Welcome to Aakash BRJU'S LIVE Some Basic Concepts of Chemistry

Classification of matter

Classification of matter

Properties of matter

Properties of Matter

Physical properties

Properties which can be measured or observed without changing the identity or the composition of the substance.

Colour, melting point, boiling point, density etc.

Chemical properties

Properties which can be measured only by a chemical reaction.

Acidity or basicity, combustibility, etc.

B

Measurement of Physical Properties

Any quantitative observation or measurement such as length, area, volume, etc. is represented by a number followed by units in which it is measured.

A unit is the standard of reference chosen to measure or express any physical quantity.

S.I. system has **seven base units** pertaining to the seven fundamental scientific quantities.

The International System of Units (S.I.)

Base Physical Quantity	Symbol for Quantity	Name of S.I. unit	Symbol for S.I. unit
Length		Meter	m
Mass	m	Kilogram	kg
Time	t	Second	S
Electric current		Ampere	A
Thermodynamic temperature	Т	Kelvin	К
Amount of substance	n	Mole	mol
Luminous intensity	I _v	Candela	cd

The International System of Units (S.I.)

Derived unit

The physical quantities unit which are derived using the S.I. base units in combinations.

Example Unit of area (m²), unit of density (kg m⁻³)

B

Prefixes Used in the SI System

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10 ⁻²⁴	yocto	У	10 ⁻⁹	nano	n
10 ²¹	zepto	Z	10 ⁻⁶	micro	μ
10 ⁻¹⁸	atto	а	10 ⁻³	milli	m
10 ⁻¹⁵	femto	f	10 ⁻²	centi	С
10 ⁻¹²	pico	р	10 ⁻¹	deci	d

B

Prefixes Used in the SI System

Multiple	Prefix	Symbol	Multiple	Prefix	Symbol
10	deca	da	10 ¹²	tera	Т
10 ²	hecto	h	10 ¹⁵	peta	Ρ
10 ³	kilo	k	10 ¹⁸	exa	E
10 ⁶	mega	М	10 ²¹	zeta	Z
10 ⁹	giga	G	10 ²⁴	yotta	Y

Mass and Weight

Mass of a substance is the amount of matter present in it, while weight is the force exerted by gravity on an object.

The S.I. unit of mass is kilogram

Volume

Volume is the amount of space occupied by a substance. It has the unit of (length)³

In S.I. system, volume has unit of m³

Density is the amount of **mass present per unit volume.**

lt's S.I. unit is **kg m⁻³**.

Temperature

There are three common scales to measure temperature 01 °C (degree celsius)

S.I. unit is kelvin.

02 °F (degree fahrenheit)

03 K (kelvin)

Generally, **atm (atmospheric pressure)** is used in chemistry and sometimes other units are also used.

Pressure (Unit Conversions)

Scientific Notation

For example

Where,

- n Exponent having any positive or negative values
- N Number which varies between 1.000... and 9.999....

342.505 can be written as 3.42505×10^2 in scientific notation.

Multiplication and Division in Scientific Notation

Precision and Accuracy

Precision refers to the **closeness of various measurements** for the same quantity. Accuracy is the **agreement** of a particular value to the true value of the result.

Precision and Accuracy

Rules for Determining the Number of Significant Figures

Zeroes at the end or right of a number are significant, provided they are on the right side of the decimal point.

05

Exact numbers have an **infinite number** of significant figures.

Example

04

6.00 cm has **three** significant figures.

Example

In 4 pens or 40 copies, there are **infinite** significant figures.

Significant Figures

Addition and Subtraction of Significant Figures

Multiplication and Division of Significant Figures

In case of addition and subtraction, the final result should be reported to same number of decimal places as the number carrying minimum number of decimal places to the right.

In case of multiplication and division, the final result should be reported as having the same number of significant digits as the number with **least number of significant digits**.

Rounding Off

01

If the rightmost digit to be removed is more than 5, the **preceding number** is increased by one.

