Qiakash DByus LIVE

Some Basic Concepts of Chemistry

Classification of matter

Anything that has mass and occupies space.

Classification of matter

Classification of matter

Properties of matter

Properties which can be measured or observed without changing the identity or the composition of the substance. boiling point, density etc.

Properties which can be measured only by a chemical reaction.
Chemical properties

Acidity or basicity, combustibility, etc.

Measurement of Physical Properties

Unit

A unit is the standard of reference chosen to measure or express any physical quantity.

> S.I. system has seven base units pertaining to the seven fundamental scientific quantities.

The International System of Units (S.I.)

Base Physical Quantity	Symbol for Quantity	Name of S.I. unit	Symbol for S.I. unit
Length	l	Meter	m
Mass	m	Kilogram	kg
Time	t	Second	s
Electric current	l	Ampere	A
Thermodynamic temperature	T	Kelvin	K
Amount of substance	n	Mole	mol
Luminous intensity	I	Candela	cd

The International System of Units (S.I.)

Derived unit

The physical quantities unit which are derived using the S.I. base units in combinations.

Example

Unit of area $\left(\mathrm{m}^{2}\right)$, unit of density $\left(\mathrm{kg} \mathrm{m}^{-3}\right)$

Prefixes Used in the SI System

Multiple	Prefix	Symbol
10^{-24}	yocto	y
10^{-21}	zepto	z
10^{-18}	atto	a
10^{-15}	femto	f
10^{-12}	pico	p

Multiple	Prefix	Symbol
10^{-9}	nano	n
10^{-6}	micro	μ
10^{-3}	milli	m
10^{-2}	centi	c
10^{-1}	deci	d

Prefixes Used in the SI System

Multiple	Prefix	Symbol
10	deca	da
10^{2}	hecto	h
10^{3}	kilo	k
10^{6}	mega	M
10^{9}	giga	G

Multiple	Prefix	Symbol
10^{12}	tera	T
10^{15}	peta	P
10^{18}	exa	E
10^{21}	zeta	Z
10^{24}	yotta	Y

Mass and Weight

Mass of a substance

 is the amount of matter present in it, while weight is the force exerted by gravity on an object.The S.I. unit of mass is kilogram

Volume

Volume is the amount of space occupied by a substance. It has the unit of (length) ${ }^{3}$

In S.I. system, volume has unit of m^{3}

Volume

Density

Density is the amount of mass present per unit

It's S.I. unit is kg m${ }^{-3}$. volume.

Temperature

蹅

There are three common scales to measure temperature

02
${ }^{\circ} \mathrm{F}$
(degree fahrenheit)

03
K
(kelvin)
S.I. unit is kelvin.

Temperature

Pressure

Generally, atm (atmospheric pressure) is used in chemistry and sometimes other units are also used.

Pressure (Unit Conversions)

Scientific Notation

Any number can

 be represented in the form: $\mathbf{N} \times 10^{n}$.For example

Where,
n - Exponent having any positive
342.505 can be written as or negative values
N - Number which varies between 1.000... and 9.999....

Addition and Subtraction in

Scientific Notation

Example

$$
3.425 \times 10^{4}+
$$

$$
=\begin{aligned}
& 3.425 \times 10^{4}+ \\
& 0.3425 \times 10^{4}
\end{aligned}
$$

$$
=3.7675 \times 10^{4}
$$

Multiplication and Division in Scientific Notation

In both the operations, exponents are added and subtracted as per their positive and negative values.

Example: Multiplication

Example: Division

where x and y are integers

3.425×10^{5}
3.425×10^{8}
$1 \times 10^{5-8}$
1×10^{-3}

Precision and Accuracy

Precision and Accuracy

Target

Rules for Determining the Number of Significant Figures

All non-zero digits are significant.

Zeros between two non-zero digits are significant.
2.005 has four significant figures.

Zeros preceding to first non-zero digit are not significant.

Example
0.03 has one significant figure.

