 76 cm rise for atmospheric pressure.

If water is used,

$$
\begin{gathered}
\rho_{w} h_{w}=\rho_{H g} h_{H g} \\
1000 \times h_{w}=13600 \times 0.76
\end{gathered}
$$

$$
h_{w}=13.6 \times 0.76=10.336 \mathrm{~m}
$$

- Low density fluids can be used for measuring low difference is pressure

Points 1 and 2 are at same height

$$
\begin{array}{r}
P_{1}=P_{2} \\
P_{f}+\rho_{1} g h_{1}+\rho_{2} g h_{2}=P_{o}
\end{array}
$$

Points 3 and 4 are at same height

$$
\begin{aligned}
P_{3} & =P_{4} \\
P_{o}+\rho_{1} g h_{1} & =P_{o}+\rho_{2} g h_{2} \\
\rho_{1} h_{1} & =\rho_{2} h_{2}
\end{aligned}
$$

? A U-shaped tube is filled up to a height l by two different immiscible liquids of densities ρ and 3ρ separated by a valve as shown. If the valve is opened, find out the new height of the liquids in both columns.

$$
\begin{aligned}
& \text { Solution: } P_{1}=P_{2} \\
& \begin{array}{c}
P_{o}+\rho g(l+x)=P_{o}+3 \rho g(l-x) \\
l+x=3(l-x) \\
x=\frac{l}{2} \\
l+x=\frac{3 l}{2}, \quad l-x=\frac{l}{2}
\end{array}
\end{aligned}
$$

a. $\quad h_{1}=\frac{l}{2} ; h_{2}=\frac{3 l}{2}$
b. $\quad h_{1}=\frac{l}{2} ; h_{2}=\frac{l}{2}$
c. $\quad h_{1}=\frac{3 l}{2} ; h_{2}=\frac{l}{2}$
d.

$$
h_{1}=\frac{l}{4} ; h_{2}=\frac{3 l}{4}
$$ Pascal's Law

Statement:

External pressure exerted on a noncompressible fluid in an enclosed vessel is distributed evenly throughout the fluid.

Applications:

Hydraulic lift, Hydraulic brakes, Pumps, Calibration of pressure gauges, Paint sprayers, Hydraulic press etc.

$$
\operatorname{Pressure}(P)=\frac{F_{1}}{A_{1}}=\frac{F_{2}}{A_{2}}
$$

For the system shown in the figure, the cylinder on the left L has a mass of 600 kg and a cross-sectional area of $800 \mathrm{~cm}^{2}$. The piston on the right, S has a cross sectional area of $25 \mathrm{~cm}^{2}$ and negligible weight. If the apparatus is filled with oil, what force is required to hold the system in equilibrium? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}, \rho=800 \mathrm{~kg} / \mathrm{m}^{3}\right)$

Solution:

By Pascal's Law,

Let A_{s} : Area of the piston A_{L} : Area of the cylinder

$$
\frac{F}{A_{S}}+\rho g h=\frac{m_{L} \times g}{A_{L}}
$$

$$
F=A_{S}\left(\frac{m_{L} \times g}{A_{L}}-\rho g h\right)
$$

$$
F=25 \times 10^{-4}\left(\frac{6000}{800 \times 10^{-4}}-800 \times 10 \times 8\right)
$$

$$
F=27.5 \mathrm{~N}
$$

- The buoyant force exerted by the fluid on a partially/fully immersed body is equal to the weight of the fluid that it displaces
- The force acts in upward direction at the COM of displaced liquid

Mathematically,

$$
F_{B}=W_{f}=\rho_{l} V g
$$

F_{B} is also known as Buoyant Force

A wooden plank of length 1 m and uniform cross section is hinged at one end to the bottom of tank. The tank is filled with water up to a height of 0.5 m . The specific gravity of plank is 0.5 . Find angle θ that the plank makes with vertical in equilibrium position (Exclude the case $\theta=0^{\circ}$)

Solution:

For equilibrium, $\quad F_{n e t}=0$ and $\tau_{n e t}=0$

Mass of Plank:
$m=\left(0.5 \rho_{w}\right) A l$

Weight of fluid displaced:

$$
F_{T}=\rho_{w} g(l-x) A
$$

Moment about 0 :
$m g \frac{l}{2} \sin \theta=F_{T} \frac{(l-x)}{2} \sin \theta$

$$
m g \frac{l}{2} \sin \theta=F_{T} \frac{(l-x)}{2} \sin \theta
$$

Substitute value of m and F_{T}

$$
\left[\left(0.5 \rho_{w}\right) A l\right] \times g \frac{l}{2} \sin \theta=\left[\rho_{w} g(l-x) A\right] \times \frac{(l-x)}{2} \sin \theta
$$

$$
(0.5) \frac{1}{2}=\frac{(1-x)}{2} \times(1-x)
$$

$$
(1-x)^{2}=0.5 \Rightarrow x=0.293 \mathrm{~m}
$$

From diagram,
$\cos \theta=\frac{0.5}{1-x}=\frac{0.5}{0.707}=45^{\circ} \ldots \ldots($ Ans $)$

- Weight of the body,

$$
W_{s}=\rho_{s} V_{s} g
$$

- Buoyant force on the body,

$$
F_{B}=\rho_{L} V_{S} g
$$

- Apparent Weight,

$W_{\text {app }}=W_{\text {actual }}-F_{\text {buoyant }}$
$W_{a p p}=\rho_{s} V g-\rho_{L} V g$

$$
\begin{array}{ccc}
\rho_{S}>\rho_{L} & \rho_{S}=\rho_{L} & \rho_{S}<\rho_{L} \\
\left(W_{S}>F_{B}\right) & \left(W_{s}=F_{B}\right) & \left(W_{s}<F_{B}\right) \\
W_{a p p}=\left(\rho_{S}-\rho_{L}\right) g V & W_{a p p}=0 & W_{a p p}=0
\end{array}
$$

Solution:

$\rho_{A u}=19.3 \mathrm{gram} \mathrm{cm}^{-3}, \rho_{C u}=8.9 \mathrm{gram} \mathrm{cm}^{-3}$ (Given) $m_{\text {actual }}=36 \mathrm{gram}$
Volume of the ornament $=V \mathrm{~cm}^{3}$ (Assume) $\quad m_{\text {app }}=34 \mathrm{gram}$

$$
\begin{aligned}
V & =V_{C u}+V_{A u} \\
m_{C u} & =x \operatorname{gram} \quad \text { (Assume) } \\
m_{A u} & =(36-x) \text { gram } \\
V_{C u} & =\frac{x}{8.9} \mathrm{~cm}^{3} \\
V_{A u} & =\frac{36-x}{19.3} \mathrm{~cm}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& W_{a p p}=W_{\text {actual }}-F_{\text {buoyant }} \\
& F_{\text {buoyant }}=W_{a c t u a l}-W_{a p p} \\
& V \rho_{w} g=m_{\text {actual }} g-m_{a p p} g \\
& \left(V_{C u}+V_{A u}\right) \rho_{w} g=(36-34) g \\
& \left(\frac{x}{8.9}+\frac{36-x}{19.3}\right)(1)=2
\end{aligned}
$$

b.
2.225 gram
d. 5.500 gram

$$
\Rightarrow x=2.225 \mathrm{gram}
$$

$$
m_{c u}=x=2.225 \mathrm{gram}
$$

Fluid Mechanics

Fluid in a state of rest
(Velocity $v=0$)

Fluid in a state of motion
(Velocity $v \neq 0$)

Steady / Streamline Flow

- All the particles reaching a particular point have the same velocity at all time

- All the particles reaching a particular point have different velocities at different time
[Q Uniform vs Non-Uniform Flow]