Example 1.386 is rounded off to 1.39.

Rounding Off

02

If the rightmost digit to be **removed is less than 5**, the preceding number is not changed.

Example

4.334 is rounded off to 4.33.

Rounding Off

03 _{If}

If the rightmost digit to be removed is 5, then the preceding number is not changed if it is an **even number,** but it is increased by one if it is an **odd number**.

Example 6.35 is round off to 6.4. If 6.25 is to be rounded off it is rounded off to 6.2.

Dimensional Analysis

The unit factor by which multiplication is to be done is that unit factor which gives the **desired units**.

The numerator should have that part which is required in the **desired result**. Units can be handled just like other numerical part. It can be cancelled, divided, multiplied, squared, etc.

Dozen Analogy

No. of Dozens = No. of Items / 12

⅓ Dozen Classes = 6 Classes

3.5 Dozen Students = **42** Students

51 Chalks = (51/12) Dozen Chalks

= **4.25** Dozen Chalks

Definition of Mole

1 mole of a substance is defined as the number of entities same as the number of atoms present in **12 g of C¹² isotope**. This is equal to **Avogadro's number.**

Avogadro's number = 6.023×10^{23}

B

Mole-Particle Conversion

No. of Items = (No. of Mole) $\times N_A$

 $\frac{1}{2}$ Mole of Classes = **3.0115** x **10**²³ Classes

=

- = (N_A/2) Classes
- **3.5 Mole** of Students = **21.0805 x 10**²

- **1 millimole** of Chairs
- 21.0805 x 10²³ Students
 3.5 N_A Students
 6.023 x 10²³ x 10⁻³ Chairs
 (N_A/1000) Chairs

B

Mole - Mass conversion

'Molar mass' g of the substance contains ———> I mole of the substance. Therefore,

'W' g of the substance contains

W Molar mass

mole of the substance

Atomic Mass Unit

The quantity $\frac{1}{12}x$ (mass of an atom of C–12) is known as atomic mass unit.

1 amu = 1 Dalton (Da) = 1 u where, u stands for unified mass

The actual mass of one atom of C-12 = 1.9924 × 10⁻²⁶ kg

1 amu = $\frac{1.9924 \times 10^{-26}}{12}$ kg = 1.66 × 10⁻²⁷ kg = 1.66 × 10⁻²⁷ g = 1/N_A g
B

Atomic Mass

Mass of an atom Equal to summation of mass of **subatomic particles**

Mass of Subatomic Particles

Neutron (n°)	:	1.68 x 10 ⁻²⁷ kg	or	1.68 x 10 ⁻²⁴ g
Proton (p⁺)	:	1.67 x 10 ⁻²⁷ kg	or	1.67 x 10 ⁻²⁴ g
Electron (e ⁻)	:	9.1 x 10 ⁻³¹ kg	or	9.1 x 10 ⁻²⁸ g

B

Mass of Subatomic Particles

Mass (n°)	:	mass (p⁺)	:	mass (e⁻)
1.68 x 10 ⁻²⁴ g	:	1.67 x 10 ⁻²⁴ g	:	9.1 x 10 ⁻²⁸ g
1	:	0.994	:	1 1837
1.0087 amu		1.00728 amu		0.0005 amu

or

Mass (n°) ≈ mass (p⁺) >> mass (e⁻)

Hence,

mass of electron is negligible w.r.t. proton or neutron

B

Atomic Number and Mass Number

"A" is Mass Number**"Z"** is Atomic Number

Atomic number (Z) : Total no. of protons

Mass Number (A): Total no. of (protons + neutrons)

Atomic Mass Unit

Atomic Mass = (Mass Number) × (1.66 x 10⁻²⁴ g) = (A) × (1 amu) = (A) × (1 u) = (A) × (1 Da)

Molecular Mass

B

Molecular mass numerically indicates the mass of a molecule.