Rules for Determining the Number of Significant Figures

Zeroes at the end or right of a number are significant, provided they are on the right side of the decimal point.

Exact numbers have an infinite number of significant figures.

Example
6.00 cm has three significant figures.

Example | 6.00 cm has three |
| :--- |
| significant figures. |

Example	In 4 pens or 40 copies, there are infinite significant figures.

Significant Figures

Addition and Subtraction of Significant Figures

Multiplication and Division of Significant Figures

In case of addition and subtraction, the final result should be reported to same number of decimal places as the number carrying minimum number
of decimal places to the right.

In case of multiplication and division, the final result should be reported as having the same number of significant digits as the number with least number of significant digits.

Rounding Off

Example
 1.386 is rounded off to 1.39.

Rounding Off

Example
4.334 is rounded off to 4.33.

Rounding Off

03

If the rightmost digit to be removed is 5 , then the preceding number is not changed if it is an even number, but it is increased by one if it is an odd number.

Example

6.35 is round off to 6.4. If 6.25 is to be rounded off it is rounded off to 6.2.

Dimensional Analysis

The unit factor by which multiplication is to be done is that unit factor which gives the desired units.

The numerator should have that part which is required in the desired result.

Units can be handled just like other numerical part. It can be cancelled, divided, multiplied, squared, etc.

Dozen Analogy

No. of Dozens = No. of Items / 12

$1 ⁄ 2$ Dozen Classes = 6 Classes
3.5 Dozen Students = 42 Students

51 Chalks = (51/12) Dozen Chalks
= 4.25 Dozen Chalks

Definition of Mole

1 mole of a substance is defined as the number of entities same as the number of atoms present in $\mathbf{1 2} \mathbf{~ g}$ of $\mathbf{C}^{\mathbf{1 2}}$ isotope.

This is equal to Avogadro's number.

Avogadro's number $=6.023 \times 10^{23}$

Mole-Particle Conversion

No. of Items $=$ (No. of Mole) $\times \mathbf{N}_{A}$
$1 / 2$ Mole of Classes $=3.0115 \times 10^{23}$ Classes
$=\left(\mathbf{N}_{\mathbf{A}} / 2\right)$ Classes

$$
\begin{aligned}
\text { 3.5 Mole of Students } & =21.0805 \times 10^{23} \text { Students } \\
& =3.5 \mathrm{~N}_{\mathrm{A}} \text { Students } \\
1 \text { millimole of Chairs } & =6.023 \times 10^{23} \times 10^{-3} \text { Chairs } \\
& =\left(\mathrm{N}_{\mathrm{A}} / 1000\right) \text { Chairs }
\end{aligned}
$$

Mole - Mass conversion

'Molar mass' g of the substance contains $\longrightarrow 1$ mole of the substance. Therefore,
$' \mathbf{W}$ ' g of the substance contains $\longrightarrow \frac{\mathbf{W}}{\text { Molar mass }}$ mole of the substance Hence,

$$
\text { Moles }=\frac{\text { Mass }}{\text { Molar Mass }}
$$

Atomic Mass Unit

The quantity $\frac{1}{12} \times$ (mass of an atom of $\mathrm{C}-12$) is known as atomic mass unit. $1 \mathbf{a m u}=1$ Dalton (Da) = 1 u where, u stands for unified mass

The actual mass of one atom of $\mathrm{C}-12=1.9924 \times 10^{-26} \mathrm{~kg}$
$1 \mathrm{amu}=\frac{1.9924 \times 10^{-26}}{12} \mathrm{~kg}$
$=1.66 \times 10^{-27} \mathrm{~kg}$
$=1.66 \times 10^{-24} \mathrm{~g}$
$=1 / N_{A} g$

