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Electric field Lines – Stationary Charges and Electromagnetism

Electromagnetism is based on the principle that moving 
charges can produce electric as well as magnetic field.

Electric field Lines – Stationary Charges Electromagnetism

Electromagnetism

• Charges are moving

Electrostatics

• Charges are at rest



Oersted's experiment

The needle of the magnetic compass
directs towards the magnetic North and
magnetic South poles of the earth.

When the switch is OFF

Deflection in the needle of magnetic compass.

When the switch is ON



Magnetic Field Intensity

• The compass points tangentially to the 
imaginary circle drawn around the 
current carrying conductor.

• These imaginary circles are known as 
Magnetic Field Lines

𝑖



Magnetic force ( Ԧ𝐹𝑚) depends on the following: 

Magnetic Force and its Direction

| Ԧ𝐹𝑚| ∝ 𝑞 | Ԧ𝐹𝑚| ∝ Ԧ𝑣 sin 𝜃

| Ԧ𝐹𝑚| ∝ 𝐵 Ԧ𝐹𝑚 ⊥ 𝐵 Ԧ𝐹𝑚 ⊥ Ԧ𝑣

Ԧ𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)

Combining all these observations:

The direction of Magnetic force ( Ԧ𝐹𝑚) can 
be obtained using right hand thumb rule.

Right hand thumb rule

Note:
If 𝑞 is positive, then the direction will be along Ԧ𝑣 × 𝐵 . 
But if 𝑞 is negative, it will be the opposite.



Find the directions of the magnetic force, if the following configurations of 
magnetic field, direction of velocity, and sign of charge are given.

Direction of Ԧ𝑣 :− Ƹ𝑖

Direction of 𝐵 :− Ƹ𝑗

Sign of 𝑞:+𝑣𝑒
Direction of Ԧ𝐹𝑚 : 𝑘

Direction of Ԧ𝑣 :− Ƹ𝑗

Direction of 𝐵 :−𝑘

Sign of 𝑞:−𝑣𝑒
Direction of Ԧ𝐹𝑚 : − Ƹ𝑖

Direction of Ԧ𝑣 :− Ƹ𝑗

Direction of 𝐵 :+ Ƹ𝑗

Sign of 𝑞:−𝑣𝑒
Direction of Ԧ𝐹𝑚 : 𝑛𝑢𝑙𝑙

Direction of null vector is 
‘indeterminate’



A charge of 2.0 𝜇𝐶 moves with a speed of 2.0 × 106𝑚𝑠−1 along the positive 𝑥-axis. 
A magnetic field 𝐵 of strength 0.20 Ƹ𝑗 + 0.40𝑘 𝑇 exists in space. What is the 
magnetic force acting on the charge?

Ԧ𝐹𝑚 = ( 0.8𝑘 − 1.6 Ƹ𝑗 ) 𝑁

Solution, Ԧ𝐹𝑚 = 𝑞( Ԧ𝑣 × 𝐵)

Simplifying we get,

Ԧ𝐹𝑚 = 𝑞𝑣 Ƹ𝑖 × (𝐵𝑦 Ƹ𝑗 + 𝐵𝑧 𝑘)

Ԧ𝐹𝑚 = 𝑞𝑣𝐵𝑦 𝑘 − 𝑞𝑣𝐵𝑧 Ƹ𝑗

= 2.0 𝜇𝐶 × 2.0 × 106 𝑚/𝑠 × 0.20 𝑘 − 2.0 𝜇𝐶 × 2.0 × 106 𝑚/𝑠 × 0.40 Ƹ𝑗

A C

D

( 0.8𝑘 − 1.6 Ƹ𝑗 ) 𝑁

( 1.6𝑘 − 1.6 Ƹ𝑗 ) 𝑁

( 0.8𝑘 − 0.8 Ƹ𝑗 ) 𝑁

( 1.6𝑘 − 0.8 Ƹ𝑗 ) 𝑁B



Unit of Magnetic Field

The SI unit of magnetic field is Tesla (𝑇)

𝐵 =
Ԧ𝐹𝑚 𝑚𝑎𝑥

𝑞 Ԧ𝑣

Another commonly used unit is Wb/𝑚2

1 Tesla= 1 T =
1𝑁

𝐶−𝑚/𝑠
=

1𝑁

𝐴−𝑚

A smaller unit called Gauss is also used instead of Tesla

1 gauss= 1 𝐺 = 10−4𝑇

1 𝑇 = Wb/𝑚2

Ԧ𝑣

𝜃 = 90°

𝐵

Ԧ𝐹𝑚 𝑚𝑎𝑥
= 𝑞 Ԧ𝑣 𝐵Gauss is the CGS unit of Magnetic Field.



Work Done by a Magnetic Force

Work done by magnetic force,

𝑃 = Ԧ𝐹𝑚 ⋅ Ԧ𝑣 = 0

Instantaneous power delivered is zero.

𝑊𝑚 = 0

Ԧ𝐹𝑚 𝑚𝑎𝑥
= 𝑞 Ԧ𝑣 𝐵

We know that Ԧ𝐹𝑚 ⊥ Ԧ𝑣

From Work-Energy Theorem, we know,

“If only magnetic force is acting on the system, then, the
speed of the charged particle remains constant whereas the
velocity may be variable since the direction of the particle
might get changed during the motion”

If velocity of the particle is Ԧ𝑣 = 𝑣𝑥 Ƹ𝑖 + 𝑣𝑦 Ƹ𝑗 + 𝑣𝑧 𝑘, 
then the speed is defined as, Ԧ𝑣 = 𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡



Magnetic force ( Ԧ𝐹𝑚) depends on: 

Angle between the velocity (𝑣) and the magnetic field (𝐵)

Ԧ𝑣

𝜃 = 0°

𝐵

Ԧ𝑣

𝜃 = 180°

𝐵
Ԧ𝑣

𝜃 = 90°

𝐵

Ԧ𝐹𝑚 = 0 Ԧ𝐹𝑚 = 0 Ԧ𝐹𝑚 = 𝐹𝑚𝑎𝑥

Direction of Motion in Magnetic Field

What will happen when the
maximum force is acting on the
particle, i.e., the force and
velocity are perpendicular to
each other?

There will be no deviation since the force acting is zero.



When 𝜃 = 90°, Ԧ𝐹𝑚 = 𝑞𝑣𝐵 (∵ Ԧ𝐹𝑚 ⊥ Ԧ𝑣 at every instant)

Uniform Circular Motion

Radius of the circle (𝑅) Ԧ𝐹𝑚 = 𝑞𝑣𝐵 =
𝑚𝑣2

𝑅
𝑅 =

𝑚𝑣

𝑞𝐵

𝑅 =
𝑣

𝛼𝐵

where 𝛼 is the specific charge 
or charge per unit mass

Also,

Motion in Magnetic Field

Time Period,

Thus, 𝑇, 𝑓, 𝜔 are independent of speed(𝑣) of the particle.

𝑇 =
2𝜋𝑚

𝑞𝐵
𝑇 =

2𝜋𝑅

𝑣
=

2𝜋

𝑣

𝑚𝑣

𝑞𝐵
⇒

Frequency,
𝑓 =

𝑞𝐵

2𝜋𝑚
𝑓 =

1

𝑇
=

𝑣

2𝜋

𝑞𝐵

𝑚𝑣
⇒

Angular speed, 𝜔 =
𝑞𝐵

𝑚
𝜔 =

𝑣

𝑅
= 𝑣

𝑞𝐵

𝑚𝑣



A proton, a deuteron, and an alpha particle moving with equal kinetic energies 
enter perpendicularly into a region of uniform magnetic field. If 𝑟𝑝, 𝑟𝑑 and 𝑟𝛼 are 
the respective radii of the circular paths, find the ratios 𝑟𝑝/𝑟𝑑 and 𝑟𝑝/𝑟𝑎. 

𝑟𝑝
𝑟𝑑

=
1

2

(∵ all other parameters are constant.)

𝑅 =
𝑚𝑣

𝑞𝐵
⇒ 𝑅 =

2𝑚𝐾

𝑞𝐵

𝑅 ∝
𝑚

𝑞

𝑟𝑝
𝑟𝑑

=

𝑚𝑝

𝑞𝑝

𝑚𝑑

𝑞𝑑

=

1
1

2
1

⇒

𝑟𝑝
𝑟𝑑

= 1
𝑟𝑝
𝑟𝛼
=

𝑚𝑝

𝑞𝑝

𝑚𝛼

𝑞𝛼

=

1
1

4
2

⇒

Solution



A particle of mass 𝑚 = 1.6 × 10−27𝑘𝑔 and charge q = 1.6 × 10−19𝐶 moves at a speed
of v = 1.0 × 107𝑚/𝑠. It enters a region of uniform magnetic field at a point E. The
field has a strength of 1.0 𝑇.
(a) The magnetic field is directed into the plane of the paper. The particle leaves
the region of the field at the point F. Find the distance EF and the angle 𝜃.
(b) If the field is coming out of the paper, find the time spent by the particle in
the region of the magnetic field after entering it at E.

A

E

F

O



𝐸𝐹 = 0.14 𝑚

Ԧ𝐹𝑚 ⊥ Ԧ𝑣 ⇒ 𝑊 = 0Since, 

𝜃 = 45°

𝐸𝐹 = 2𝑅 cos45° = 2
𝑚𝑣

𝑞𝐵

1

2

𝐵 = 1.0 𝑇Ԧ𝑣 = 1.0 × 107𝑚/𝑠

⇒ speed remains constant

𝐸𝐹 = 2𝑅 cos45° = 2
1.6 × 10−27 × 1.0 × 107

1.6 × 10−19 × 1.0

𝜃 = 45°

Solution, 

𝑡𝐸𝐹 = 4.7 × 10−8𝑠

Ԧ𝐹𝑚 ⊥ Ԧ𝑣 ⇒ 𝑊 = 0Since, 

𝐵 = 1.0 𝑇Ԧ𝑣 = 1.0 × 107𝑚/𝑠

𝑡𝐸𝐹 =
2𝜋 − 2𝜃

𝑣
𝑅 =

3𝜋

2𝑣

𝑚𝑣

𝑞𝐵

𝑡𝐸𝐹 =
3𝜋𝑚

2𝑞𝐵
=
3𝜋

2

1.6 × 10−27

1.6 × 10−19

𝑡𝐸𝐹 =
3𝜋

2
× 10−8𝑠



The region between 𝑥 = 0 and 𝑥 = 𝐿 is filled with uniform, steady magnetic 
field 𝐵0 𝑘. A particle of mass 𝑚, positive charge 𝑞 and velocity 𝑣0 Ƹ𝑖 travels along
𝑥-axis and enters the region of the magnetic field.  Neglect the gravity 
throughout the question.
(a)   Find the value of 𝐿 if the particle emerges from the region of magnetic
field with its final velocity at an angle 30° to its initial velocity.

The magnetic field (𝐵) is represented by 
“ ” (dot). So, it means the field is coming 
out of plane of the screen i.e., along 
+ 𝑣𝑒 𝑧-axis.