Summation of mass of all the atoms that are contained in a molecule.

Molar Mass

Mass of 1 banana x 12 bananas = mass of 1 dozen banana Similarly,

Mass of 1 atom x N_A atoms = molar mass (of atoms)

Mass of 1 molecule x N_A molecules = molar mass (of molecules)

Mass of 1 ion $\times N_A$ ions = molar mass (of ions)

Unit of Molar mass = g/mol

Molar Mass

Example:

Mass of 1 Carbon atom $\times N_A =$ Molar Mass of Carbon

= 12 u x 6.022 x 10²³

But,
$$1u = \frac{1}{N_A}g$$

Therefore,

$$12 \times 6.022 \times 10^{23} = \frac{12 \times 6.022 \times 10^{23}}{6.022 \times 10^{23}} g$$

= 12 g

= Molar Mass of carbon

g-atomic mass : It is the mass of 1 mole of atoms of a type in grams.

g-molecular mass : It is the mass of 1 mole of molecules of a type in grams.

g-ionic mass : It is the mass of 1 mole of ions of a type in grams.

Gram Atoms, Gram Molecules and Gram Ions

1 Gram Atom is 1 mole of atoms.

1 Gram Molecule is 1 mole of molecules.

1 Gram Ion is one mole of ions.

Example of Concept of Averages

म Nam ता का ता का द्यालय	^е ABHINAV BISWAS птя Mother's Name APARNA B птя Father's Name KARUNAMO ^N Schood 8468 ARMY SCHOOL	SWAS BISW BARRA	IAS CKPOR	E CANTT	अनुक्रमांक ^{Roll No.} 555 . 24 PARGANAS WI	52695
वेषय कोड		प्राप्तांक MARKS OBTAINED			स्थितीय ग्रेड POSITIONAL	
CODE	1444 SUBJECT	ाल. TH	प्र. PR	यांग TOTAL	योग शब्दों में TOTAL IN WORDS	GRADE
301	ENGLISH CORE	087	ххх	087	EIGHTY SEVEN	A1
041	MATHEMATICS	095	XXX	095	NINETY FIVE	A1
042	PHYSICS	058	030	088	EIGHTY EIGHT	A1
043	COMPLITED ODIENCE	063	029	096	NINELY FIVE	AI A1
048	PHYSICAL EDUCATION	065	023	088	FIGHTY FIGHT	A1
500	WORK EXPERIENCE					B1
502	PHY & HEALTH EDUCA	1.1.1.1.1	1	13. and		A1
503	GENERAL STUDIES	1. 11-	1.1			AZ

Example of Concept of Averages

Solution:

The average marks scored by the student =

Sum of marks scored by the student in each subject

Total number of subjects

91

87 + 95 + 88 + 96 + 92 + 88

Similarly, in case of elements, a sample consist of more than 1 kind of atoms called isotopes.

Therefore,

Mass of a sample of atoms is also represented as weighted average mass and is called as **average atomic mass**.

Isotopes are those particles which have same number of protons but different number of neutrons.

Percentage Abundance

Percentage abundance is defined as the percentage value of the quantity of isotopes available in nature for a given element.

Average Atomic mass

Average atomic mass =

(% abundance), Mass, + (% abundance)₂ Mass₂ +...

Example: Carbon-12 → 99%, Carbon-13 → 1%

Average atomic mass of carbon= (12×0.99)+(13×0.01) g = 12.01 g

Hence, 12.01 is the average atomic mass of carbon, whereas, atomic mass of carbon-12 is 12 u.

Average Molecular Mass

 $(no. of molecules)_1 \times (Molecular Mass)_1 + (no. of molecules)_2 \times (Molecular Mass)_2 + ...$

Total no. of particles

Specific Activity

Specific Activity(A) is defined as the activity of 1 g of substance (pure or impure) and is given by $A = \lambda \times N$ where N is the number of radioactive atoms.