Uniform Flow

- Velocity at a time is constant at all points

Non-Uniform Flow

- Velocity at a time changes with location

- Path followed by a particle in steady flow is called streamline
- Tangent drawn to streamline at a point gives the direction of fluid velocity at that point
- Properties of Streamlines:

1. Tangent gives direction of velocity
2. Two streamlines can't cross
3. Fluid velocity is greater where streamlines are closely spaced

Laminar flow

- Particles follow smooth paths in layers, without lateral mixing
- Particles move at reasonably low speeds

Turbulent flow

- Irregular, lateral, random, and chaotic movement of particles
- Laminar flow becomes turbulent after a certain increase in speed

Equation of Continuity

Incompressible fluid + Steady flow
In time interval Δt,

Mass entering = Mass leaving

Incompressible fluid + Steady flow

$$
A_{1} v_{1}=A_{2} v_{2}+A_{3} v_{3}
$$

For multiple inlets/outlets,

$$
\begin{aligned}
\sum_{\text {inlet }} \rho_{i} A_{i} v_{i} & =\sum_{\text {outlet }} \rho_{i} A_{i} v_{i} \\
\sum_{\text {inlet }} A_{i} v_{i} & =\sum_{\text {outlet }} A_{i} v_{i}
\end{aligned}
$$

Discharge, $Q\left(m^{3} s^{-1}\right)=A v=\frac{d V}{d t}$
$?$ The cylindrical tube of a spray pump has radius R, one end of which has n fine holes, each of radius r. If the speed of the liquid in the tube is v, the speed of the ejection of the liquid through the holes is

Solution:

From continuity equation,

$$
\begin{gathered}
A_{1} v_{1}=A_{2} v_{2} \\
\pi R^{2} v=n \pi r^{2} v_{2}
\end{gathered}
$$

$$
v_{2}=\frac{\pi R^{2} v}{n \pi r^{2}}
$$

$$
v_{2}=\frac{v R^{2}}{n r^{2}}
$$

Bernoulli's Theorem

Mass of displaced infinitesimal element:

$$
\Delta m=\rho A_{1} v_{1} \Delta t=\rho A_{2} v_{2} \Delta t \quad(\because \text { Continuity equation })
$$

Applying Work-Energy theorem,

$$
W_{g}+W_{\text {pressure }}=\Delta K E
$$

$$
-\Delta m g\left(h_{2}-h_{1}\right)+P_{1} A_{1} v_{1} \Delta t-P_{2} A_{2} v_{2} \Delta t=\frac{1}{2} \Delta m\left(v_{2}^{2}-v_{1}^{2}\right)
$$

$$
P_{1}+\rho g h_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\rho g h_{2}+\frac{1}{2} \rho v_{2}^{2}
$$

$$
P+\rho g h+\frac{1}{2} \rho v^{2}=\text { Constant }
$$

- Fluid should be non viscous
- Thermal loss of energy is not accounted
- Centrifugal force at curved pipes is not considered
$?$ A horizontal pipeline carries water in a streamline flow. At a point along the tube where the cross-sectional area is $10^{-2} \mathrm{~m}^{2}$, the water speed is $2 \mathrm{~m} / \mathrm{s}$ and the pressure is 8000 Pa . The pressure of water at another point where cross-sectional area is $0.5 \times 10^{-2} \mathrm{~m}^{2}$ is

Given: $A_{1}=10^{-2} \mathrm{~m}^{2}, v_{1}=2 \mathrm{~m} / \mathrm{s}, P_{1}=8000 \mathrm{~Pa}$,

Solution:

$v_{2}=4 \mathrm{~m} / \mathrm{s} \quad\left[\because A_{1} v_{1}=A_{2} v_{2}\right]$

Applying Bernoulli's theorem,

$$
\begin{aligned}
& P_{2}=8000+\frac{1}{2} \times 1000 \times\left(2^{2}-4^{2}\right) \\
& P_{2}=8000+500 \times(-12)
\end{aligned}
$$

$$
P_{2}=2000 \mathrm{~Pa}
$$

\square d.

