

Morphology of Flowering Plants

Key Takeaway

Morphology

4

2

Root system

Shoot system

3

Types of roots

Functions

Functions of roots

Tap root modifications

Modifications

4

Leaves

Flower

5

Parts of a typical leaf

Types of leaves

Arrangement of leaves

Modifications

Arrangement

Classification

Morphology

- Morphology: Study of external form and structure.
- Phytomorphology: Study of the form and structure of plants.
- Root develops from the radicle.

Morphology

Root System

Root is a non-green, underground portion of the plant that primarily helps in mineral and water absorption, as well as provides anchorage to the plant.

Root	Zone/ region of	Description
Root hair (epidermal cells)	Maturation	Cells in this zone are fully differentiated performing specific functions. Roots hairs are present for absorption.
	Elongation	Cells undergo growth and elongation.
	Meristematic activity	Cells undergo continuous cell division.
	Root cap	Root cap protects meristematic tissue.

Types of Roots

Tap root	Fibrous root	Adventitious root	
Direct elongation of radicle.	Arises from stem base.	Arises from parts other than radicle like stem, node, leaves, etc.	
Primary, secondary and tertiary roots are present; bears lateral roots.	Primary root is short-lived; roots are of similar in size & highly branched.	Can be nodal roots, stem roots, crown roots, junction roots.	
Present in dicots such as mustard.	Present in monocots such as wheat.	Present in both monocots (<i>Monstera</i>) & dicots (Banyan).	

Functions of Roots

Tap Root Modifications

Storage of food

Conical root	Fusiform root	Napiform root	Tuberous root
Conical in shape, i.e. they are widest at the top and taper towards the bottom.	Spindle shaped, i.e. they are widest in the middle and taper towards the top and bottom.	Top like, i.e. they are swollen at the top and taper abruptly at the bottom.	Thickened tap root with no definite shape.
Carrot	Radish	Turnip	4' O clock plant

Tap Root Modifications

For respiration

- The aerial roots specialized for gaseous exchange in plants are called pneumatophores or respiratory roots.
- They develop in mangrove plants, i.e., plants growing in saline marshes.
- These roots grow vertically upward and are negatively geotropic.
- Air enters these roots through minute breathing pores called pneumathodes, present on the surface of vertical roots.
- Example., Rhizophora.

Rhizophora

Adventitious Root Modifications

For storage of food

Sweet potato They get swollen and store food

For the support

Maize

Stilt roots

Examples: Sugarcane, maize.

Roots arise obliquely from lower nodes of the stem.

- The roots arise from branches of the plant and grow downward towards soil.
- Example: Banyan tree.

Banyan tree

Shoot System

B

- Stem is the ascending part of the plant that develops from plumule of the seed.
- It is positively phototropic, negatively geotropic & hydrotropic.

Functions of Shoot System

Modifications of Shoot

Underground stem modifications

- Underground stems of potato, ginger, turmeric, zaminkand and Colocasia are modified to store food in them.
- They help in riding over conditions unfavourable for growth.
- E.g. Rhizome, tuber, corm, bulb.

Sub-aerial stem modifications

Modification for support & protection

- Some plants develop slender, spirally coiled structure from axillary buds which curl around for support. E.g. - gourds, cucumber.
- In other, axillary buds modify into woody, straight and pointed thorns which protect from predation and conserve water.
 E.g. - Citrus, Bougainvillea.

Runner

 Grows parallel or horizontal to ground & bears buds, scale leaves (reduced & modified).

Stolon

 It grows like an arch and then touches the ground, gives rise to new shoots and roots.

Offset

- Grows laterally, bears rosette of leaves and a tuft of adventitious roots at the node.
- Seen in aquatic plants

Bulb

- It comes out upward from the area below soil surface, giving rise to leafy shoots.
- It is known as an underground runner.

Leaves

- Seed's embryo has a region known as SAM (Shoot apical meristems).
- Leaves originate from SAM which is located between cotyledons.
- As the shoot grows, the shoot apical meristematic region gets shifted to a position slightly above the region from where the first set of leaves emerge.
- Shoot apex has meristematic cells which are multipotent stem cells.