Unit = yr⁻¹

Dalton's Atomic Theory

- Matter consists of tiny particles called atoms.
- All the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass.
- Compounds are formed when atoms of different elements combine in a fixed ratio.
- Chemical reactions involve **rearrangement** of atoms.

Drawbacks

- According to the theory, atom is indivisible but atom can be divided into electrons, neutrons and protons.
- Atoms of same element can have different masses as in case of isotopes and isobars.
- Reactions that **does not** react with **simple** whole number **ratio** of reactants are known as **non-stoichiometric reactions.**

Law of Conservation of Mass

Statement: It states that **matter can neither be created nor destroyed** in ordinary chemical and physical changes.

Explanation: In a chemical reaction, the **total mass of reactants** is always equal to the **total mass of products** formed.

Law of Conservation of Mass

Let's Understand

B

Law of Definite Proportions

Statement: A given compound always contains **exactly the same proportion** of elements by weight **irrespective** of the **source** or **method of preparation**.

4 parts 2 parts hydrogen oxygen

2 gaseous water

2 H atoms : 2 amu + 1 O atoms : 16 amu Molecular weight of water = 18 amu % Hydrogen by weight : 11.11% % Oxygen by weight : 88.89%

B

Law of Multiple Proportions

Statement:

If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

Alternate way to phrase:

If two elements can combine to form more than one compound, for a fixed mass of the any one element in both the compounds, the ratio of masses of the other element in the two compounds comes out to be in small whole numbers.

Law of Multiple Proportions

B

Law of Multiple Proportions

Compound	Mass ratio of N : O	Taking fixed mass of N	Divide by lowest amount of oxygen reacting	Ratio of oxygen
N ₂ O	28 : 16	28 : 16	16/16	1
NO	14 : 16	28:32	32/16	2
N ₂ O ₃	28:48	28:48	48/16	3
NO ₂	14 : 32	28 : <mark>64</mark>	64/16	4
N ₂ O ₅	28:80	28 : 80	80/16	5

Law of Multiple Proportions

CO,

C₃O₂

36:32

Mass ratio of C : O 12 : 16 12 : 32

CO

 Taking fixed mass

 of C as 36 g/mol
 36:48
 36:96
 36:32

SB

Law of Multiple Proportions

Taking mass of O and dividing by lowest mass, which is 32 we get:

	со	CO2	C ₃ O ₂
	48:32	96:32	32:32
Ratio of O	<mark>322</mark> 48:32	3 95:32	1 1 32:32
	1.5	3	1
	3	6	2

Gay Lussac's Law

Statement: When **gases combine** or are produced in a chemical reaction, they do so in a **simple ratio** by **volume** provided all gases are at **same temperature and pressure**.

 $2H_2(g) + O_2(g) \longrightarrow 2H_2O(g)$

Avogadro Law

Example: Comparison of some gases at same temperature and pressure

Avogadro Law

Statement Equal volumes of gases at the same temperature and pressure should contain equal number of molecules/ particles.

 $V \propto n$ $\Rightarrow \frac{V}{n} = k$ $\Rightarrow \frac{V_1}{n_1} = \frac{V_2}{n_2}$

Relative density

It is the density of substance **relative** to the density of another substance, at the same T and P.

It is a **dimensionless** quantity.

Specific gravity

Specific gravity for liquids is measured with respect to water at 4°C.

S.G. (for liquid) =
$$\frac{\rho_{substance}}{\rho_{water at 4^{\circ}C}}$$

For gases it is measured with respect to air at STP.

S.G. (for gas) =
$$\frac{\rho_{gas at STP}}{\rho_{air at STP}}$$

It is a **dimensionless** quantity.

Vapour density

B

Mathematical form - Density of the gas with respect to hydrogen gas at the same temperature and pressure

Significance - It indicates how heavy a gas is with respect to the lightest gas.

It is a **dimensionless** quantity.