Atomic Mass

Mass of an atom
Equal to summation of mass of subatomic particles

Mass of Subatomic Particles

Neutron $\left(\mathrm{n}^{\circ}\right)$	$:$	$1.68 \times 10^{-27} \mathrm{~kg}$	or	$1.68 \times 10^{-24} \mathrm{~g}$
Proton $\left(\mathrm{p}^{+}\right)$	$:$	$1.67 \times 10^{-27} \mathrm{~kg}$	or	$1.67 \times 10^{-24} \mathrm{~g}$
Electron $\left(e^{-}\right)$	$:$	$9.1 \times 10^{-31} \mathrm{~kg}$	or	$9.1 \times 10^{-28} \mathrm{~g}$

Mass of Subatomic Particles

Mass $\left(\mathrm{n}^{\circ}\right)$	$:$	mass $\left(\mathrm{p}^{+}\right)$	$:$	mass $\left(\mathrm{e}^{-}\right)$
$1.68 \times 10^{-24} \mathrm{~g}$	$:$	$1.67 \times 10^{-24} \mathrm{~g}$	$:$	$9.1 \times 10^{-28} \mathrm{~g}$
1	$:$	0.994	$:$	$\frac{1}{1837}$
1.0087 amu		1.00728 amu		0.0005 amu

$$
\operatorname{Mass}\left(n^{\circ}\right) \approx \operatorname{mass}\left(p^{+}\right) \gg \operatorname{mass}\left(e^{-}\right)
$$

Hence, mass of electron is negligible w.r.t. proton or neutron

Atomic Number and Mass Number

" A " is Mass Number
"Z" is Atomic Number

Atomic number (Z) : Total no. of protons

Mass Number (A) : Total no. of (protons + neutrons)

Atomic Mass Unit

$$
\begin{aligned}
\text { Atomic Mass } & =(\text { Mass Number }) \times\left(1.66 \times 10^{-24} \mathbf{g}\right) \\
& =(\mathrm{A}) \times(1 \mathbf{a m u}) \\
& =(\mathrm{A}) \times(1 \mathbf{u}) \\
& =(\mathrm{A}) \times(1 \mathrm{Da})
\end{aligned}
$$

Molecular Mass

Molecular mass numerically indicates the mass of a molecule. Summation of mass of all the atoms that are contained in a molecule.

Atomic mass $=14.00 \mathrm{u} \quad$ Atomic mass $=1.008$ u

$$
\begin{aligned}
\text { Molecular mass } & =(1 \times 14.00+3 \times 1.008) \mathrm{u} \\
& =17.024 \mathrm{u}
\end{aligned}
$$

Molar Mass

Mass of 1 banana $\times 12$ bananas $=$ mass of 1 dozen banana
Similarly,
Mass of 1 atom $\times N_{A}$ atoms $=$ molar mass (of atoms)

Mass of 1 molecule $\times N_{A}$ molecules $=$ molar mass (of molecules)
*Mass of 1 ion $\times N_{A}$ ions $=$ molar mass (of ions)

> Unit of Molar mass = g/mol

Molar Mass

Example:

Mass of 1 Carbon atom $\times N_{A}=$ Molar Mass of Carbon

$$
=12 \mathrm{u} \times 6.022 \times 10^{23}
$$

But, $1 \mathrm{u}=\frac{1}{\mathrm{~N}_{\mathrm{A}}} \mathrm{g}$
Therefore,

$$
\begin{aligned}
12 \mathrm{u} \times 6.022 \times 10^{23} & =\frac{12 \times 6.022 \times 10^{23}}{6.022 \times 10^{23}} \mathrm{~g} \\
& =12 \mathrm{~g} \\
& =\text { Molar Mass of carbon }
\end{aligned}
$$

g-Atomic Mass, g-Molecular Mass and g-lonic Mass

g-atomic mass : It is the mass of 1 mole of atoms of a type in grams.

- g-molecular mass : It is the mass of 1 mole of molecules of a type in grams.
- g-ionic mass : It is the mass of 1 mole of ions of a type in grams.