Parts of a Typical Leaf

- Leaf has a flat structure and arises from the nodes of a stem.
- Bud arises from axil, which later develops into leaf, shoot, branch or flower.
- The typical leaf has three main parts: leaf base, petiole and lamina/leaf blade.

Leaf base

- The leaf is attached to the stem via leaf base.
- Two lateral leaf-like structures present on either side of the leaf base are known as stipules.
- In monocots (grasses), the leaf base extends to form a sheath.
- In some leguminous plants, the leaf base may become swollen.
 - This swollen leaf base is known as the pulvinus.

Parts of a Typical Leaf

Petiole

- Petiole helps hold the leaf blade above the level of stem to capture light.
- Long, thin, and flexible petioles help leaf blades flutter in the wind. This brings fresh air to the leaf surface.
- Petioles are often referred to as stalks.

Lamina

- Leaf blade, also known as lamina, is the expanded green part of the leaf.
- Leaf lamina is of various shapes. Leaf may have different margins and apex as well.

Veins

 Veins provide rigidity to the leaf blade. They also act as channels of transport for water, minerals, and food materials.

Parts of a Typical Leaf

Venation: arrangement of veins and veinlets in the leaf lamina (Based on branching)

Reticulate

- Veinlets form a network
- Most dicots

Parallel

- Veins run parallel
- Most monocots

Types of Leaves

- Incisions of the lamina do not touch the midrib in simple leaf.
- A bud is present in the axil of petiole in simple leaves. It is known as the axillary or lateral bud.

- Incisions of the lamina reach up to the midrib, breaks into a number of leaflets.
- Such a leaf is known as a compound leaf.
- Axillary bud is present in the axil of the petiole of compound leaves but absent in the leaflets.

Arrangement of leaves on the stem is called phyllotaxy

Opposite Whorled

- Single leaf arises at each node in alternate manner.
- E.g: *Hibiscus*, sunflower, mustard

Alternate

- Pair of leaves arise at each node and lie opposite to each other.
- E.g. Calotropis

- More than two leaves arise from a single node.
- E.g: Alstonia

Leaf Modification

Carnivorous leaves

- Leaf lamina gets modified to trap insects.
- Insectivorous plants are photoautotrophic. However, they grow in soil which lacks nitrogen. To fulfil the requirement of nitrogen, they trap insects.
- Examples: Venus flytrap,
 Pitcher plant (Here, leaf lamina is modified as a pitcher).

Spines

- The leaves are reduced to spines to minimise water loss.
- Cacti have swollen stems.
- Leaves are modified as spines, they also provide protection.

Tendrils

- The leaves are modified as tender coiled structures which provide support and help in climbing. Example: Pea.
- In some plants, the axillary bud converts into tendrils. Example: Cucumber.
- In some plants, the leaf tip is modified to tendrils to touch and twine around objects.

Leaf Modification

Storage

- Some leaves are modified to store food.
- Garlic and onion are edible leaves but their outer leaves are dry scale leaves.

Phyllode

- Photosynthetic modified petioles are known as phyllodes. Example: Acacia.
- The leaves are short-lived. To increase photosynthesis, the leaf petiole expands. It turns green and performs photosynthesis.

Flower

- Flower is a modified shoot.
- Leaf arises from the node.
- The space between two nodes is the internode.
- Shoot transforms into a flower, floral appendages develop at nodes.
- As the shoot transforms to flower, the internodes do not elongate. Further, the axis gets compressed.
- The floral appendages include calyx (sepals), corolla (petals), stamens (androecium), and carpels (gynoecium).
- Pedicel is the stalk of a plant that connects the flower with the stem of the plant.

Arrangement of Flowers

Old flowers

Inflorescence: arrangement of flowers on the floral axis

Solitary

- It is not a part of the inflorescence.
- **Example**: Pulsatilla

Pulsatilla

Racemose

- The main axis continues to grow and has no terminal flower.
- The flowers are borne laterally in an acropetal succession.
- **Example**: Gulmohar

Gulmohar

Cymose

- The main axis terminates in a flower. Hence, it is limited in growth.
- The flowers are borne in a basipetal order.
- **Example**: Jasmine

Jasmine

- Bracts are green leaf-like structures.
- Function: They protect the flower.