Vapour density

density of gas A at some T and P

density of H₂ gas at same T and P

mass of gas A in 1 mL at some T and P mass of H₂ gas in 1 mL at same T and P

N particles x (mass of one particle of gas A)

N particles x (mass of one particle of H₂ gas)

Mamu

2 amu

Vapour Density =

Molar Volume at STP

S.T.P. (Standard Temperature and Pressure) At STP condition: Temperature = 0°C or 273 K Pressure = 1 Bar

Molar volume at STP = 22.7 L

Molar volume = volume of 1 mole of gas

1 atm = 1.01325 Bar

Molar Volume at STP

$$ho(H_2 \text{ at STP}) = 0.089 \text{ g/L}$$

Now,

Density =
$$\frac{M}{V}$$

0.089 g/L = $\frac{2 \text{ g/mol}}{V}$

Hence, molar volume V_m(L/mol) = V_m = **22.7 L** at **STP** 2 g/mol 0.089 g/L
Interconversion of mole-volume, mass and number of particles

B

Percentage Composition

Defined as mass of an element present in 100 g compound.

Molar mass of
$$CO_2 = 12 + 2(16) = 44 g$$

Example: CO₂

Mass % of Carbon =
$$\frac{12}{44} \times 100 = 27.27 \%$$

Mass % of Oxygen =
$$\frac{(2 \times 16)}{44} \times 100 = 72.72 \%$$

Empirical Formula: It represents the simplest **whole number** ratio of various atoms present in a compound.

Determined by the **mass percent** of various elements present in the compound.

Molecular Formula: It shows the **exact** number of **different** types of **atoms** present in a molecule of a compound.

Obtained by using the molar mass of each element.

n = Molecular formula mass Empirical formula mass

Empirical formula mass for $CH_2O = 12 + 2 + 16 = 30$

n = Molecular formula mass Empirical formula mass

Molecular formula = $C_n H_{2n} O_n$ Thus, **Molecular formula** is $C_6 H_{12} O_6$

Principle of Atom Conservation

Total number of atoms of a particular element is same in reactants and products.

Balancing Equations

С

Balancing Equations

NaOH
$$_{+}$$
 $H_2SO_4 \longrightarrow Na_2SO_4 + H_2O$ Not Balanced
2NaOH $_{+}$ $H_2SO_4 \longrightarrow Na_2SO_4 + 2H_2O$ Balanced

Balancing Equations

 $2Ca_{3}(PO_{4})_{2}$ + $6SiO_{2}$ + 10C \downarrow \downarrow \downarrow IOC $6CaSiO_{3}$ + 10CO + P_{4} Bal

Balanced

Stoichiometry

Calculations based on the **quantitative** relationship (**mole** /**mass/volume**/ **number of molecules**) between the **reactants** and the **products.**

 $3 H_{2}(g)$ $2 NH_{3}(g)$ $1 N_{2}(g)$ ÷

For a balanced chemical reaction these are called the **stoichiometric coefficients.**

Stoichiometry

The **reactant** reacts and the **products** are formed in the **molar ratio**, which is **same** as the **ratio of their stoichiometric coefficients**.

The stoichiometric coefficients **a**, **b**, **c** or **1**, **3**, **2** are **not the given number of molecules or the number of moles**.

$$a N_2(g) + b H_2(g) \rightarrow c NH_3(g)$$

 $1 N_2(g) + 3 H_2(g) \rightarrow 2 NH_3(g)$

Stoichiometric coefficients sum i.e. 1 + 3 ≠ 2

i.e., total **sum of stoichiometric coefficients of reactants** need **not be equal** to the total **sum of stoichiometric coefficients of products.**

Stoichiometry

It means that when H₂, O₂ combine and H₂O is produced, it happens in a 1:1/2:1 ratio or 2:1:2

$$1 N_{2}(g) + 3 H_{2}(g) \longrightarrow 2 NH_{3}(g)$$

$$\frac{\mathbf{n} (N_{2}, \text{consumed})}{\mathbf{n} (H_{2}, \text{consumed})} = \frac{1}{3}$$