Velocity ( Ԧ𝑣) of the particle is along +𝑣𝑒 𝑥-
axis.

When the particle just enters the 
magnetic field :

The magnetic force ( Ԧ𝐹𝑚) of the particle 
of charge +𝑞 will be along Ԧ𝑣 × 𝐵 = Ƹ𝑖 × 𝑘

= − Ƹ𝑗

𝐶𝑃 = 𝐶𝑄 = 𝑟 =
𝑚𝑣0
𝑞𝐵0

𝑃′𝑄 = 𝐿

sin 30° =
𝑃′𝑄

𝐶𝑄
=
1

2
𝐿

𝑟
=
1

2

𝐿 =
𝑚𝑣0
2𝑞𝐵0

𝐿 =
𝑟

2



The region between 𝑥 = 0 and 𝑥 = 𝐿 is filled with uniform, steady magnetic 
field 𝐵0 𝑘. A particle of mass 𝑚, positive charge 𝑞 and velocity 𝑣0 Ƹ𝑖 travels along 
𝑥-axis and enters the region of the magnetic field.  Neglect the gravity 
throughout the question.
(b) Find the final velocity of the particle and the time spent by it in the 
magnetic field, if the magnetic field now extends upto 2.1𝐿.

Ԧ𝑣𝑓 = Ԧ𝑣𝑄 = −𝑣𝑜 Ƹ𝑖

Condition of semi-circular path for the particle: 

Width of the region of magnetic field > Radius of the 
semi-circular path

We have: 𝑟 = 2𝐿

Given: 𝑊𝑖𝑑𝑡ℎ = 2.1𝐿 Condition satisfied

Final velocity :

Time spent by the particle in the field = Time period to cover the semi-circle 

𝑡𝑃𝑄 =
𝜋𝑚

𝑞𝐵0
𝑡𝑃𝑄 =

𝑇

2
𝑡𝑃𝑄 =

ൗ2𝜋𝑚
𝑞𝐵0

2



Two particles, each having a mass 𝑚 are placed at a separation 𝑑 in a uniform 
magnetic field 𝐵 as shown.  They have opposite charges of equal magnitude 
𝑞. At time 𝑡 = 0, the particles are projected towards each other, each with 
speed 𝑣. Suppose the Coulomb force between the charges is switched off.
(a) Find the maximum value 𝑣𝑚 of the projection speed so that the two 
particles do not collide.

The Coulombic force between two charge 
particles is neglected.

1 2
𝑅 𝑅

𝑅 + 𝑅 = 𝑑 ; 𝑅 =
𝑑

2

𝑚𝑣𝑚
𝑞𝐵

=
𝑑

2
𝑣𝑚 =

𝑞𝐵𝑑

2𝑚

𝑑12 → 0At maximum speed 𝑣𝑚 : 

The particles will not collide if : 𝑣 < 𝑣𝑚

As particle’s velocity  increases, the radius 
of the semi-circular path also increases.



• Component of velocity perpendicular to the 
direction of magnetic field: 𝑣⊥ = 𝑣 sin 𝜃

This is responsible for UCM of the particle. 

• Component of velocity parallel to the 
direction of magnetic field: 𝑣|| = 𝑣 cos 𝜃

This is responsible for linear translational 
motion of the particle. 

Motion of a Charged Particle in a Uniform Magnetic Field



Linear translational motion of the particle 

Helical motion of the particle 

UCM of the particle 

The radius of the helix 

𝑅 =
𝑚𝑣⊥
𝑞𝐵

=
𝑚𝑣 sin 𝜃

𝑞𝐵

Time period  

𝑇 =
2𝜋𝑅

𝑣⊥
=
2𝜋𝑚

𝑞𝐵

𝑓 =
1

𝑇
=

𝑞𝐵

2𝜋𝑚

Pitch of helix 

𝑝 = 𝑣||𝑇 =
2𝜋𝑚𝑣 cos𝜃

𝑞𝐵

Frequency

Motion of a Charged Particle in a Uniform Magnetic Field



A beam of protons with a velocity of 4 × 105 𝑚𝑠−1 enters a region of uniform 
magnetic field of 0.3 𝑇. The velocity makes an angle of 60° with the magnetic 
field. Find the radius of the helical path taken by the proton beam and the pitch 
of the helix.

Radius of the helical path : 𝑅 =
𝑚𝑣 sin 𝜃

𝑞𝐵

Solution :

𝑅 =
(1.67 × 10− 27)(4 × 105) sin 60°

(1.6 × 10−19)(0.3)
𝑅 = 1.2 𝑐𝑚

The pitch of the helical path : 𝑝 =
2𝜋𝑚𝑣 cos𝜃

𝑞𝐵

𝑝 =
2𝜋(1.67 × 10− 27)(4 × 105) cos 60°

(1.6 × 10−19)(0.3)
𝑝 = 4.4 𝑐𝑚



Electromagnetic Force on a Moving Charge; Lorenz Force

Electric force on the particle :
Ԧ𝐹𝑒 = 𝑞𝐸

Magnetic force on the particle :

Ԧ𝐹𝑚 = 𝑞 Ԧ𝑣 × 𝐵

Total force on the particle :

Ԧ𝐹 = Ԧ𝐹𝑒 + Ԧ𝐹𝑚

Ԧ𝐹 = 𝑞𝐸 + 𝑞 Ԧ𝑣 × 𝐵 Ԧ𝐹 = 𝑞𝐸 + 𝑞 Ԧ𝑣 × 𝐵

When both electric field
and magnetic field act
simultaneously on a
charged particle, then
total force acting on the
particle is the vector
sum of electric force and
magnetic force. This
total force is known as
“Lorentz force”.



A particle having mass 𝑚 and charge 𝑞 is released from the origin in a region 
in which electric field and magnetic field are given by 𝐵 = −𝐵0 መ𝐽 and 𝐸 = 𝐸0 𝑘. 
Find the speed of the particle as a function of its 𝑧-coordinate.

Initial speed of the particle = 0

Final speed of the particle = 𝑣

Initial kinetic energy = 0

Final kinetic energy = 1
2
𝑚𝑣2

Work done on the particle by magnetic force, 𝑊𝑚 = 0

Work done on the particle by electric force, 𝑊𝑒 = Ԧ𝐹𝑒 ∙ 𝑧𝑘 = 𝑞𝐸0𝑧

Apply work-energy theorem :
𝑊𝑒 + 𝑊𝑚 = ∆𝐾. 𝐸.=

1

2
𝑚𝑣2 − 0

𝑞𝐸0𝑧 =
1

2
𝑚𝑣2

𝑣 =
2𝑞𝐸0𝑧

𝑚



When 𝐸,𝐵 and Ԧ𝑣 all the three are collinear : 

Motion of a Charged Particle in a Uniform 
Electromagnetic Field

• The electrostatic force acting on the charge:
Ԧ𝐹𝑒 = 𝑞𝐸

• The direction of velocity of the particle 
and that of the magnetic field is along 
the same direction.

Ԧ𝑣 × 𝐵 = 0

• The magnetic force on the charged 
particle on the particle :

Ԧ𝐹𝑚 = 0

• The total force i.e., Lorentz force acting 
on the charge:

• If the charge is positive, the charge will 
accelerate in the direction of electric field. 

• If the charge is negative, the force on it 
will be opposite to its velocity and the 
charge will decelerate. 

Ԧ𝐹 = Ԧ𝐹𝑒 = 𝑞𝐸



A particle with charge +𝑞 and mass 𝑚, moving under the influence of a 
uniform electric field 𝐸 Ƹ𝑖 and a uniform magnetic field 𝐵𝑘, follows a trajectory 
from 𝑃 to 𝑄 as shown.  The velocities at 𝑃 and 𝑄 are 𝑣 Ƹ𝑖 and −2𝑣𝑗̂Ƹ. Find the 
magnitude of the electric field and the rate of work done by it at 𝑃.

Solution 
Work done on the particle by magnetic force, 

Work done on the particle by electric force, 𝑊𝑒 = Ԧ𝐹𝑒 ∙ 2𝑎 Ƹ𝑖 = 2𝑞𝐸𝑎

𝑊𝑚 = 0

Apply Work-Energy theorem from 𝑃 to 𝑄 :

𝑊𝑒 + 𝑊𝑚 = ∆𝐾. 𝐸.=
1

2
𝑚𝑣𝑄

2 −
1

2
𝑚𝑣𝑃

2

2𝑞𝐸𝑎 + 0 =
1

2
𝑚 4𝑣2 − 𝑣2

𝐸 =
3𝑚𝑣2

4𝑞𝑎

The rate of work done by electric field at 𝑃 :

𝑑𝑊𝑒

𝑑𝑡
= Ԧ𝐹𝑒 ⋅ Ԧ𝑣𝑃

𝑑𝑊𝑒

𝑑𝑡
= 𝑞𝐸 Ƹ𝑖 ⋅ 𝑣 Ƹ𝑖

𝑑𝑊𝑒

𝑑𝑡
=
3

4

𝑚𝑣3

𝑎



Motion of a Charged Particle in a Uniform 
Electromagnetic Field

𝐸, 𝑣, and 𝐵 are Collinear

Ԧ𝐹𝑒 = 𝑞𝐸

Ԧ𝐹𝑚 = 𝑞 Ԧ𝑣 × 𝐵 = 0

Ԧ𝐹 = Ԧ𝐹𝑒 = 𝑞𝐸

𝐸, 𝑣, and 𝐵 are Mutually Perpendicular

Ԧ𝐹 = 𝑞 𝐸 − 𝑞 Ԧ𝑣 𝐵

Ԧ𝐹 = 0 ⇒ 𝑞𝐸 − 𝑞𝑣𝐵 = 0

⇒ 𝑣 =
𝐸

𝐵

Special Case:

Conditions:

𝐸, 𝑣, and 𝐵 are mutually

perpendicular

𝐸 and 𝐵 are uniform



Velocity Selector

𝐹𝑚 > 𝐹𝑒

⇒ 𝑞𝑣𝐵 > 𝑞𝐸

⇒ 𝑣 >
𝐸

𝐵

If 𝑣 > 𝐸

𝐵
, the charged particle will move 

downward.

𝐹𝑚 < 𝐹𝑒

⇒ 𝑞𝑣𝐵 < 𝑞𝐸

⇒ 𝑣 <
𝐸

𝐵

If 𝑣 < 𝐸

𝐵
, the charged particle will 

move upward.

𝐹𝑚 = 𝐹𝑒 ⇒ 𝑞𝑣𝐵 = 𝑞𝐸 ⇒ 𝑣 =
𝐸

𝐵

Selects charged particles of a particular velocity
out of a beam containing charges moving with
different velocities.

Selection is irrespective of their charge and mass.

If 𝑣 =
𝐸

𝐵
, the charged particle will move

undeflected in the electromagnetic field.