Tulips - Bracteate

Based on the presence of bracts

Bracteate

- Bracteate: Bracts
 are present
 at the base of pedicel.
 Example:
 Tulips
 - Symbol: Br

Ebracteate

- Ebracteate: In some flowers, bracts are absent.
 Example: Mustard flowers
 - o Symbol: Ebr

Mustard flower - Ebracteate

- Spathe: Bracts that are modified into colourful and bright ones.
- Their function is to **attract pollinators. Example**: Bougainvillea

- A flower consists of four whorls: calyx, corolla, androecium, and gynoecium.
- Whorl is a term used for the arrangement of sepals, petals, stamens, or carpels, which radiate from a common point surrounding the stem or stalk.

Classification of flower based on presence of sexual reproductive organ

Staminate

- Only androecium is present.
- It is found in dioecious plants.
- It is also found in unisexual flower in monoecious plants.
 - Example: Male papaya flower.

Pistillate

- Only gynoecium is present.
- It is found in dioecious plants.
 - **Example:** Female *Cucurbit* flower.

Sex-switching plants

They express sexual differences at different stages of growth.

Staminode

- The stamen present is rudimentary.
- Stamen is sterile, i.e., it does not produce pollen grains.
 - **Example:** Cassia

Bisexual

- Both androecium and gynoecium are present in the same flower.
- It is found in monoecious plants.
 - **Example:** Hibiscus.

Based on number of appendages

Trimerous 3 or multiple of 3 units

• Example: Monocot flowers - Lily

Tetramerous 4 or multiple of 4 units

• **Example**: Dicot flowers - Primrose

Pentamerous 5 or multiple of 5 units

• **Example**: Dicot flowers - *Crassula ovata*

Non-essential Whorls

	Calyx	Corolla	Perianth
Definition	Outermost whorl of flower consisting of green leaf like structures called sepals	Whorl of flower consisting of petals of various shapes like tubular, bell shaped, funnel-shaped or wheel- shaped enclosing reproductive organs of plant	Petals and sepals together are called tepals . They are found in monocots
Function	Protection of flower at the bud stage	Attract pollinators	Protection of flower and to attract pollinators
Symbol	K	С	P

	Calyx		Corolla	
Classification based on free or united appendages	Polysepalous	Gamosepalous	Polypetalous	Gamopetalous
Definition	Sepals are separated and free	Sepals are fused and united	Petals are separated and free	Petals are fused and united
Symbol	K _n (n= number of sepals)	K _(n) (n= number of sepals)	C _n (n= number of petals)	C _(n) (n= number of petals)
Example	Rose	Tomato	Rose	Tomato

Aestivation

Aestivation: arrangement of sepals and petals with respect to other members of the same whorl

Valvate

Sepals or petals in a whorl touch one other at the margin

Calotropis

Twisted

One margin of the appendage overlaps that of the next one

Cotton, lady's finger

Imbricate

Margins of sepals or petals overlap one another but not in any particular direction

Cassia, gulmohar

Vexillary

Largest petal (standard) overlaps the two lateral (wings) that overlap the two smallest anterior petals (keel)

Pea plant

Symmetry in Flowers

Symmetry

Actinomorphic ()

Flowers that can be cut in any plane to get equal halves

Chilli

Zygomorphic (%)

Flowers that can be cut in only one plane to get equal halves

Gulmohar and bean

Asymmetric (\$)

Flowers that can not be divided into equal halves

Canna

Essential Whorls: Androecium

- Stamens are collectively termed as androecium.
- Function: It helps in sexual reproduction in plants.
- Symbol: It is represented by A.
- Parts of androecium
 - Stamen: It is the male reproductive organ of a flower. It has the following 3 parts:
 - Filament: It is the stalk of the stamen.
 - Anther: It is the bilobed structure of stamen. It houses pollen grains required for pollination.
 - Connective: It is the sterile part that connects anther lobes.