 $\frac{\mathbf{n} (N_2, \text{consumed})}{\mathbf{n} (NH_3, \text{produced})} = \frac{1}{2}$

 $\frac{\mathbf{n} (H_2, \text{consumed})}{\mathbf{n} (NH_3, \text{produced})} = \frac{3}{2}$

Stoichiometry **n** (H₂, initial) **n** (NH₃, final) **n** (N₂, initial) Ź Ź 3 2 Necessarily Necessarily

$$\frac{\mathbf{n} (N_2, \text{ cons.})}{1} = \frac{\mathbf{n} (H_2, \text{ cons.})}{3} = \frac{\mathbf{n} (NH_3, \text{ prod.})}{2}$$
Definitely
Definitely
Definitely

Conclusion

Limiting Reagent

B

The **limiting reagent (or limiting reactant)** is the one which is consumed first in a chemical reaction and determines the amount of product formed. We will take an example to understand this concept.

Here, 8 moles of A need 12 moles of B (because stoichiometric ratio is 2:3) but we have only 6 moles of B.

So, B is the limiting reagent and A is in excess. So, only 4 moles of A is consumed with 6 moles of B and 8 moles of C and 10 moles of D are formed.

% Yield

B

The reactions not always yield 100 % but sometimes its production is lesser than the theoretical amount(calculated amount).

In such case, % yield can be given as:

% Yield

Let's see an example:

Example:

 $2A + 3B \longrightarrow 4C + 5D$ yield = 70%

Starting with 8 moles of A and 6 moles of B, find the moles of C formed. Here, B is the limiting reagent because for its 6 moles to react, only 4 moles of A is required.

We know that the amount of product will be determined only by limiting reagent.

So, after consumption of 6 moles of B, $(4/3) \times 6$ moles = 8 moles of C formed (if yield is 100%).

But it is 70%, so the amount of moles of $C = 8 \times (70/100) = 5.6$ moles.

Percentage Purity

X 100

Percentage of a specified compound or element in an impure sample.

% Purity =

Actual amount of desired species in the sample Total amount of the sample

What is a solution?

Homogeneous mixture of two or more substances

Salt Solution (SOLUTION)

Concentration Terms

Molarity

Mass of solute in grams present in per 100 mL of solution

Concentration Terms

Percentage concentration (%w/v)

% w/v =

mass of solute in g x 100 volume of solution in mL

Number of moles of the solute present in 1 litre of the solution

Percentage concentration (%v/v)

% v/v =

volume of solute in mL $_{\rm X\,100}$ volume of solution in mL

Strength of solution

Unit = g/L

Concentration of solution expressed in gram/litre

Concentrate 34.2 %

Molality

Number of moles of solute present in 1 kg of solvent

Molality (m)

No. of moles of solute Mass of solvent in kg

SI unit is **mol kg**⁻¹ or **m(molal)**

1.0 Molal NaOH

SB

Mole fraction

If substance 'A' is dissolved in substance 'B' and n_A and n_B are their respective moles, then

Ratio of the number of moles of a particular component to the total number of moles of the solution

Mole fraction of A =

No. of moles of A No. of moles of solution

$$\chi_{\rm B} = \frac{n_{\rm B}}{n_{\rm A} + n_{\rm B}}$$

Mole fraction

For a solution containing **i** number of components, we have

Mole fraction is a **pure number** and has **no units.**

$$\chi_{i} = \frac{n_{1}}{n_{1} + n_{2} + \dots + n_{i}} = \frac{n_{1}}{\Sigma n_{i}}$$

where,
$$\chi_1 + \chi_2 + + \chi_i = 1$$

Mole Percentage

If substance 'A' is dissolved in substance 'B', \mathbf{n}_{A} and \mathbf{n}_{B} are their respective moles, then

> Ratio of the number of moles of a particular component to the total number of moles of the Solution multiplied by 100.