The figure shows a velocity selector whose electric field is produced by a potential 
difference of 150 𝑉 across the two large parallel metal plates that are 4.5 𝑐𝑚 apart.
Find the magnetic field 𝐵, so that a positively charged particle having a velocity of 3.25 𝑘𝑚
/𝑠 perpendicular to the fields will pass through the plates undeflected.

Calculate the magnitude of 𝐵: 

𝑣 =
𝐸

𝐵
⇒ 𝐵 =

𝐸

𝑣 =
𝑉/𝑑

𝑣

=
150/0.045

3250

⇒ 𝐵 = 1.02 𝑇

150 𝑉

4.5 𝑐𝑚

𝐸

+ + + +

𝐵

− − − −

𝑧

𝑥

𝑦

Ԧ𝑣 = 3.25 𝑘𝑚/𝑠

×

+

𝐹𝑒

𝐹𝑚

Calculate the direction of 𝐵: 

Ƹ𝑗 Ƹ𝑖 −𝑘

𝐹𝑚 ∥ Ԧ𝑣 × 𝐵

Ƹ𝑖 × −𝑘 = Ƹ𝑗

C

B

D

1.02 (−𝑘)

1.20 𝑘

1.02 𝑘

1.20 (−𝑘)

A



Cyclotron

A machine that uses both electric and magnetic fields in combination to accelerate charged 
particles or ions to high energies

Cyclotron frequency

𝑇 =
2𝜋𝑚

𝑞𝐵
⟹ 𝑓𝑐 =

𝑞𝐵

2𝜋𝑚

𝑓𝑐 is independent of 
speed and radius of 
charged particle.

Kinetic energy imparted to charged particle

Radius of the trajectory at exit = 𝑅

We have, 𝑅 =
𝑚𝑣

𝑞𝐵

∴ Kinetic energy,

𝐾 =
1

2
𝑚𝑣2

=
𝑚

2

𝑞𝐵𝑅

𝑚

2

𝐾 =
𝑞2𝐵2𝑅2

2𝑚



A proton is accelerating in a cyclotron where the applied magnetic field is 2 𝑇. If 
the potential gap is effectively 100 𝑘𝑉, then find the number of revolutions made 
by the proton between the “dees” to acquire kinetic energy of 20 𝑀𝑒𝑉.

𝐸 = 2 × 𝑞𝑉

∴ No. of revolutions,

𝑁 =
𝐾

𝐸
=
20 × 106 × 𝑒

2 × 𝑒 × 105

⇒ 𝑁 = 100

Energy acquired by the proton in one revolution,

Potential gap, 𝑉 = 100 𝑘𝑉 ; Acquired kinetic energy, 𝐾 = 20 𝑀𝑒𝑉

150B

100 200

150 300

A

B

C

B D

A



𝐸 ∥ 𝐵 and 𝜃 ≠ 180𝑜, 0𝑜

Magnetic force results in a helical motion.

Electric force accelerates the particle along the 𝑥 - direction.

∴ particle will undergo helical motion    with variable pitch.

Motion of a Charged Particle in a Uniform 
Electromagnetic Field

Along the 𝑥 𝑎𝑥𝑖𝑠:

𝐹𝑒 = 𝑞𝐸 = 𝑚𝑎𝑥

⇒ 𝑎𝑥 =
𝑞𝐸

𝑚

∴ 𝑣𝑥 = 𝑢𝑥 + 𝑎𝑥𝑡

⇒ 𝑣𝑥 = 𝑣𝑜 cos 𝜃 + 𝑎𝑥𝑡

Force along 𝑥 axis,



𝐸 ∥ 𝐵 and 𝜃 ≠ 180𝑜, 0𝑜

In the 𝑦𝑧 𝑝𝑙𝑎𝑛𝑒:

Radius, 𝑅 =
𝑚𝑣𝑜sin 𝜃

𝑞𝐵

Acceleration,

Ԧ𝑎𝑦 = 𝜔2𝑅 sin𝜔𝑡 − Ƹ𝑗

Ԧ𝑎𝑧 = 𝜔2𝑅 cos𝜔𝑡 −𝑘Time period, 𝑇 =
2𝜋𝑚

𝑞𝐵

Motion of a Charged Particle in a Uniform 
Electromagnetic Field

𝐸 ∥ 𝐵 and 𝜃 = 90𝑜 Along the 𝑥 𝑎𝑥𝑖𝑠:

𝐹𝑒 = 𝑞𝐸 = 𝑚𝑎𝑥

∴ 𝑣𝑥 = 𝑢𝑥 + 𝑎𝑥𝑡

Force along 𝑥 axis,

⇒ 𝑎𝑥 =
𝑞𝐸

𝑚

⇒ 𝑣𝑥 = 𝑎𝑥𝑡

In the 𝑦𝑧 𝑝𝑙𝑎𝑛𝑒:

Radius, 

Time period,

𝑅 =
𝑚𝑣𝑜
𝑞𝐵

𝑇 =
2𝜋𝑚

𝑞𝐵



A particle of mass m and charge q has an initial velocity Ԧ𝑣 = 𝑣𝑜 Ƹ𝑗. If an electric 
field 𝐸 = 𝐸𝑜 Ƹ𝑖 and magnetic field 𝐵 = 𝐵𝑜 Ƹ𝑖 act on the particle, its speed will double 
after a time

Initial velocity:

𝑢𝑥 = 0 𝑢𝑦 = 𝑣𝑜

Magnetic field do not 
change the magnitude 
of velocity.

After time t,

𝑣 = 𝑣𝑥
2 + (𝑣𝑦

2 + 𝑣𝑧
2)

⇒ 2𝑣𝑜 = 𝑣𝑥
2 + 𝑣𝑜

2

⇒ 𝑣𝑥 = 3𝑣𝑜

But,

𝑣𝑥 = 𝑢𝑥 + 𝑎𝑥𝑡

⇒ 3𝑣𝑜 = 0 +
𝑞𝐸𝑜
𝑚

𝑡

⇒ 𝑡 =
3𝑚𝑣𝑜
𝑞𝐸𝑜

+

B

A

BB D

2𝑚𝑣𝑜
𝑞𝐸0

3𝑚𝑣𝑜
𝑞𝐸0

3𝑚𝑣𝑜
𝑞𝐸0

2𝑚𝑣𝑜
𝑞𝐸0

C



Magnetic Force on a Current Carrying Element

Force on one electron,

𝑑𝐹𝑒 = −𝑒 𝑣𝑑 × 𝐵

Total force on n electrons,

𝑑𝐹 = 𝑛𝐴𝑑𝑙 −𝑒 𝑣𝑑 × 𝐵

⇒ 𝑑𝐹 = 𝑖 𝑑𝑙 × 𝐵

= −𝑛𝑒𝐴𝑑𝑙 𝑣𝑑 × 𝐵

𝑑𝐹 = 𝑖(𝑑𝑙 × 𝐵)

Ԧ𝐹 = න𝑑𝐹

= න 𝑖(𝑑𝑙 × 𝐵)

⇒ Ԧ𝐹 = 𝑖 Ԧ𝑙 × 𝐵

Force on a small element,

Integrating,

[∵ 𝐵 is uniform]
[∵ 𝑖 = −𝑛𝑒𝐴𝑣𝑑]



On a smooth inclined plane at 30° with the horizontal, a thin current carrying 
metallic rod is placed parallel to the horizontal ground. The plane is located in 
a uniform magnetic field 𝐵 of 0.15 𝑇 in the vertical direction. For what value of 
current can the rod remain stationary? The mass per unit length of the rod is 
0.30 𝑘𝑔/𝑚. (Take 𝑔 = 9.8 𝑚/𝑠2 )

𝑚𝑔𝑠𝑖𝑛30𝑜

30°
𝑚𝑔

30°

𝑁

𝑖

𝐵

𝐹𝑚

𝐹𝑚𝑐𝑜𝑠30
𝑜

𝑚𝑔𝑠𝑖𝑛30𝑜 = 𝐹𝑚𝑐𝑜𝑠30
𝑜

For equilibrium of the rod,

⇒ 𝑚𝑔 ×
1

2
= 𝑖𝑙𝐵 ×

3

2

⇒ 𝑖 =
𝑚

𝑙
× 𝑔 ×

1

3𝐵

=
0.3 × 9.8

3 × 0.15

⇒ 𝑖 = 11.3 𝐴



Two long metal rails placed horizontally and parallel to each other are at a separation 𝑙. A uniform 
magnetic field 𝐵 exists in the vertically downward direction. A wire of mass 𝑚 can slide on the 
rails. The rails are connected to a constant current source which drives a current 𝑖 in the circuit. 
The friction coefficient between the rails and the wire is 𝜇.
What should be the minimum value of 𝜇 which can prevent the wire from sliding on the rails?

⇒ 𝐹𝑚 ≤ 𝜇𝑚𝑔

𝐹𝑚 = 𝑓𝑠

⇒ 𝑖𝑙𝐵 ≤ 𝜇𝑚𝑔

⇒ 𝜇 ≥
𝑖𝑙𝐵

𝑚𝑔
⇒ 𝜇𝑚𝑎𝑥 =

𝑖𝑙𝐵

𝑚𝑔
𝑓1 + 𝑓2 = 𝑓𝑠 ≤ 𝜇𝑚𝑔

Static friction:

Condition for no sliding:

⇒ 𝐹𝑚 = 𝑖(Ԧ𝑙 × 𝐵)

𝑑𝐹𝑚 = 𝑖(𝑑𝑙 × 𝐵)

⇒ 𝐹𝑚 = 𝑖𝑙𝐵𝑠𝑖𝑛90𝑜

⇒ 𝐹𝑚 = 𝑖𝑙𝐵

Magnetic force:



A charged particle with charge 𝑞 enters a region of constant, uniform and 
mutually orthogonal fields 𝐸 and 𝐵 with a velocity perpendicular to both 𝐸 and 
𝐵, and comes out without any change in magnitude or direction of Ԧ𝑣. Then,

𝐽𝐸𝐸 𝑀𝐴𝐼𝑁 2007

For undeflected motion of the charge particle, 
the required condition of velocity of the charge 
particle is,

𝑣 =
𝐸

𝐵
The direction of velocity Ԧ𝑣 should also be 
parallel to 𝐸 × 𝐵 . So, 

𝑣 =
𝐸 × 𝐵

𝐵2

𝑣 =
𝐸𝐵 sin 90°

𝐵2

𝑣 =
𝐸

𝐵

[Since 𝐸 ⊥ 𝐵]

B Ԧ𝑣 =
𝐸 × 𝐵

𝐵2

A C

D



Find the magnetic force on a current carrying semi-circular wire.

Consider a small element of length 𝑑𝑙. 

The magnetic force on the element : 

𝑑 Ԧ𝐹 = 𝑖 𝑑Ԧ𝑙 × 𝐵 = 𝑖 𝑅𝑑𝜃 𝐵

The horizontal component of 𝑑𝐹 from symmetrical wire 
elements get cancelled out in pair and hence, net force on 
the wire will be due to vertical component only. 
So, net magnetic force on the current carrying semi-
circular wire,

𝐹 = න𝑑𝐹 sin 𝜃

𝐹 = න 𝑖 𝑅𝑑𝜃 𝐵 sin 𝜃

𝐹 = 𝑖𝑅𝐵න
0

𝜋

sin 𝜃 𝑑𝜃

𝐹 = 𝑖𝑅𝐵 −cos𝜃 0
𝜋

Net force on the wire will be in the upward direction.