Classification of Androecium

Epipetalous

Stamens are attached to petals

Brinjal

Epiphyllous

Stamens are attached to perianth

Lily

Distinct stamen

Connate stamens

Polyandrous (free stamens)

Adelphous (united stamens)

Monadelphous

Polyadelphous

Filaments of the stamens are fused as single bundle Example- China rose

Filaments of the stamens are in 2 bundles
Example- Pea

Filaments of the stamens are in several bundles Example- *Citrus*

Essential Whorls: Gynoecium

- Group of pistils are collectively called gynoecium
- Represented by letter 'G'
- Pistil or carpel is the female reproductive organ
- It has 3 parts -
 - Stigma Receptive surface for pollen grains
 - Style Connects the ovary to the stigma
 - Ovary Enlarged basal part

Classification of Gynoecium

Monocarpellary

Example: Fabaceae members

Multiple, free carpels

Based on unification of carpels

Multiple, fused carpels

Syncarpous

Examples: Mustard, tomato

Apocarpous

Examples: Rose, lotus

© 2022, Aakash BYJU'S. All rights reserved.

Classification of Flowers Based on Gynoecium Position

Classification of Flowers Based on Gynoecium Position

	Hypogynous	Perigynous	Epigynous
Position of gynoecium	Highest	Centre	Lowest (Thalamus margin grows upwards enclosing ovary & fused to the ovary)
Position of other whorls	Below gynoecium	At the rim of thalamus at the same level	Above ovary
Ovary position	Superior Half inferior		Inferior
Symbol	<u>G</u>	-G-	G
Example	<i>Hibiscu</i> s, mustard flower, brinjal flower	Rose, plum, peach flower	Sunflower, guava flower, cucumber flower

Ovary

Parts of ripened ovary

- Ovary is enlarged basal portion of the the female organ (carpel or pistil) of a flower.
- An ovary has one or more chambers known as locules.
- Each ovary bears one or more ovules attached to it which develop into seeds upon fertilisation.
- Ovary wall develops into pericarp when ovary ripens.
- Ovules are connected to the ovary by placenta.
- Funiculus is a stalk like structure.

Classification of Ovary

Based on arrangement of ovules

Placentation is the method by which the placenta is distributed inside the ovary of the plants.

Types	Placentation	Examples
Axile	Ovules attached to axial placenta in a multilocular ovary	Orange, tomato
Marginal	Ovules attached to ridge- like placenta	Pea
Parietal	Ovules develop on inner wall of ovary	Cantaloupe
Free-central	Ovules are borne on the central axis with no septa	Primrose, <i>Dianthus</i>
Basal	Placenta develop at the base of the ovary and single ovule is attached	Marigold, sunflower

Fruit

The fruit is a **ripened ovary**, while the **ovule develops into seeds post-fertilization**. The fruit wall or **pericarp is differentiated** into three layers.

Parts of fruit

- Epicarp- Outermost layer
- Mesocarp- Middle layer
- Endocarp- Innermost layer

Types of Fruit

True fruits

- Develop from mature ovary after fertilization
- Usually the mesocarp is the edible portion
- **Examples-** Mango, peas.

False fruits

- Develop from parts of flower other than the ovary
- ExampleApple and pear
 thalamus or the
 receptacle develops
 into the fleshy, edible
 portion

Parthenocarpic fruits

- Formed without fertilisation
- Seedless fruits are formed
- Parthenocarpy can be natural or induced
- Can be induced using growth factors
- Example- Grapes, banana

Development of simple fruits

From monocarpellary ovary

Develops from a single ovary containing one carpel.

E.g. - Mango and coconut (fruit is called drupe).

From multicarpellary ovary

Develops from a single ovary containing multiple fused carpels.

Types of simple

fruits

Fleshy

Pericarp is differentiated into epicarp, mesocarp and endocarp.

Dry

Pericarp is not differentiated into 3 layers.

- Seed develops from fertilised ovule.
- It is found inside the fruit.
- Seed dispersal is the mechanism by which plant seeds are transported to new sites for germination.

- Endosperm is a nutritive tissue stored in the seed for the nourishment of growing embryo.
- Endosperm is formed by the fusion of one male gamete and the polar nuclei found in the embryo sac of the ovule.
- It is generally triploid.
- The endosperm may or may not be fully consumed during the embryo development.

Endosperm

Dicot Seed

- The dicot seed has two cotyledons.
- The seed is bilayered, outer layer is testa and the inner is tegmen.

- Hilum Scar on the seed, which marks the point of attachment of the funicle.
 - Funicle is a stalk that connects the seed with the placenta.
- Micropyle Pore from which water enters the seed.
 - It is a small opening that is formed through which the pollen tube enters the ovary for fertilization.