Mole percentage of A = $\frac{\text{No. of moles of A}}{\text{No. of moles of solution}} \times 100$

Mole Percentage

Antiseptic Ointment 0.1% w/w Salicylic Acid 0.1% w/w

Antiseptic Ointment 0.1%/w/w

Salicylic Acid 0.12/w/w

Let's understand

72% w/w or by weight means 72 g of solute present in 100 g of solution

TRIMANOC 72% w/w

B

Parts per million (ppm, 10⁻⁶)

Number of parts of the solute present in every 1 million parts of the solution ppm (w/w) = $\frac{\text{mass of solute (g)}}{\text{mass of solution (g)}} \times 10^{6}$

ppm (w/v) = $\frac{\text{mass of solute (g)}}{\text{volume of solution (mL)}} \times 10^6$

ppm (v/v) = $\frac{\text{volume of solute (mL)}}{\text{volume of solution (mL)}} \times 10^6$
PPM Significance

Parts Per Billion (ppm, 10⁻⁹)

ppb = $\frac{Mass of solute (g)}{Mass of solution (g)} \times 10^9$

Relation between Molarity and Strength

Where, S = Strength of solution M = Molarity of solution

M_o = Molar m<u>ass</u>

Relation between % w/v and % w/w

% **w/v** = % w/w ×p

S = **M**

Where, ρ = density of the solution

Relation between Molarity and %/v

$$M = \frac{10}{M_{solute}} \times \% \text{ W/v}$$

M_{solute} = Molar mass of the solute

Relation between Molarity and Molality

$$m = \frac{1000 \times M}{1000 \times \rho - M \times M_{solute}}$$

Relation between Molality and Mole fraction

M = Molality

 χ = Mole fraction

M_{solvent} = Molecular mass of solvent

Relation between Molarity and Mole fraction

$$M = \frac{X_{B} \times 1000 \times \rho}{X_{A} M_{A} \times X_{B} M_{B}}$$

Where,

 ρ = Density of the solution X_{B}, X_{B} = Mole fraction M_{A}, M_{B} = Molar mass M = Molarity

Addition or mixing

Solution 1 having volume V₁ and molarity M₁

Mixed with another solution of **same solute**

M_R = Resultant molarity of the solution

Solution 2 having volume V₂ & molarity M₂

 V_{final} is not necessarily equal to $(V_1 + V_2)^2$

Addition or mixing

Addition or mixing

B

Neutralisation - Mixing of acid and base

Neutralisation - Mixing of acid and base

M_R = Resultant molarity of the solution

Gravimetric Analysis

Gravimetric analysis by weight is the process of isolating and weighing an element or a definite compound of an element in as pure form as possible. Gravimetric analysis is an analytical technique based on the measurement of mass of solid substances and/or volume of gaseous species.

Gravimetric Analysis

Consider this reaction :

Equivalent Mass

Number of parts by mass of an element which reacts or displaces from a compound **1.008** parts by mass of **hydrogen**, **8** parts by mass of **oxygen** or **35.5** parts by mass of **chlorine**.

$$2Mg + O_2 \longrightarrow 2MgO$$

32 g O_2 reacts with 48 g of Mg

$$8 \text{ g of } O_2 = \frac{48 \times 8}{32} = 12 \text{ g}$$

Equivalent
weight of Mg = 12 g

Some Special Cases of Acids

B

Equivalents

An equivalent is an amount of a substance that reacts with a definite amount of another substance in a given chemical reaction.

Significance of n-Factor

B

Equivalent Mass of Different Species

For Elements:

Amount of an element that reacts with or displace 1 g of hydrogen, 8 g of oxygen or 35.5 g of chlorine.

Number of gram equivalents of solute dissolved per litre of solution