3000 Pa

A lab device that can be used to measure the flow rate

$$
\begin{gathered}
A_{1} v_{1}=A_{2} v_{2} \\
P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2}
\end{gathered}
$$

(Continuity equation)
(Bernoulli's equation)

$$
\begin{array}{lr}
P_{1}+\frac{1}{2} \rho v_{1}^{2}=P_{2}+\frac{1}{2} \rho v_{2}^{2} & v_{1}=\sqrt{\frac{2 g h}{\left(\frac{A_{1}}{A_{2}}\right)^{2}-1}} \\
P_{1}-P_{2}=\frac{1}{2} \rho\left(v_{2}^{2}-v_{1}^{2}\right) & \text { Rate of flow }=Q=A_{1} v_{1} \\
\rho g h=\frac{1}{2} \rho\left[\left(\frac{A_{1} v_{1}}{A_{2}}\right)^{2}-v_{1}^{2}\right] & Q=A_{1} \frac{2 g h}{\left(\frac{A_{1}}{A_{2}}\right)^{2}-1}
\end{array}
$$

Applications of Bernoulli's Theorem

Blood Flow and Heart Attack

Inner walls of artery gets constricted due to deposition of plaque

Due to pressure difference across walls, artery breaks

Dynamic Lift and Magnus Effect

The force which acts on a body such as an airplane wing hydro fall or spinning Ball by virtue of its motion through a fluid

Low pressure
Aero foil and Lift on Aircraft Wing

The shape that creates more up thrust and experiences less drag

High Velocity

High pressure Low Velocity

Speed of Efflux

Let,
$A=$ Cross sectional area of the tank
$a=$ Cross sectional area of the orifice

$$
a v=A V \text { (Equation of continuity) }
$$

$$
V=\frac{a v}{A}
$$

Applying Bernoulli's equation between the cross sections 1 and 2,

$$
P_{o}+\frac{1}{2} \rho V^{2}+\rho g H=P_{o}+\frac{1}{2} \rho v^{2}+\rho g(H-h)
$$

$$
\rho g[H-(H-h)]=\frac{1}{2} \rho\left(v^{2}-V^{2}\right)
$$

$$
2 g h=v^{2}\left[1-\left(\frac{a}{A}\right)^{2}\right] \quad\left(\because V=\frac{a v}{A}\right)
$$

$$
\approx
$$

$$
v=\sqrt{2 g h} \quad \Rightarrow v \propto \sqrt{h}
$$

$$
2 g h=v^{2}-V^{2}
$$

Q Torricelli's Theorem

The speed of flow of a liquid from an orifice is equal to the speed that it would attain if falling freely a distance equal to the height of the free surface of the liquid above the orifice.

$$
v=\sqrt{2 g h}
$$

- Applicable only if $a \ll A$
- h is the depth of orifice

$R=$ [Speed of efflux] $\times[$ Time taken $]$

$$
R=\sqrt{2 g h} \times \sqrt{\frac{2(H-h)}{g}}
$$

$$
R=\sqrt{4 h(H-h)}
$$

$$
R=2 \sqrt{h(H-h)}
$$

We know, Range of liquid

$$
\begin{aligned}
R & =2 \sqrt{h(H-h)} \\
R^{2} & =4 h(H-h)
\end{aligned}
$$

$$
\frac{d R^{2}}{d h}=4 \frac{d[h(H-h)]}{d h}=0
$$

$$
h(-1)+(H-h)=0 \quad \Rightarrow h=\frac{H}{2}
$$

$$
R_{\max }=2 \sqrt{\frac{H}{2}\left(H-\frac{H}{2}\right)}
$$

$$
R_{\max }=H
$$

Maximum range occurs only at an instant when $h=H / 2$

Discharge through tank:

$$
a v=A V
$$

$$
a \sqrt{2 g h}=A\left(-\frac{d h}{d t}\right)
$$

$$
\frac{a \sqrt{2 g}}{A} d t=-\frac{d h}{\sqrt{h}}
$$

$-\int_{H}^{0} \frac{d h}{\sqrt{h}}=\frac{a}{A} \sqrt{2 g} \int_{0}^{T} d t$
$-\int_{H}^{0} \frac{d h}{\sqrt{h}}=\frac{a}{A} \sqrt{2 g} \int_{0}^{T} d t$

$$
-[2 \sqrt{h}]_{H}^{0}=\frac{a}{A} \sqrt{2 g}[t]_{0}^{T}
$$

$$
2 \sqrt{H}=\frac{a}{A} \sqrt{2 g}[T]
$$

Viscosity

- Internal friction between the fluid layers in motion
- Due to molecular cohesion in fluids
- Plays a key role in operations that require the transport of fluid from one source to another

Velocity gradient $=\frac{d v}{d z}=\frac{d(\text { Shear strain })}{d t}=\frac{d \theta}{d t}$
Force:
$F_{v}=-\eta A \frac{d v}{d z} \quad$ (Viscous force)
Shear Stress:

Where,

$$
\begin{aligned}
\eta & =\text { Coefficient of viscosity } \\
A & =\text { Area of contact } \\
\frac{d v}{d z} & =\text { Velocity gradient }
\end{aligned}
$$

Coefficient of Viscosity

$F_{v}=-\eta A \frac{d v}{d z} \quad$ (Viscous force)
$\eta=-\frac{\left(F_{v} / A\right)}{(d v / d z)} \longrightarrow \frac{\mathrm{N} / \mathrm{m}^{2}}{\left(\frac{\mathrm{~m} / \mathrm{s}}{\mathrm{m}}\right)} \longrightarrow \frac{\mathrm{Ns}}{\mathrm{m}^{2}}$ or Pa $\longrightarrow \mathrm{s} \quad$ (Also called 1 decapoise)
$\eta=-\frac{\text { Shear stress }}{\text { Veloce }=\text { CGS unit }=\text { dyne } \frac{\mathrm{s}}{\mathrm{cm}^{2}}}$
$\eta=-\frac{\text { Shear stress }}{\text { Velocity gradient }}$

$$
\text { poise }=\operatorname{cGS} \text { unit }=d y n e \frac{s}{\mathrm{~cm}^{2}}
$$

Relative viscosity ($\eta_{r}=\frac{\eta}{\eta_{0}}$): Ratio of viscosity of a general solution to viscosity of standard solvent
Viscosity depends on:

1. Temperature

For liquids: $\quad \eta=\eta_{0}\left(\frac{1}{1+\alpha T+\beta T^{2}}\right) \quad \eta_{0}=$ Viscosity at $0{ }^{\circ} \mathrm{C}$
For Gases: $\eta=\eta_{0}\left(\frac{a T_{0}+C}{a T+C}\right)\left(\frac{T}{T_{0}}\right)^{3 / 2}$
2. Pressure: Increases for liquids and decreases for gases with increase in pressure
3. Nature of fluid,
4. Velocity gradient

The speed of water in a river is $18 \mathrm{~km} / \mathrm{h}$ near the surface. If the river is

 5 m deep, then find the shearing stress between the horizontal layers of water. The coefficient of viscosity of water is 10^{-2} poise.Given:

$$
\begin{gathered}
v=18 \mathrm{~km} / \mathrm{h}=5 \mathrm{~m} / \mathrm{s}, \quad z=5 \mathrm{~m} \\
\eta=10^{-2} \text { poise }=10^{-3} \mathrm{Ns} / \mathrm{m}^{2}
\end{gathered}
$$

Solution:

$F_{v}=\left|-\eta A \frac{\Delta v}{\Delta z}\right| \quad$ (Viscous force)
$\frac{F_{v}}{A}=\left|-\eta \frac{\Delta v}{\Delta z}\right| \quad$ (Shear stress)
$\sigma_{v}=10^{-3} \times\left(\frac{5-0}{5-0}\right)$

$$
\sigma_{v}=10^{-3} \mathrm{~N} / \mathrm{m}^{2}
$$

$5 \mathrm{~m} / \mathrm{s}$
$\eta=10^{-2}$ poise

b. $10^{-3} \mathrm{Nm}^{-2}$
C. $\quad 10^{-4} \mathrm{Nm}^{-2}$
d.

$$
5 \times 10^{-4} \mathrm{Nm}^{-2}
$$

- Fluid particles exert drag force F_{d} on the solid object, opposing its motion in the medium
- F_{d} depends on the shape and size of the solid, its speed and the coefficient of viscosity of the fluid

- For a spherical object,

$$
F_{d}=6 \pi \eta r v(\text { Drag force })
$$

$$
\overrightarrow{F_{d}}=-6 \pi \eta r \vec{v} \quad \text { Acts opposite to velocity }
$$

Solid Friction

- Independent of surface area in contact
- Depends on normal reaction
- Occurs between solid surfaces in contact
- Independent of relative velocity between surfaces in contact

Fluid Friction

- Depends on surface area in contact
- Independent of normal reaction
- Occurs between fluid layers or solid and fluid in contact
- Depends on relative velocity between fluid layers

When the object achieves terminal speed v_{t},

$$
\begin{aligned}
F_{d}+F_{B} & =W \\
F_{d} & =W-F_{B}
\end{aligned}
$$

$6 \pi \eta r v_{t}=\frac{4}{3} \pi r^{3} \rho g-\frac{4}{3} \pi r^{3} \sigma g$
$6 \pi \eta r v_{t}=\frac{4}{3} \pi r^{3}(\rho-\sigma) g$

$\rho=$ Density of solid body
$\sigma=$ Density of fluid
$?$ Eight spherical raindrops of equal size are falling vertically through air with a terminal speed of $1 \mathrm{~m} / \mathrm{s}$. What would be the terminal speed if these drops were to coalesce to form a single spherical drop?

Solution:

Terminal velocity,

$$
v_{T}=\frac{2 r^{2}(\rho-\sigma) g}{9 \eta} \quad \Rightarrow v_{T} \propto r^{2}
$$

$$
\frac{\left(v_{T}\right)_{i}}{\left(v_{T}\right)_{f}}=\frac{r^{2}}{R^{2}}
$$

$$
\left(v_{T}\right)_{f}=\frac{R^{2}}{r^{2}}\left(v_{T}\right)_{i}
$$

$$
\begin{aligned}
& \frac{4}{3} \pi R^{3}=8 \times \frac{4}{3} \pi r^{3} \\
& R^{3}=8 r^{3} \Rightarrow \quad R=2 r
\end{aligned}
$$

$$
\left(v_{T}\right)_{f}=\frac{4 r^{2}}{r^{2}}(1)
$$

$$
\left(v_{T}\right)_{f}=4 \mathrm{~m} / \mathrm{s}
$$

\square
a.
$1 \mathrm{~m} / \mathrm{s}$
b. $2 \mathrm{~m} / \mathrm{s}$

Reynold's Number

- Ratio of Inertia to viscous force
- Dimensionless number indicating type of flow

$$
R_{e}=\text { Reynolds Number }=\frac{\rho v D}{\eta}
$$

Surface Tension

- Molecules near the free surface, experience effective attractive forces in downward direction
- Surface tension:
- Tendency of a liquid at rest
- Free surface behaves like a stretched membrane under tension and tries to occupy as smaller area as possible

- Surface energy per unit area

- Force per unit length in the plane of interface between plane of liquid and any other plane
$S=\frac{\text { Force }(F)}{\text { Length }(L)}$
- Scalar quantity
- Forces molecules outward \Rightarrow Makes surface