𝐹 = 2𝑖𝑅𝐵

𝑖

𝜃

𝑑𝐹

𝑑𝑙

𝐵 ⨂

𝑅



Magnetic Force on arbitrary shaped wire 

• The magnetic force on any arbitrary shaped current carrying 
wire is: 

Where Ԧ𝑙 is the vectorial length of the wire obtained from 
the coordinates of two ends of the wire and its direction is 
same as the current.

Ԧ𝐹 = 𝑖 Ԧ𝑙 × 𝐵
Magnetic field should be 
uniform

𝐵 ⨂

• Therefore, the magnetic force on a closed current carrying loop
placed in a uniform magnetic field is: 

• Since the current carrying loop is a closed loop, the vectorial 
length of the wire : Ԧ𝑙 = 0. 

Ԧ𝐹 = 0



A wire, carrying a current 𝑖, is bent and kept in the 𝑥-𝑦 plane along the curve 𝑦
= 𝐴 sin

2𝜋

𝜆
𝑥 . A uniform magnetic field 𝐵 exists in the 𝑧-direction. Find the 

magnitude of the magnetic force on the portion of the wire between 𝑥 = 0
and 𝑥 = 𝜆.

The magnetic force on any arbitrary shaped current 
carrying wire placed in a uniform magnetic field is : 

Ԧ𝐹 = 𝑖 Ԧ𝑙 × 𝐵

The vectorial length of the portion of the wire 
between 𝑥 = 0 and 𝑥 = 𝜆 is :

Ԧ𝑙 = 𝜆 Ƹ𝑖

The magnetic field : 𝐵 = 𝐵𝑘

So, the magnitude of the magnetic force is :

Ԧ𝐹 = 𝑖 Ԧ𝑙 × 𝐵 = 𝑖 𝜆 Ƹ𝑖 × 𝐵𝑘 = 𝑖 𝜆𝐵(− Ƹ𝑗) = 𝑖𝜆𝐵

Ԧ𝐹 = 𝑖𝜆𝐵



• So, net magnetic force and the net torque 
on the loop are zero.

• If we rotate the loop in its own plane by 
some angle, it will remain in that new 
orientation and this configuration of the 
loop is its neutral equilibrium position.

• At this orientation of the loop, all the 
opposite pair of forces act along the same 
line, opposite in direction and equal in 
magnitude. 

• When the loop is rotated by an angle 𝜃, as 
shown, the pair of forces each having 
magnitude 𝑖𝑏𝐵 forms a couple, and a torque 
is produced in the loop.

Current carrying loop in Magnetic Field



Torque on the loop :

𝜏 = 𝑖 𝑙𝑏 𝐵 sin 𝜃

𝜏 = 𝑖𝐴𝐵 sin 𝜃

Ԧ𝜏 = 𝑖 Ԧ𝐴 × 𝐵 Torque on the loop :

Ԧ𝜏 = Ԧ𝜇 × 𝐵

Magnetic dipole moment of the 
current carrying loop :

Ԧ𝜇 = 𝑖 Ԧ𝐴

Ԧ𝜇

𝑖

𝑥

𝑦

𝑧

𝑟

Magnitude of magnetic dipole moment :

Ԧ𝜇 = 𝑖𝜋𝑟2 Ƹ𝑗

𝜇 = 𝑖𝐴 = 𝑖𝜋𝑟2

Right hand thumb rule gives the
direction of magnetic dipole moment
along 𝑦-axis.

Magnetic dipole moment :

Magnetic dipole moment of the current 
carrying loop :

Current carrying loop in Magnetic Field



Find the magnitude of magnetic moment of the current carrying loop 𝐴𝐵𝐶𝐷𝐸𝐹𝐴. 
Each side of the loop is 10 𝑐𝑚 long and current in the loop is 𝑖 = 2 𝐴.

Magnitude of magnetic moment of the loop 𝐴𝐵𝐸𝐹𝐴
= Magnitude of magnetic moment of the loop 𝐵𝐶𝐷𝐸𝐵

𝜇𝑛𝑒𝑡 =
1

25 2
𝐴𝑚2

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

𝑖

𝑖

𝑖

Ԧ𝜇

Ԧ𝜇

Magnetic dipole moment each loop :

𝜇𝑛𝑒𝑡 = 𝜇2 + 𝜇2 = 2𝜇 =
2

50
𝐴𝑚2

𝜇 = 𝑖𝑙2 = 2 ×
10

100

2

=
2

100
=

1

50
𝐴𝑚2

Net magnetic dipole moment :



A loop carrying current 𝐼 lies in the 𝑥-𝑦 plane as shown in the figure. The unit 
vector 𝑘 is coming out of the plane of the paper. The magnetic moment of 
the current loop is

𝐽𝐸𝐸 𝑀𝐴𝐼𝑁 2012

Area of the loop is :
Area of two circles of radius 𝑎

2
+  Area of a 

square of side length 𝑎

𝐴 = 2 × 𝜋
𝑎

2

2

+ 𝑎2

𝐴 =
𝜋𝑎2

2
+ 𝑎2 =

𝜋

2
+ 1 𝑎2

Magnitude of the magnetic moment of the 
loop is :

𝜇 = 𝐼𝐴 =
𝜋

2
+ 1 𝑎2𝐼

Direction of current suggests the direction 
of magnetic moment should be along 𝑘.

Ԧ𝜇 =
𝜋

2
+ 1 𝑎2𝐼 𝑘

C

𝑎2𝐼 𝑘A

B

D

𝜋

2
+ 1 𝑎2𝐼 𝑘

− 2𝜋 + 1 𝑎2𝐼 𝑘

−
𝜋

2
+ 1 𝑎2𝐼 𝑘



A uniform, constant magnetic field 𝐵 is directed at an angle of 45𝑜 to the 𝑥-axis 
in the 𝑥𝑦-plane.  𝑃𝑄𝑅𝑆 is a rigid, square wire frame carrying a steady current 𝐼0, 
with its centre at the origin 𝑂.  At time 𝑡 = 0, the frame is at rest in the position 
shown, with its sides parallel to the 𝑥 and 𝑦 axes.  Each side of the frame is of 
mass 𝑀 and length 𝐿.
What is the torque Ԧ𝜏 about 𝑂 acting on the frame due to the magnetic field ?

• Magnetic field :

Ԧ𝜏 =
𝐼0𝐿

2𝐵

2
Ƹ𝑗 − Ƹ𝑖

• Magnetic moment :

Ԧ𝜇 = 𝐼0𝐿
2 ⨀ = 𝐼0𝐿

2 𝑘

Ԧ𝜏 = Ԧ𝜇 × 𝐵 =
𝐼0𝐿

2𝐵

2
𝑘 × Ƹ𝑖 + Ƹ𝑗• Torque :

𝐵 = 𝐵 cos 45° Ƹ𝑖 + 𝐵 sin 45° Ƹ𝑗

𝐵 =
𝐵

2
Ƹ𝑖 + Ƹ𝑗



A rectangular coil of size 3.0 𝑐𝑚 x 4.0 𝑐𝑚 and having 100 turns, is pivoted 
about the 𝑧-axis as shown. The coil carries an electric current of 2.0 𝐴 and a 
magnetic field of 1.0 𝑇 is present along the 𝑦-axis, Find the torque acting on 
the coil if the side in the x-y plane makes an angle 𝜃 = 37𝑜 with the 𝑥-axis.

Solution :
Magnitude of the magnetic 
moment :
𝜇 = 𝑛𝑖𝐴

𝜇 = 100 × 2 ×
3

100
×

4

100
𝐴𝑚2

𝜇 =
6

25
𝐴𝑚2

The magnetic moment in vector form :

The torque is :

Ԧ𝜇 = 𝜇 cos53° Ƹ𝑖 − 𝜇 sin 53° Ƹ𝑗

Ԧ𝜇 =
3𝜇

5
Ƹ𝑖 −

4𝜇

5
Ƹ𝑗

Magnetic field : 𝐵 = 𝐵 Ƹ𝑗 = 1 Ƹ𝑗

Ԧ𝜏 = Ԧ𝜇 × 𝐵 =
3𝜇

5
Ƹ𝑖 −

4𝜇

5
Ƹ𝑗 × 1 Ƹ𝑗

Ԧ𝜏 =
3𝜇

5
𝑘 =

3

5
×

6

25
𝑘

Ԧ𝜏 =
18

125
= 0.14 𝑁𝑚

Ԧ𝜏 = 0.14 𝑁𝑚



Revolving Charged Particles

• Revolution of charged particle constitutes a current.

Ԧ𝜇 =
𝑄

2𝑚
𝐿

+

𝑅

𝜔

𝑄𝑚

𝑖

• Current : 𝑖 =
𝑄

𝑇
=
𝑄𝜔

2𝜋

• Magnetic moment : Ԧ𝜇 = 𝑖 Ԧ𝐴 =
𝑄𝜔

2𝜋
𝜋𝑅2 ⨂

• Angular momentum : 𝐿 = 𝑚𝑅2𝜔 ⨂



Gyromagnetic Ratio

Magnetic Moment of 
rotating charged particle

𝑀 =
𝑞𝑣𝑟

2

𝐿 = 𝑚𝑣𝑟

Angular Momentum of 
rotating charged particle

𝑚

Ԧ𝑣

𝑟
𝑂

𝑞

Gyromagnetic Ratio

𝛾 =
𝑀

𝐿
=

𝑞

2𝑚
=

𝑡𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒

2 × 𝑡𝑜𝑡𝑎𝑙 𝑚𝑎𝑠𝑠

Note: 

This ratio is a constant for all rotating uniformly charged 
bodies.

This result is used for calculating 𝛾 for various charge 
configurations.



Magnetic Moment of Rotating Charged shapes 

For any rotating charge 
distribution
𝑀

𝐿
=

𝑞

2𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

⇒ 𝑀 = 𝐿
𝑞

2𝑚

For given configuration,

𝐿 =
𝑚𝑙2

3
𝜔 𝑀 =

𝑞𝜔𝐿2

6

For any rotating charge 
distribution
𝑀

𝐿
=

𝑞

2𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

⇒ 𝑀 = 𝐿
𝑞

2𝑚

For given configuration,

𝐿 = 𝑚𝑅2𝜔
𝑀 =

𝑞𝜔𝐿2

2

For any rotating 
charge distribution
𝑀

𝐿
=

𝑞

2𝑚
= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

⇒ 𝑀 = 𝐿
𝑞

2𝑚

For given configuration,

𝐿 =
𝑚𝑅2

2
𝜔 𝑀 =

𝑞𝜔𝐿2

4



𝐵 =
𝜇0
4𝜋

𝑞𝑣 sin 𝜃

𝑟2
𝐵 =

𝜇0
4𝜋

𝑞 Ԧ𝑣 × Ԧ𝑟

𝑟3

Magnetic Field due to Moving Charge

Direction of Magnetic Field:

• If 𝑞 is positive                  ො𝑣 × Ƹ𝑟

• If 𝑞 is negative                opposite of ො𝑣 × Ƹ𝑟

Vector FormScalar Form

𝜇0
4𝜋

= 10−7
𝑇 − 𝑚

𝐴
For free space, 

𝜇0 is magnetic permeability of 
free space .