Monocot Seed

- It has one cotyledon called scutellum and a short embryonal axis.
- Short embryonal axis has a plumule and a radicle.
- Seed coat is membranous and fused with the fruit wall.
- Endosperm is bulky and stores food.

- Aleurone layer is the outer proteinaceous covering of the endosperm.
- Plumule is enclosed in a sheath called Coleoptile.
- Radicle is enclosed in a sheath called Coleorhiza.

Floral Formula Symbols

Representation of the structure of a flower using numbers, letters and various other symbols

Symbol	Description
Br	Bracteate
Ebr	Ebracteate (no bract)
\oplus	Actinomorphic flower
%	Zygomorphic flower
o [*]	Staminate flower (male flower)
9	Pistillate flower (female flower)
φ^{\prime}	Bisexual flower

Symbol	Description
А	Androecium
A _n	Stamens free n = number of stamens
A _(n)	Stamens fused indicated by brackets n = number of stamens
C A	Epipetalous condition
P A	Epiphyllous condition

Floral Formula Symbols

A	
	a
	U

Symbol	Description
К	Calyx
K _n	Polysepalous calyx n = number of sepals
K _(n)	Gamosepalous calyx (Fusion indicated by brackets) n = number of sepals
С	Corolla
C _n	Polypetalous corolla n = number of petals
C _(n)	Gamopetalous corolla (Fusion indicated by brackets) n = number of petals
Р	Perianth

Symbol	Description
G	Gynoecium
G _n	n = number of carpels
G _(n)	Fused carpels indicated by brackets (Syncarpous condition) n = number of sepals
<u>G</u>	Superior ovary
G	Inferior ovary

Floral Diagram

B

- Floral diagram is the diagrammatic representation of a flower or a bud.
- A floral diagram illustrates the arrangement, position, structure, aestivation, connotation and adnation of the floral components. It has a circular outline.
- It was first introduced in the 19th century by the scientist named August Wilhelm Eichler.

Floral Families

Four floral families

Fabaceae

Solanaceae

Liliaceae

Brassicaceae

- The fabaceae or leguminosae, commonly known as pea, bean or legume family are a large and economically important family of flowering plants.
- It includes trees, shrubs, perennial or annual herbaceous plants which can be easily recognised by fruits (legume).
- It includes a variety of pulses such as chickpea, garden pea and important agricultural and food plants such as soya bean, beans, alfalfa, peanut etc.

Fabaceae: Vegetative Characteristics

Root system

- Tap root system with root nodules
- Rhizobium nitrogen fixing bacteria present in the root nodules.

Shoot system

- Erect stem
- Weak stem, needs support to climb

Fabaceae: Vegetative Characteristics

Leaf arrangement

Alternate (phyllotaxy)

Simple leaf (rare)

leaf

Stipulate

Reticulate venation

Swollen leaf base

Fabaceae: Floral Characteristics

- Inflorescence: Racemose
- Sexuality: **Bisexual or Hermaphrodite** (♥)

Calyx

- Pentamerous, Gamosepalous K₍₅₎
- Imbricate or valvate aestivation

Symmetry: Zygomorphic
 Bilaterally symmetrical (%)

Corolla

- Pentamerous, Polypetalous C₅
- Vexillary aestivation

Fabaceae: Reproductive Characteristics

Gynoecium

- Single carpel, multiple ovules
- Marginal placentation
- Unilocular ovary

Androecium

- Diadelphous arrangement
- Dithecous anther, 2 lobes

Fabaceae: Floral Diagram & Formula

Floral formula

Floral diagram

Fabaceae: Economic Importance

Food

Pulses

Oils

Soybean oil

Timber and fibres

Shisham Hemp

Medicine

Butterfly pea

Dye

Indigo

Solanaceae: Vegetative Characteristics

Habit

Herbs

Shrubs

Trees (rare)

Root system

Shoot system

 Aerial, erect stem, herbaceous and rarely woody, branched, hairy/ non-hairy (glabrous)

Glabrous nonhairy stem

Hairy stem

Solanaceae: Vegetative Characteristics

Leaf arrangement

Alternate (phyllotaxy)

Exstipulate (no stipule)

Simple Compound leaf leaf (rare)