Gram Atoms, Gram Molecules and Gram Ions

1 Gram Atom is 1 mole of atoms:

1 Gram Molecule is 1 mole of molecules.

1 Gram Ion is one mole of ions.

Example of Concept of Averages

Example of Concept of Averages

Solution:

The average marks scored by the student $=\frac{\text { student in each subject }}{\text { Total number of subjects }}$

$$
=\frac{87+95+88+96+92+88}{6}=91
$$

Similarly, in case of elements, a sample consist of more than 1 kind of atoms called isotopes.

Therefore,
Mass of a sample of atoms is also represented as weighted average mass and is called as average atomic mass.

Isotopes

Isotopes are those particles which have same number of protons but different number of neutrons.

${ }^{16}$ O Isotope

${ }^{18} \mathrm{O}$ Isotope

Percentage Abundance

Percentage abundance is defined as the percentage value of the quantity of isotopes available in nature for a given element.

Average Atomic mass

(\% abundance) $)_{1}$ Mass $_{1}+(\% \text { abundance })_{2}$ Mass $_{2}+\ldots$

Example: Carbon-12 \rightarrow 99\%, Carbon-13 \rightarrow 1\%
Average atomic mass of carbon $=(12 \times 0.99)+(13 \times 0.01) \mathrm{g}=12.01 \mathrm{~g}$

Hence, 12.01 is the average atomic mass of carbon, whereas, atomic mass of carbon-12 is 12 u.

Average Molecular Mass

(no. of molecules) $)_{1} \times$ (Molecular Mass) $_{1}+(\text { no. of molecules })_{2} \times(\text { Molecular Mass })_{2}+$
=
Total no. of particles

Specific Activity

Specific Activity(A) is defined as the activity of 1 g of substance (pure or impure) and is given by $A=\lambda \times N$ where N is the number of radioactive atoms.

Unit $=y^{-1}$

Dalton's Atomic Theory

- Matter consists of tiny particles called atoms.
- All the atoms of a given element have identical properties including identical mass. Atoms of different elements differ in mass.
- Compounds are formed when atoms of different elements combine in a fixed ratio.
- Chemical reactions involve rearrangement of atoms.

Drawbacks

- According to the theory, atom is indivisible but atom can be divided into electrons, neutrons and protons.
- Atoms of same element can have different masses as in case of isotopes and isobars.
- Reactions that does not react with simple whole number ratio of reactants are known as non-stoichiometric reactions.

Law of Conservation of Mass

Statement: It states that matter can neither be created nor destroyed in ordinary chemical and physical changes.

Explanation: In a chemical reaction, the total mass of reactants is always equal to
 the total mass of products formed.

Law of Conservation of Mass

Reactants:
$4 \mathrm{H}+2 \mathrm{O}$ atoms

Products:
4 H + 2 O atoms

Let's Understand

Law of Definite Proportions

Statement: A given compound always contains exactly the same proportion of elements by weight irrespective of the source or method of preparation.

$$
\begin{array}{cc}
4 \text { parts } & 2 \text { parts } \\
\text { hydrogen } & \text { oxygen }
\end{array}
$$

2:1

2 gaseous water

2 Hatoms : 2 amu +
10 atoms: 16 amu

Molecular weight of water = 18 amu
\% Hydrogen by weight : 11.11\%
\% Oxygen by weight : 88.89\%

Law of Multiple Proportions

Statement:

If two elements can combine to form more than one compound, the masses of one element that combine with a fixed mass of the other element, are in the ratio of small whole numbers.

Alternate way to phrase:

- If two elements can combine to form more than one compound, for a fixed mass of the any one element in both the compounds, the ratio of masses of the other element in the two compounds comes out to be in small whole numbers.