BIOT-SAVART LAW

𝑑𝐵 =
𝜇0
4𝜋

𝑞 𝑖𝑑𝑙 sin 𝜃

𝑟2

𝑑𝐵 =
𝜇0
4𝜋

𝑖 𝑑Ԧ𝑙 × Ԧ𝑟

𝑟3

The magnetic field due to current element

Scalar Form:

Vector Form:

Note: 
Direction of 𝐵 is given by 𝑑Ԧ𝑙 × Ԧ𝑟 using 
Right hand rule. 

𝑃

𝑖

𝑑Ԧ𝑙

𝜃

Biot-Savart’s law is the fundamental law of the
magnetics.

It gives the magnetic field by a small current
element and is based on the experimental facts.



Steps to calculate Magnetic Field 

Step: 1

Find out magnetic field 
due to small current 
element of wire 

Step: 2

Convert the expression
of the magnetic field 
into one single variable 

Step: 3

Finally integrate the
expression



Magnetic field due to Straight Finite Current Carrying Wire

The value of magnetic field, 𝐵 is 
given by:

Note: 
Only the magnitude of 𝛼 and 𝛽
should be put in the above 
formula.

𝐵 =
𝜇0
4𝜋

𝑖

𝑑
sin 𝛼 + sin𝛽

Right hand thumb rule

Magnetic field lines of Force 
due to Straight Current Wire



Consider a square loop 𝐴𝐵𝐷𝐶 with edge-length 𝑎. The resistance of 
the wire ABD is 𝑟 and that of ACD is 2𝑟. Find the magnetic field 𝐵 at 
the centre of the loop assuming uniform wires.

𝑖𝐴𝐵𝐷 = 𝑖 ×
2𝑟

2𝑟 + 𝑟
=
2

3
𝑖

𝑖𝐴𝐶𝐷 = 𝑖 ×
𝑟

2𝑟 + 𝑟
=
1

3
𝑖

From current division rule
Solution:

𝐵𝑂 = 𝐵𝐴𝐵 + 𝐵𝐵𝐷 + 𝐵𝐴𝐶 + 𝐵𝐶𝐷

𝐵𝐴𝐵 = 𝐵𝐵𝐷 = 𝐵𝐴𝐵

𝐵𝐴𝐶 = 𝐵𝐶𝐷 = 𝐵𝐴𝐶

𝐵𝑂 = 2(𝐵𝐴𝐵 − 𝐵𝐴𝐶)

𝛼 = 45°; 𝛽 = 45°; 𝑑 =
𝑎

2
𝐵 =

𝜇0
4𝜋

𝑖

𝑑
sin 𝛼 + sin𝛽

𝐵𝐴𝐵 =
𝜇0
4𝜋

2𝑖
3
𝑎
2

sin 45° +sin 45° =
4 2

3

𝜇0
4𝜋

𝑖

𝑎

𝐵𝐴𝐶 =
𝜇0
4𝜋

𝑖
3
𝑎
2

sin 45° +sin 45° =
2 2

3

𝜇0
4𝜋

𝑖

𝑎

𝐵𝑂 =
2

3

𝜇0
𝜋

𝑖

𝑎



Special Cases

Infinite wireOn perpendicular 
bisector

Semi-infinite wire

𝐵 =
𝜇0
2𝜋

𝑖

𝑑
𝐵 =

𝜇0𝑖𝑎

2𝜋𝑑 𝑎 + 4𝑑2
𝐵 =

𝜇0
4𝜋

𝑖

𝑑



On Perpendicular Bisector

The 𝐵 due to finite wire at
perpendicular distance, 𝑑 from the
wire is:

For given case

𝑃 is on the perpendicular 
bisector 

𝛼= 𝛽= 𝜃 (assume)

𝐵 =
𝜇0
4𝜋

𝑖

𝑑
sin 𝛼 + sin𝛽

For given configuration,

sin 𝜃 =
𝑎

2 𝑑2 +
𝑎2

4

=
𝑎

4𝑑2 + 𝑎2

Substitute the value of 𝑠𝑖𝑛 𝜃, we get 

𝐵 =
𝜇0𝑖𝑎

2𝜋𝑑 𝑎 + 4𝑑2



The 𝐵 due to a finite 
wire at a distance 𝑑 is:

For semi-infinite wire:

𝛼 =
𝜋

2
; 𝛽 = 0

Therefore, 

Semi-Infinite wire and Infinite wire

𝐵 =
𝜇0
4𝜋

𝑖

𝑑
sin 𝛼 + sin𝛽

𝐵 =
𝜇0
4𝜋

𝑖

𝑑

For infinite wire: 

𝛼 =
𝜋

2
; 𝛽 =

𝜋

2
; 𝑠𝑖𝑛

𝜋

2
= 1

Therefore, the magnetic 
field at point 𝑃 : 

𝐵 =
𝜇0
4𝜋

𝑖

𝑑
1 + 1

𝐵 =
𝜇0
2𝜋

𝑖

𝑑

Semi-Infinite
Infinite



A long, straight wire carries a current 𝑖. A particle having a positive
charge 𝑞 and mass 𝑚, kept at a distance 𝑥0 from the wire is projected
towards it with a velocity Ԧ𝑣. Find the minimum separation between
the wire and the particle.

Particle move in 𝑥𝑦 plane
At 𝑡 = 0𝑠 Ԧ𝑣 = 𝑣(− Ƹ𝑖) 𝑥 = 𝑥0

At 𝑡 = 𝑡∗ Ԧ𝑣 = 𝑣(− Ƹ𝑗) 𝑥 = 𝑥𝑚𝑖𝑛

𝐵𝑥 =
𝜇0𝑖

2𝜋𝑥
−𝑘 Ԧ𝑣 = −𝑣𝑥 Ƹ𝑖 − 𝑣𝑦 Ƹ𝑗

Magnetic field and velocity at any 𝑥 will be:

Therefore, the magnetic force on the charged 
particle at the instant of time 𝑡 will be

Ԧ𝐹𝑀 = 𝑞 Ԧ𝑣 × 𝐵 = 𝑞 − 𝑣𝑥 Ƹ𝑖 + 𝑣𝑦 Ƹ𝑗 ×
𝜇0𝑖

2𝜋𝑥
−𝑘

Ԧ𝐹𝑀 =
𝜇0𝑖𝑞

2𝜋𝑥
[𝑣𝑦 Ƹ𝑖 − 𝑣𝑥 Ƹ𝑗]



𝑥

𝑦

𝑞,𝑚

𝑃

𝑥0

𝑖

Ԧ𝑣

Ԧ𝑣

Ԧ𝐹𝑀
𝑥

Ԧ𝑣𝑥

Ԧ𝑣𝑦

𝐵𝑥 =
𝜇0𝑖

2𝜋𝑥
−𝑘

Ԧ𝑣 = −𝑣𝑥 Ƹ𝑖 − 𝑣𝑦 Ƹ𝑗

Ԧ𝐹𝑀 =
𝜇0𝑖𝑞

2𝜋𝑥
[𝑣𝑦 Ƹ𝑖 − 𝑣𝑥 Ƹ𝑗]

𝑎𝑥 = 𝑣𝑥
𝑑𝑣𝑥
𝑑𝑥

=
𝜇0𝑖𝑞

2𝜋𝑚

𝑣𝑦
𝑥

𝑎𝑦 = 𝑣𝑦
𝑑𝑣𝑦
𝑑𝑦

= −
𝜇0𝑖𝑞

2𝜋𝑚

𝑣𝑥
𝑥

𝑣2 = 𝑣𝑥
2 + 𝑣𝑦

2 ⇒ 𝑣𝑥𝑑𝑣𝑥 = −𝑣𝑦𝑑𝑣𝑦

න
0

𝑣

𝑑𝑣𝑦 = −
𝜇0𝑖𝑞

2𝜋𝑚
න
𝑥0

𝑥𝑚𝑖𝑛 𝑑𝑥

𝑥

𝑥𝑚𝑖𝑛 = 𝑥0𝑒
−
2𝜋𝑚𝑣
𝜇0𝑞𝑖



Force between two parallel current-carrying 
straight conductors 

𝑑𝐹

𝑑𝑙
=
𝜇0𝑖1𝑖2
2𝜋𝑑

Force on element 𝑑𝑙 in the current carrying 
wire 𝑖2 :

𝑑 Ԧ𝐹 = 𝑖2𝑑Ԧ𝑙 × 𝐵1

Magnetic field at a distance 𝑑 from current 
carrying wire 𝑖1 :

𝐵1 𝑑 =
𝜇0𝑖1
2𝜋𝑑

×

𝑑𝐹 = 𝑖2𝑑𝑙
𝜇0𝑖1
2𝜋𝑑



Two long, straight wires 𝑎 and 𝑏 are 2.0 𝑚 apart, perpendicular to the plane of the
paper. The wire 𝑎 carries a current of 9.6 𝐴 directed into the plane of the figure.
The magnetic field at the point 𝑃 at a distance of 10

11
𝑚 from the wire 𝑏 is zero.

(a) The magnitude and direction of the current in 𝑏.
(b) The force per unit length on the wire 𝑏.

𝑃

2 𝑚

10

11
𝑚

𝑎

𝑏

9.6 𝐴

𝐵 = 0

𝐵𝑎 𝐵𝑏

𝐵𝑃 = 𝐵𝑎 + 𝐵𝑏 = 0 ⇒ 𝐵𝑎 = −𝐵𝑏

𝐵𝑎 = 𝐵𝑏 ⇒
𝜇0𝑖𝑎

2𝜋 2 +
10
11

=
𝜇0𝑖𝑏

2𝜋
10
11

⇒
11

32
𝑖𝑎 =

11

10
𝑖𝑏 𝑖𝑏 = 3 𝐴

(a) the magnitude and direction of the current in 𝑏

(b) The force per unit length on the wire 𝑏.

𝑑𝐹

𝑑𝑙
=
𝜇0𝑖1𝑖2
2𝜋𝑑

𝑑𝐹

𝑑𝑙
=
4𝜋 10−7

2𝜋(2)
(9.6 × 3)

𝑑𝐹

𝑑𝑙
≈ 2.9 × 10−6 𝑁/𝑚



Two long wires, carrying currents 𝑖1 and 𝑖2 are placed perpendicular to
each other in such a way that they just avoid a contact. Find the
magnetic force on a small length 𝑑𝑙 of the second wire situated at a
distance 𝑙 from the first wire.