Reticulate venation

Solanaceae: Floral Characteristics

- Inflorescence: Solitary, axillary or cymose
- Sexuality: **Bisexual or hermaphrodite** (\$\varphi\$)

Calyx

- Pentamerous, Gamosepalous K₍₅₎
- Persistent calyx and valvate aestivation

Valvate

Persistent calyx

• Symmetry: **Actinomorphic** - radially symmetrical (⊕)

Corolla

- Pentamerous, Gamopetalous C₍₅₎
- Valvate aestivation

Solanaceae: Reproductive Characteristics

Gynoecium

- Hypogynous- Superior ovary
- Bicarpellary, Syncarpous- $G_{(2)}$.
- Bilocular ovary
- Swollen placenta, axile

Androecium

- Five stamens A₅
- Epipetalous Filaments of stamen attached to petals

Solanaceae: Reproductive Characteristics

Fruits

Berry (All or most of pericarp is fleshy) E.g: Tomato

Dehiscent capsule

Seeds

- Multiple seeds Endospermic
- DicotyledonousAxile placentation

Multiple seeds

Solanaceae: Floral Diagram & Formula

Floral formula

Floral diagram

Solanaceae: Economic Importance

Tomato

Brinjal

Potato

Chillies

Medicine

Petunia

Ornamentals

Belladonna

Tobacco

Liliaceae: Vegetative Characteristics

- The lily family
- Consists of monocots

Root system

Fibrous root

Liliaceae: Vegetative Characteristics

Leaf arrangement

Basal leaf- leaves arise from the base of the stem

Alternate (phyllotaxy)

Exstipulate (no stipule)

Parallel venation

- Inflorescence: Solitary, cymose umbellate clusters.
- Sexuality: Bisexual or hermaphrodite (♀)
- Symmetry: Actinomorphic radially symmetrical
- Perianth made of tepals (no distinct petals and sepals)
 - Aestivation: Valvate

Liliaceae: Reproductive Characteristics

Gynoecium

- Tricarpellary and Syncarpous- $\underline{G}_{(3)}$
- Trilocular ovary, multiple ovules
- Axile placentation

Ovary

Androecium

- Six stamens arranged in group of three- A₃₊₃
- Epiphyllous.

Epiphyllous condition

Liliaceae: Reproductive Characteristics

Seeds

- Multiple seeds present
- Monocotyledonous
- Endospermic

Liliaceae: Floral Diagram & Formula

Floral formula

Actinomorphic

Floral diagram

Liliaceae: Economic Importance

Ornamentals

Tulips

Gloriosa

Vegetable

Asparagus

Medicine

Aloe

Colchicine

Colchicum autumnale

Brassicaceae

- The mustard family
- Tetradynamous condition is its unique feature
 - Flower has six stamens that are arranged into two groups.
 - One group has two short stamens.
 - Other group has four long stamens.
- Bicarpellary, syncarpous, superior ovary

- Floral formula for Family Brassicaceae Ebr. ⊕ or% ♀ K₂₊₂ C₄ A₂₊₄ G₍₂₎
- Bisexual or Hermaphrodite (♀)
- Actinomorphic Radially symmetrical
- Polysepalous (4 sepals)
- Polypetalous (4 petals)

Brassicaceae

Tetradynamous condition

Summary

Classification of ovary based on arrangement of ovules

Types	Placentation	Examples
Axile	Ovules attached to multilocular ovary	Orange, tomato
Marginal	Ovules attached to ridge-like placenta	Pea
Parietal	Ovules develop on inner wall of ovary	Cantaloupe
Free-central	Ovules are borne on the central axis with no septa	Primrose, <i>Dianthus</i>
Basal	Ovules develop at the base of the ovary	Marigold, sunflower

Dicot seed

The seed coat is distinct from the fruit wall

There are two cotyledons in the seed

Endosperm is absent in most of them but present in a few of them

There is no protective sheath for radicle and plumule

Monocot seed

The seed coat is completely fused with the pericarp

There is a single cotyledon in the seed

Endosperm is present in most of them and absent in a few of them

The radicle is protected by coleorhiza and the plumule is protected by coleoptile

Summary

Floral formula

Representation of the structure of a flower using numbers, letters and various other symbols.

Floral diagram