- SI unit: N / m
- CGS unit: dyne/cm behave as elastic membrane

Work Done by Surface Tension

Work done in stretching the surface through length $d x$:

$$
(d W)_{e x t}=F d x
$$

$$
=2 S l d x
$$

$$
=S \cdot 2 l d x
$$

$=S d A$

$$
S=\frac{(d W)_{e x t}}{d A}
$$

$=$ External work required per unit change in area of the liquid (Quasi-static)

- Molecules near the free surface have some additional energy due to their positions
- Work done against attractive forces in acquiring such positions is stored as the surface energy (U)

$$
S=\frac{(d W)_{e x t}}{d A}=\frac{d U}{d A}
$$

(Provided $\triangle K E=0$)

Solution:

Work done in inflating the bubble is given by,

$$
\begin{aligned}
W_{\text {ext }} & =\Delta U \\
& =2 S \Delta A \\
& =2 S\left(4 \pi r_{2}^{2}-4 \pi r_{1}^{2}\right)
\end{aligned}
$$

$$
W_{e x t}=8 \pi S\left(r_{2}^{2}-r_{1}^{2}\right)
$$

- Net horizontal force on the cross section: Inner and outward pressure forces (zero)
- Forces in vertical direction: $F_{S}, P_{i} A_{p}$ and $P_{o} A_{p}$

Force balance in the vertical direction:

$$
\begin{aligned}
& P_{i} A_{p}=F_{S}+P_{o} A_{p} \\
& \left(P_{i}-P_{o}\right) A_{p}=F_{S} \\
& \left(P_{i}-P_{o}\right) \pi R^{2}=S(2 \pi R) \\
& P_{i}-P_{o}=\frac{2 S}{R}
\end{aligned}
$$

= Excess pressure inside water drop in air
= Excess pressure inside an air bubble in water

Excess Pressure inside Bubble

Unlike water drop, a soap bubble has two different surfaces in contact with the air.

$$
\begin{array}{ll}
P_{i}-P=\frac{2 S}{R} & \text { (Inner) } \\
P-P_{o}=\frac{2 S}{R} & \text { (Outer) }
\end{array} P_{i}-P_{o}=\frac{4 S}{R}
$$

- Ability of a liquid to maintain contact with a solid surface

- Angle that the tangent to liquid surface at the point of contact makes with the solid surface inside the liquid
- Contact angle/shape of meniscus is directly related to the relative strength of the cohesive and adhesive forces
- When cohesive forces dominate, meniscus is convex

- Similarly, when adhesive forces are larger, the meniscus is concave

- If θ is acute

$$
\begin{aligned}
& S_{s a}=S_{s l}+S_{l a} \cos \theta \\
& \Rightarrow S_{s a}>S_{s l}
\end{aligned}
$$

- If θ is obtuse
$S_{s l}=S_{s a}+S_{l a} \cos (\pi-\theta)$
$\Rightarrow S_{s l}>S_{s a}$
Contact Angle

| $\theta=0^{\circ}$ | |
| :---: | :---: | :---: | :---: |
| Perfect wetting | $\theta>90^{\circ}$ |
| Bood wetting | $\theta=180^{\circ}$ |
| Perfectly
 non-wetting | |

Capillarity

- Phenomenon of rise or fall of a liquid surface in a small tube relative to the adjacent general level of liquid when the tube is held vertically in the liquid

Force balance in the vertical direction,

$$
F_{s}=W
$$

$S \cos \theta(2 \pi r)=\rho\left(\pi r^{2} h\right) g$

Capillary rise,

When tube height is insufficient, radius of meniscus changes such that,

$$
h \frac{r}{\cos \theta}=h R=\frac{2 S}{\rho g}=\text { Constant }
$$

- When capillarity experiment is performed in accelerated frame,

$$
h=\frac{2 S \cos \theta}{\rho g_{e f f} r}
$$

Where,
$g_{\text {eff }}=(g-a)$ for downward motion

$$
=(g+a) \text { for upward motion }
$$

- If experiment is performed in gravity free space or free fall, $g=0 \Rightarrow$ liquid overflows