𝑖2

𝑖1

𝑑𝑙𝑙

×
𝐵1

The magnetic field at the location of 𝑑𝑙 due to
the first wire is,

𝐵1 𝑙 =
𝜇0𝑖1
2𝜋𝑙

Therefore, the magnetic force on a small length
𝑑𝑙 of the second wire situated at a distance 𝑙
from the first wire is given by,

𝑑 Ԧ𝐹 = 𝑖2𝑑Ԧ𝑙 × 𝐵1

𝑑𝐹 = 𝑖2𝑑𝑙
𝜇0𝑖1
2𝜋𝑙

𝑑𝐹 =
𝜇0𝑖1𝑖2𝑑𝑙

2𝜋𝑙



(b) If the central wire is displaced along the z direction by a small
amount and released, show that it will execute simple harmonic
motion. If the linear density of the wire is 𝜆, find the frequency of
oscillation.

𝐹𝑙 =
𝑑𝐹

𝑑𝑙
=
𝜇0𝑖

2

2𝜋𝑟

Restoring in nature𝐹𝑛𝑒𝑡 =
𝜇0𝑖

2

𝜋(𝑑2 + 𝑧2)
𝑧

𝑧 ≪ 𝑑 ⇒ 𝑑2 + 𝑧2 ≈ 𝑑2

Magnetic force between two current
carrying parallel wire per unit length (𝐹𝑙)

( ∴ 𝐹𝑛𝑒𝑡 = 2𝐹𝑙 cos𝜃)Net force on wire 𝐵 is (𝐹𝑛𝑒𝑡)

𝐹𝑛𝑒𝑡 ≈
𝜇0𝑖

2

𝜋𝑑2
𝑧

𝑥

𝑧

𝑑 𝑑

𝜃 𝜃

𝑧𝑟 𝑟

𝐹𝑙𝐹𝑙

𝐴

𝐵

𝐶𝐹𝑛𝑒𝑡

𝑑𝐹 = 𝐹𝑛𝑒𝑡 𝑑𝑙 = 𝑑𝑚 𝑎 = 𝜆 𝑑𝑙 𝑎

𝑎 =
𝜇0𝑖

2

𝜋𝜆𝑑2
𝑧

(−𝑉𝑒 indicate restoring)

(∴ 𝑎 = −𝜔2𝑧)

𝜔 =
𝑖

𝑑

𝜇0
𝜋𝜆

∴ 𝑓 =
𝜔

2𝜋

𝑓 =
𝑖

2𝜋𝑑

𝜇0
𝜋𝜆



Two long conductors, separated by a distance 𝑑 carry current 𝐼1 and 𝐼2 in the
same direction. They exert a force 𝐹 on each other. Now the current in one of
them is increased to two times and its direction is reversed. The distance is also
increased to 3𝑑. The new value of the force between them is

𝑑

𝐼1 𝐼2

𝐹𝐹

3𝑑

𝐼1 2𝐼2

Initially 𝐹 =
𝜇0
2𝜋

𝐼1𝐼2
𝑑

𝐿

Finally 𝐹′ =
𝜇0
2𝜋

𝐼1(−2𝐼2)

3𝑑
𝐿

𝐹′ 𝐹′

∴
𝐹′

𝐹
= −

2

3

𝐹′ = −
2𝐹

3



• The current in the coil is in
clockwise direction.

• The plane of the screen is axial plane
of the circular loop.

• At the top most point of the loop,
current goes into the axial plane.

• At the bottom most point of the
loop, current comes out of the axial
plane.

Magnetic Field due to a Circular Loop of Current

• Magnetic field at 𝑃 due to 
an element 𝑑𝑙 :

𝑑𝐵 =
𝜇0
4𝜋

𝑖𝑑𝑙 sin 90°

𝑟2

𝑑𝐵 =
𝜇0𝑖 𝑑𝑙

4𝜋𝑟2

• Net magnetic field at 𝑃 :

𝐵 = න𝑑𝐵 sin𝛼

• Due to circular symmetry of 
the coil, magnetic field at 𝑃
is,

𝐵 = න𝑑𝐵 sin𝛼

𝐵 = න
𝜇0𝑖 𝑑𝑙

4𝜋𝑟2
𝑎

𝑟

𝐵 =
𝜇0𝑖𝑎

2

2 𝑑2 + 𝑎2 3/2

𝐵 =
𝜇0𝑖𝑎

2

2𝑟3

𝐵 =
𝜇0𝑖

2𝑎

Magnetic field at the centre of current carrying circular loop: 

𝐵 =
𝜇0𝑖𝑎

2

2 𝑑2 + 𝑎2 3/2

𝑑 = 0



𝐵 =
2

𝜇0
4𝜋

𝑖 𝜋𝑎2

𝑑3

The magnitude of electric field at an axial point far off the 
centre of a uniformly charged circular loop : 𝐸 =

2𝐾𝑝

𝑑3

“𝐾 =
1

4𝜋𝜀0
” of electric field ≡ 𝜇0

4𝜋
of magnetic field

𝑝 = Electric dipole moment ≡ 𝑖 𝜋𝑎2 = Magnetic dipole moment   
of the circular loop

The magnitude of magnetic field at 
an axial point far off the centre of a 
uniformly charged circular loop :

𝐵 =
𝜇0𝑖𝑎

2

2𝑑3

Magnetic Field due to a Circular Loop of Current



A circular coil of 200 turns has a radius of 10 𝑐𝑚 and carries a current of 2.0 𝐴.  
Find the distance 𝑑 from the centre along the axis of the coil where the field 𝐵
drop to half its value at the centre.  (∛4 = 1.5874…)

The field at point 𝑃 due to the coil:

The field at the centre of the coil:

2.0 𝐴

𝑎 = 10 𝑐𝑚

𝑑

𝑃

𝐶

𝐵𝑝 =
𝜇0𝑖𝑁𝑎

2

2 𝑑2 + 𝑎2 3/2

𝐵𝑐 =
𝜇0𝑁𝑖

2𝑎
According to question :

𝐵𝑝 =
𝐵𝐶
2

𝑎2

𝑑2 + 𝑎2 3/2
=

1

2𝑎

𝑑2 + 𝑎2 3 = 4𝑎6

𝑑2 + 𝑎2 =
3
4𝑎2

𝑑2 =
3
4 − 1 𝑎2

𝑑2 = 1.5874 − 1 × 100 𝑐𝑚2

𝑑2 = 58.74 𝑐𝑚2

𝑑 = 7.66 𝑐𝑚



Two circular coils of radii 5.0 𝑐𝑚 and 10 𝑐𝑚 carry equal currents of 2.0 𝐴.  The coils 
have 50 and 100 turns respectively and are placed in such a way that their 
planes as well as the centres coincide.  Find the magnitude of the magnetic 
field 𝐵 at the common centre of the coils if the currents in the coils are in the 
same sense. 

Solution :

Magnetic field at the centre of a coil of radius 𝑎
having 𝑁 turns and 𝑖 current is :

𝐵 =
𝜇0𝑁𝑖

2𝑎
The sense of current through the coil gives the 
direction of magnetic field along −𝑣𝑒 𝑧-axis i.e., along 
− 𝑘 for both the coils. 

Magnetic field due to coil 1 :

𝐵1 =
𝜇0𝑛1𝑖1
2𝑎1

−𝑘

Magnetic field due to coil 2 :

𝐵2 =
𝜇0𝑛2𝑖2
2𝑎2

−𝑘

Net magnetic field at the centre :

𝐵 = 𝐵1 + 𝐵2

𝐵 =
𝜇0𝑛𝑖

2𝑎
−𝑘 +

𝜇0 2𝑛 𝑖

2 2𝑎
−𝑘

𝐵 =
𝜇0𝑛𝑖

2𝑎
−𝑘 +

𝜇0 2𝑛 𝑖

2 2𝑎
−𝑘

𝐵 = 2 ×
𝜇0𝑛𝑖

2𝑎
−𝑘

𝐵 =
𝜇0𝑛𝑖

𝑎
−𝑘

𝐵 =
4𝜋 × 10−7 × 50 × 2

5 × 10−2
−𝑘

𝐵 = 8𝜋 × 10−4 −𝑘 𝑇𝑒𝑠𝑙𝑎



A circular loop of radius 𝑅 carries a current 𝐼.  Another circular loop of radius 
𝑟 (<< 𝑅) carries a current 𝑖 and is placed at the centre of the larger loop.  The 
planes of the two circles are at right angle to each other.  Find the torque 
acting on the smaller loop.

The radius of the smaller loop is so small compared to bigger loop that the 
magnetic field through the smaller loop due to the bigger loop is assumed 
as uniform.

Torque acting on the smaller loop : 

Ԧ𝜏 = Ԧ𝜇 × 𝐵 = 𝑖 𝜋𝑟2 − Ƹ𝑖 ×
𝜇0𝐼

2𝑅
−𝑘

Ԧ𝜏 =
𝜇0𝜋𝑖𝐼𝑟

2

2𝑅
− Ƹ𝑗



Magnetic Field due to an Arc at its Centre

Magnetic field at the centre of a current 
carrying circular loop : 

𝐵 =
𝜇0𝑖

2𝑅

A circle makes an angle 2𝜋 at its centre. 

Apply unitary method :

𝜃 = 2𝜋 𝐵 =
𝜇0𝑖

2𝑅

𝜃 = 1 𝐵 =
1

2𝜋

𝜇0𝑖

2𝑅

𝜃 = 𝜙 𝐵 =
𝜙

2𝜋

𝜇0𝑖

2𝑅

𝐵𝐶 =
𝜙

2𝜋

𝜇0𝑖

2𝑅

𝑅

𝐶

𝜙



Figure shows a current loop having two circular arcs joined by two 
radial lines.  Find the magnetic field 𝐵 at the centre 𝑂. 

The point 𝑂 lies on the straight line extending from wire 
𝐷𝐴 and 𝐶𝐵.

Magnetic field at point 𝑂 due to wire 𝐷𝐴 and 𝐶𝐵 is 
zero.

• 𝑎 < 𝑏
1

𝑎
>
1

𝑏
Net magnetic field at point 𝑂 : 𝐵𝑜 =

𝜇0𝑖𝜃

4𝜋

1

𝑎
−
1

𝑏
⨀

Magnetic field at point 𝑂

Due to arc 𝐷𝐶 𝐵𝐷𝐶 =
𝜃

2𝜋

𝜇0𝑖

2𝑏
⨂

Due to arc 𝐵𝐴 𝐵𝐵𝐴 =
𝜃

2𝜋

𝜇0𝑖

2𝑎
⨀



A wire loop carrying a current 𝑖 is placed in the 𝑥𝑦 plane as shown. If a particle 
with charge + 𝑄 and mass 𝑚 is placed at the centre 𝑃 and given a velocity Ԧ𝑣
along 𝑁𝑃, find its instantaneous acceleration.

• The acceleration of the particle : Ԧ𝑎 =
Ԧ𝐹𝑚
𝑚

=
𝑄 Ԧ𝑣 × 𝐵

𝑚

• The circular arc 𝑀𝑁 subtends an angle 120° ≡ 2𝜋

3
at point 𝑃 . So, 

magnetic field at 𝑃 due to arc :

𝐵𝑎𝑟𝑐 =
ൗ𝜇0𝑖
2𝑅

2𝜋
×
2𝜋

3
⨀ =

𝜇0𝑖

6𝑅
𝑘

• Magnetic field at 𝑃 due to the straight wire 𝑁𝑀 :

𝐵𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑤𝑖𝑟𝑒 =
𝜇0𝑖

4𝜋 𝑅 cos 60∘
sin 60∘ + sin 60∘ ⨂ ⇒ 𝐵𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑤𝑖𝑟𝑒 =

3𝜇0𝑖

2𝜋𝑅
−𝑘

• The net magnetic field at 𝑃 :

𝐵 = 𝐵𝑠𝑡𝑟𝑎𝑖𝑔ℎ𝑡 𝑤𝑖𝑟𝑒 + 𝐵𝑎𝑟𝑐

𝐵 =
𝜇0𝑖

𝑅

1

6
−

3

2𝜋
𝑘

• The velocity of the particle at 𝑃 :

Ԧ𝑣 = 𝑣 cos 60° Ƹ𝑖 + 𝑣 sin 60° Ƹ𝑗

Ԧ𝑣 =
𝑣

2
Ƹ𝑖 + 3 Ƹ𝑗

• The acceleration of the particle at 𝑃 :

Ԧ𝑎 =
𝑄

𝑚
Ԧ𝑣 × 𝐵 =

𝑄

𝑚

𝑣

2
Ƹ𝑖 + 3 Ƹ𝑗 ×

𝜇0𝑖

𝑅

1

6
−

3

2𝜋
𝑘

| Ԧ𝑎| =
𝑄𝑣

𝑚

𝜇0𝑖

6𝑅
1 −

3 3

𝜋



• The coil is wrapped on a cylindrical soft iron core which enables the 
field to remain radial in all position of the coil.

• Torque on the coil : 

Ԧ𝜏 = Ԧ𝜇 × 𝐵

Ԧ𝜏 = 𝑛𝑖 Ԧ𝐴 × 𝐵

Ԧ𝜏 = 𝑛𝑖𝐴𝐵 sin 𝜃 = 𝑛𝑖𝐴𝐵

• The field remains parallel to the plane of the coil at all positions. So, 
angle between area vector of the coil and the magnetic field vector
is, 𝜃 = 90°

Moving Coil Galvanometer

𝑛 = No. of turns in the coil

𝐴 = Area of the coil 

𝜃 = Angle between area vector of the coil and the 
magnetic field vector

• A current carrying coil acts as a magnetic dipole. So, when it is
placed in an external magnetic field, it will experience a torque and
hence, it will rotate.

• The moving coil galvanometer consists of a coil, with many turns, free
to rotate about a fixed axis, in a uniform radial magnetic field.



• An indicator is attached with the coil, and it gets deflected as the coil
rotates.

• The coil will keep on rotating as long as current exists through it and
indicator will not come back to its original position even if the current
is made zero.

• As a remedy to this problem, a spring 𝑆𝑝 is introduced.

• When the indicator turns, spring gets coiled and produces a restoring
torque.

Moving Coil Galvanometer

• The spring 𝑆𝑝 provides the restoring torque 𝜏𝑅 = 𝐾𝜙 that balances the
torque due to magnetic field 𝜏 = 𝑛𝑖𝐴𝐵 , resulting in a steady angular
deflection 𝜙 of the indicator.

• In equilibrium :

𝐾𝜙 = 𝑛𝑖𝐴𝐵

𝑖 =
𝐾

𝑛𝐴𝐵
𝜙



𝑞𝑖𝑛
+

+

+

𝑞𝑜𝑢𝑡
+

+

• The closed surface or the periphery of a 
volume on which Gauss's law is applied 
is known as the

The flux of the net electric field through a 
closed surface is equal to the net charge 
enclosed by the surface divided by 𝜀𝑜.

𝜙 = ර𝐸 . 𝑑𝑆 =
𝑞𝑖𝑛
𝜀0

Mathematical form of Gauss’s law :

𝐸 is due to all charges.

Statement :

Gauss’s Law



Ampere’s Circuital Law and Sign Convention

• Line integral or circulation of 
𝐵 along a closed loop :

𝜇0 = permeability of free space 

ර𝐵 . 𝑑𝑙 = 𝜇0 𝐼𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑

Fold your right-hand’s fingers
along the integration path, then
the erect thumb gives the
positive current direction.

𝑥

𝑧

𝑦



Find out line integral of 𝐵. 𝑑𝑙 for the given loop?

𝑖5
𝑖3

𝑖1

𝑖2

𝑖4

𝑑Ԧ𝑙

𝑇𝑜𝑝 𝑉𝑖𝑒𝑤

𝑖1
𝑖3

𝑖5
𝑖2

𝑖4 𝑑Ԧ𝑙

ර𝐵. 𝑑Ԧ𝑙 = 𝜇0(𝑖2 + 𝑖3 − 𝑖1)



Validity of Ampere’s Law

Ampere’s law is useful in cases of highly symmetrical current distribution.

Infinite long wire Solenoid

Examples:

(Thin & Thick)

Ring Toroid



Application of Ampere's Law

Magnetic field due to long straight 
current carrying wire

𝐵 =
𝜇0𝑖

2𝜋𝑑

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑑 = 𝜇0𝑖



A long, cylindrical wire of radius 𝑏 carries a current 𝑖0 distributed uniformly 
over its cross section.  Find the magnitude of the magnetic field at a point 
inside the wire at a distance 𝑎 from the axis.

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑎 = 𝜇0
𝑖

𝜋𝑏2
× 𝜋𝑎2

⇒ 𝐵 𝑎 < 𝑏 =
𝜇0𝑖𝑎

2𝜋𝑏2

Applying Ampere’s Law



A thin but long, hollow, cylindrical tube of radius 𝑟 carries a current 𝑖 along its 
length. Find the magnitude of the magnetic field at a distance  𝑟

2
from the 

surface.
(a) inside the tube                           (b) outside the tube 

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵
2𝜋𝑟

2
= 𝜇0 0

⇒ 𝐵 𝑖𝑛𝑠𝑖𝑑𝑒 = 0

(a) Inside the tube

Applying Ampere’s Law

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵
2𝜋 × 3𝑟

2
= 𝜇0 𝑖

⇒ 𝐵 =
𝜇0𝑖

3𝜋𝑟

(b) Outside the tube

Applying Ampere’s Law



Consider a coaxial cable which consists of an inner wire of radius 𝑎 surrounded 
by an outer shell of inner and outer radii 𝑏 and 𝑐 respectively. The inner wire 
carries an electric current 𝑖0 and the outer shell carries an equal current in 
opposite direction. Find the magnetic field at a distance 𝑥 from the axis where,
(a)  𝑥 < 𝑎 ( Assume that the current density is uniform in the inner wire and 
also uniform in the outer shell )
(b) 𝑎 < 𝑥 < 𝑏 ( Assume that the current density is uniform in the inner wire 
and also uniform in the outer shell )

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑥 = 𝜇0
𝑖0
𝜋𝑎2

× 𝜋𝑥2

𝐵 𝑥 < 𝑎 =
𝜇0𝑖0
2𝜋𝑎2

𝑥

Applying Ampere’s Law (b)  𝑎 < 𝑥 < 𝑏

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑥 = 𝜇0 𝑖0

⇒ 𝐵 𝑎 < 𝑥 < 𝑏 =
𝜇0𝑖0
2𝜋𝑥

Applying Ampere’s Law

(a)  𝑥 < a



Consider a coaxial cable which consists of an inner wire of radius 𝑎 surrounded by 
an outer shell of inner and outer radii 𝑏 and 𝑐 respectively. The inner wire carries an 
electric current 𝑖0 and the outer shell carries an equal current in opposite direction.
Find the magnetic field at a distance 𝑥 from the axis where,
(c) 𝑏 < 𝑥 < 𝑐( Assume that the current density is uniform in the inner wire and also 
uniform in the outer shell )
(d) 𝑥 > 𝑐 ( Assume that the current density is uniform in the inner wire and also 
uniform in the outer shell )

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑥 = 𝜇0 𝑖0 −
𝑖0

𝜋(𝑐2−𝑏2)
× 𝜋(𝑥2 − 𝑏2)

⇒ 𝐵 𝑏 < 𝑥 < 𝑐 =
𝜇0𝑖0(𝑐

2 − 𝑥2)

2𝜋𝑥(𝑐2 − 𝑏2)

Applying Ampere’s Law
ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵 2𝜋𝑥 = 𝜇0(0)

𝐵 𝑥 > 𝑐 = 0

Applying Ampere’s Law
(d)  𝑥 > c(c) 𝑏 < 𝑥 < 𝑐



Cross section of a large metal sheet is carrying an electric current along 
its surface. The current in a strip of width 𝑑𝑙 is 𝐾𝑑𝑙 where 𝐾 is a constant. 
Find the magnetic field at a point at a distance 𝑥 from the metal sheet.

ර𝐵 . 𝑑Ԧ𝑙

12

+ ර𝐵 . 𝑑Ԧ𝑙

23

+ ර𝐵 . 𝑑Ԧ𝑙

34

+ ර𝐵 . 𝑑Ԧ𝑙

41

= 𝜇0(∑𝐼)

⇒ 𝐵𝑙 + 0 + 𝐵𝑙 + 0 = 𝜇0(∑𝐾 𝑑𝑙)

⇒ 2𝐵𝑙 = 𝜇0𝐾(∑𝑑𝑙)

𝐵 =
𝜇0𝐾

2



Two large metal sheets carry surface currents as shown. The current 
through a strip of width 𝑑𝑙 is 𝐾𝑑𝑙 where 𝐾 is a constant. Find the 
magnetic field 𝐵 at the point 𝑃, 𝑄 and 𝑅.

𝑃

𝑄

𝑅

𝐵1 𝐵2

𝐵2 𝐵1

𝐵1

𝐵2

At point P

|𝐵1| = |𝐵2| =
𝜇0𝐾

2

𝐵𝑛𝑒𝑡 = 0

At point R

𝐵𝑛𝑒𝑡 = 0

At point Q

|𝐵𝑛𝑒𝑡| = 𝜇0𝐾



A long, straight wire of radius 𝑎 carries a current distributed uniformly 
over its cross section. The ratio of the magnetic fields due to the wire at 
distance 𝑎

3
and 2𝑎, respectively from the axis of the wire is

JEE Main

ර𝐵 . 𝑑Ԧ𝑙 = 𝜇0(∑𝐼)

⇒ 𝐵
2𝜋𝑎

3
= 𝜇0 𝐽 ×

𝜋𝑎2

9

𝐵 𝑖𝑛𝑠𝑖𝑑𝑒 =
𝜇0𝐽𝑎

6

(a) Inside the tube
𝑟

𝑖

𝑟

3

Applying Ampere’s Law

Suppose current density is  𝐽

A

B

C

2

3

3

2

1

2

2D



Solenoid

The solenoid is a composition of infinite number of rings 
provided the distance between each ring is very small.

It is used to produce uniform magnetic field.

𝑃 is a point on the axis of the solenoid. 

Magnetic field at P due to elemental ring

Let 𝑛 = number of turns per unit length

𝑛 =
𝑑𝑁

𝑑𝑙

𝑙0 = 𝑁 𝑖 =
𝑑𝑁

𝑑𝑙
𝑑𝑥 𝑖 = (𝑛 𝑑𝑥) 𝑖

𝐵 =
𝜇0𝑖0𝑅

2

2 𝑅2 + 𝑥2
3
2

𝑑𝐵 =
𝜇0𝑛𝑖 𝑑𝑥 𝑅2

2 𝑅2 + 𝑥2
3
2



Ideal Solonoid and Magnetic Field at an axial point 𝑷

𝐵 =
𝜇0𝑛𝑖

2
cos𝜃2 + cos 𝜃1

A solenoid can be called as an ideal
solenoid if the following conditions are
satisfied:

• 𝑙 ≫ 𝑅 ⇒ long solenoid

• 𝑛 = 𝑁/𝑙 is a very large number

⇒ wire is very closely wound.



Ideal Solenoid

A solenoid can be called as an ideal solenoid if the following 
conditions are satisfied:

• 𝑙 ≫ 𝑅 ⇒ long solenoid

• 𝑛 = 𝑁/𝑙 is a very large number
⇒ wire is very closely wound.

𝐵 =
𝜇0𝑛𝑖

2
cos𝜃2 + cos𝜃1

For ideal solenoid, 𝑙 ≫ 𝑅.

Magnetic field on the axis of 
a solenoid:

⇒ 𝐵 =
𝜇0𝑛𝑖

2
cos 0° + cos0°

𝐵 = 𝜇0𝑛𝑖

⇒ For any point 𝑃 on axis,

𝜃1 ≈ 0° and 𝜃2 ≈ 0°



Ideal Solenoid: Field at the end point on axis

𝑃

𝑅

𝑙

𝜃1 = 90°𝜃2 ≈ 0°

⇒ 𝐵 =
𝜇0𝑛𝑖

2
cos 0° + cos90°

𝐵 =
𝜇0𝑛𝑖

2

At the end point on axis, 

𝐵 =
𝜇0𝑛𝑖

2
cos𝜃2 + cos𝜃1

Magnetic field on the axis of a solenoid:

⇒ 𝜃1 = 90° and 𝜃2 ≈ 0°



Ideal Solenoid-Ampere’s law

• Consider 𝐴𝐵𝐶𝐷𝐴 as Amperian loop.

• Divide the loop in parts to write 
field individually.

ර𝐵. 𝑑𝑙

𝐴𝐵

= ර𝐵. 𝑑𝑙

𝐷𝐶

= 0 [∵ 𝐵 ⊥ 𝑑Ԧ𝑙]

ර𝐵. 𝑑𝑙

𝐴𝐷

= 𝐵𝑙 [∵ 𝐵 ∥ 𝑑Ԧ𝑙]

ර𝐵. 𝑑𝑙

𝐴𝐷

= 0 [∵ 𝐵𝑜𝑢𝑡𝑠𝑖𝑑𝑒 = 0]
⇒ 0 + 0 + 𝐵𝑙 + 0 = 𝜇0𝑁𝑖

ර𝐵. 𝑑𝑙

𝐴𝐵𝐶𝐷𝐴

= 𝜇0𝑖𝑖𝑛

𝐵 =
𝜇0𝑁𝑖

𝑙
= 𝜇0𝑛𝑖

• Using Ampere’s law,



A copper wire having resistance 0.01 𝑜ℎ𝑚 in each meter is used to 
wind 400 𝑡𝑢𝑟𝑛𝑠 solenoid of a radius of 1.0 𝑐𝑚 and length 20 𝑐𝑚. Find 
the emf of a battery which when connected across the solenoid will 
cause a magnetic field of 1.0 × 10−2 𝑇 near the centre of the solenoid.

𝑅𝑠 =
𝑑𝑅

𝑑𝑙
𝑁 2𝜋𝑟 𝑖 =

𝜀

𝑅𝑠

𝐵 = 𝜇0𝑛𝑖 = 𝜇0
𝑁

𝑙

𝜀

𝑑𝑅
𝑑𝑙

2𝜋𝑟 𝑁

⇒ 10−2 =
4𝜋 × 10−7 𝜀 10

(10−2)(2𝜋)(10−2)(2)

Solution:

⇒ 𝜀 = 1 𝑉

𝑙 = 20 𝑐𝑚

𝜀

𝑟 = 1 𝑐𝑚



A tightly-wound solenoid of a radius 𝑎 and length 𝑙 has 𝑛 turns per unit length. It carries 
an electric current 𝑖. Consider a length 𝑑𝑥 of the solenoid at a distance 𝑥 from one end. 
This contains 𝑛 𝑑𝑥 turns and may be approximated as a circular current 𝑖𝑛(𝑑𝑥).
(a) Write the magnetic field at the centre of the solenoid due to this circular current. 
Integrate this expression under proper limits to find the magnetic field at the centre of 
the solenoid.

𝑖𝑛(𝑑𝑥)

𝑐

𝑙

2
− 𝑥

𝑑𝐵 =
𝜇0(𝑛𝑖)(𝑑𝑥)𝑎

2

2 𝑎2 +
𝑙
2
− 𝑥

2
3
2

Here, Elementary magnetic field is

𝑑𝐵 =
𝜇0𝑛𝑖 (𝑑𝑥)

2𝑎 1 +
𝑙 − 2𝑥
2𝑎

2
3
2



⇒ 𝐵 = න
0

𝑙 𝜇0𝑛𝑖 (𝑑𝑥)

2𝑎 1 +
𝑙 − 2𝑥
2𝑎

2
3
2

Let’s integrate both side

Let-

𝑙 − 2𝑥 = 2𝑎 tan𝜃

𝑑𝑥 = −𝑎 sec2𝜃 (𝑑𝜃)

𝐼 = න−
𝑎 sec2 𝜃 𝑑𝜃

1 + tan2 𝜃
3
2

= −𝑎∫ cos𝜃 𝑑𝜃

⇒ 𝐼 = −𝑎 sin𝜃

⇒ 𝐼 = −
𝑎 𝑙 − 2𝑥

𝑙 − 2𝑥 2 + 4𝑎2

⇒ 𝐵 =
𝜇0𝑛𝑖

2𝑎

𝑎𝑙

𝑙2 + 4𝑎2
−

(−𝑎𝑙)

𝑙2 + 4𝑎2

⇒ 𝐵 =
𝜇0𝑛𝑖

2𝑎

𝑎 2𝑥 − 𝑙

𝑙 − 2𝑥 2 + 4𝑎2
0

𝑙

⇒ 𝐵 =
𝜇0𝑛𝑖

2𝑎

2𝑎𝑙

𝑙2 + 4𝑎2

⇒ 𝐵 =
𝜇0𝑛𝑖𝑙

𝑙2 + 4𝑎2

𝐵 =
𝜇0𝑛𝑖

1 +
2𝑎
𝑙

2



A tightly-wound solenoid of a radius 𝑎 and length 𝑙 has 𝑛 turns per unit length. It carries an 
electric current 𝑖. Consider a length 𝑑𝑥 of the solenoid at a distance 𝑥 from one end. This 
contains 𝑛 𝑑𝑥 turns and may be approximated as a circular current 𝑖𝑛(𝑑𝑥).

(b) Verify that if 𝑙 ≫ 𝑎, the field tends to 𝐵 = 𝜇0𝑛𝑖 and if 𝑙 ≪ 𝑎, the field tends to 𝐵 =
𝜇0𝑛𝑖𝑙

2𝑎
.

𝐵 =
𝜇0𝑛𝑖

1 +
2𝑎
𝑙

2

=
𝜇0𝑛𝑖𝑙

2𝑎
𝑙
2𝑎

2

+ 1

Case: 𝑙 ≫ 𝑎

Case: 𝑎 ≫ 𝑙

2𝑎

𝑙
→ 0 𝐵 = 𝜇0𝑛𝑖

𝑙

2𝑎
→ 0 𝐵 =

𝜇0𝑛𝑖𝑙

2𝑎



Magnetic Field due to a Toroid

• Using Ampere’s circuital law,

ර𝐵. 𝑑𝑙 = 𝜇0 𝑖𝑖𝑛

⇒ 𝐵 =
𝜇0𝑁𝑖

2𝜋𝑟
= 𝜇0𝑛𝑖

• Here,

𝑛 =
𝑁

2𝜋𝑟

𝑁 = Total number of turns

𝜀



A toroid has inner radius 25 𝑐𝑚 and outer radius 26 c𝑚, with the 3500
turns and 11 𝐴 current flowing through it. Find the magnetic  field in 
the regions 𝐼 , (𝐼𝐼) and (𝐼𝐼𝐼).

+−

25 𝑐𝑚

26 𝑐𝑚

3500

11𝐴

(𝐼)

(𝐼𝐼)

(𝐼𝐼𝐼)

𝐵𝐼𝐼 = 𝐵𝐼𝐼𝐼 = 0

𝑅 =
25 + 26

2
= 25.5 𝑐𝑚

For exact calculation use 25.5 𝑐𝑚

For approx. calculation use 25 𝑐𝑚

𝐵 =
𝜇0𝑛𝑖

2𝜋R
=
4𝜋 × 10−7(3500)(11)(100)

2𝜋(25)

⇒ 𝐵 = 30.8 × 10−3𝑇 = 0.0308 𝑇

𝜀
⇒ 𝐵 = 0.0308 𝑇



A tightly-wound, long solenoid carries a current of 2.0 𝐴. An electron is 
found to execute a uniform circular motion inside the solenoid with a 
frequency of 1.0 × 108 𝑟𝑒𝑣 𝑠−1. Find the number of turns per meter in 
the solenoid.

𝐵𝑠𝑜𝑙𝑒𝑛𝑜𝑖𝑑 = 𝜇0𝑛𝑖

𝑅 =
𝑚𝑣

𝑞𝐵

𝑇 =
2𝜋𝑅

𝑣
=
2𝜋𝑚

𝑞𝐵

𝑓 =
1

𝑇
=

𝑞𝐵

2𝜋𝑚
=

𝑞

2𝜋𝑚
𝜇0𝑛𝑖

𝑓 =
𝑞𝜇0𝑛𝑖

2𝜋𝑚

⇒ 108 =
1.6 × 10−19 4𝜋 × 10−7 𝑛 2

2𝜋 9.1 × 10−31

⇒ 𝑛 ≃ 1.42 × 103

⇒ 𝑛 ≃ 1420 𝑡𝑢𝑟𝑛𝑠 𝑚−1

B

A 1360

1420

C 1580

D 1240