Law of Multiple Proportions

Law of Multiple Proportions

Compound	Mass ratio of N : O	Taking fixed mass of N	Divide by lowest amount of oxygen reacting	Ratio of oxygen
$\mathbf{N}_{\mathbf{2}} \mathbf{O}$	$\mathbf{2 8 : 1 6}$	$\mathbf{2 8 : 1 6}$	$\mathbf{1 6 / 1 6}$	$\mathbf{1}$
$\mathbf{N O}$	$\mathbf{1 4 : 1 6}$	$\mathbf{2 8 : 3 2}$	$\mathbf{3 2 / 1 6}$	$\mathbf{2}$
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{3}}$	$\mathbf{2 8 : 4 8}$	$\mathbf{2 8 : 4 8}$	$\mathbf{4 8 / 1 6}$	$\mathbf{3}$
$\mathbf{N O}_{\mathbf{2}}$	$\mathbf{1 4 : 3 2}$	$\mathbf{2 8 : 6 4}$	$\mathbf{6 4 / 1 6}$	$\mathbf{4}$
$\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{5}}$	$\mathbf{2 8 : 8 0}$	$\mathbf{2 8 : 8 0}$	$\mathbf{8 0 / 1 6}$	$\mathbf{5}$

Law of Multiple Proportions

CO
CO_{2}
$12: 32$
$36: 32$

Taking fixed mass
of C as $36 \mathrm{~g} / \mathrm{mol}$
$36: 48$
36 : 96
36 : 32

Law of Multiple Proportions

Taking mass of O and dividing by lowest mass, which is 32 we get:

CO	CO_{2}	$\mathrm{C}_{3} \mathrm{O}_{2}$
$48: 32$	$96: 32$	$32: 32$
Ratio of O $48: 32$	$96: 32$	$32: 32$
1.5	3	1
3	6	2

Gay Lussac's Law

Statement: When gases combine or are produced in a chemical reaction, they do so in a simple ratio by volume provided all gases are at same temperature and pressure.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Gay Lussac's Law

Avogadro Law

Example: Comparison of some gases at same temperature and pressure

CH_{4}

Avogadro Law

Statement Equal volumes of gases at the same temperature and pressure should contain equal number of molecules/ particles.

$$
\begin{aligned}
& V \propto n \\
& \Rightarrow \frac{V}{n}=k \\
& \Rightarrow \frac{V_{1}}{n_{1}}=\frac{V_{2}}{n_{2}}
\end{aligned}
$$

Relative density

It is the density of substance relative to the density of another substance, at the same T and P.

It is a dimensionless quantity.

Specific gravity

Specific gravity for liquids is measured with respect to water at $4^{\circ} \mathrm{C}$.

$$
\text { S.G. }(\text { for liquid })=\quad \frac{\rho_{\text {substance }}}{\rho_{\text {water at } 4^{\circ} \mathrm{C}}}
$$

For gases it is measured with respect to air at STP. S.G. (for gas) = $\frac{\rho_{\text {gas at STP }}}{\rho_{\text {air at STP }}}$

It is a dimensionless quantity.

Vapour density

Mathematical form - Density of the gas with respect to hydrogen gas at the same temperature and pressure

Significance - It indicates how heavy a gas is with respect to the lightest gas.

It is a dimensionless quantity.

Vapour density

$$
\begin{aligned}
\text { Vapour Density } & =\frac{\text { density of gas } A \text { at some } T \text { and } P}{\text { density of } H_{2} \text { gas at same } T \text { and } P} \\
& =\frac{\text { mass of gas } A \text { in } 1 \mathbf{m L} \text { at some } T \text { and } P}{\text { mass of } H_{2} \text { gas in } 1 \mathbf{m L} \text { at same } T \text { and } P} \\
& =\frac{\mathbf{N} \text { particles } \times \text { (mass of one particle of gas } A)}{N \text { particles } \times \text { (mass of one particle of } H_{2} \text { gas) }} \\
& =\frac{M \text { amu }}{2 \text { amu }} \\
& =\frac{M}{2}
\end{aligned}
$$

Molar Volume at STP

S.T.P. (Standard Temperature and Pressure)

At STP condition: Temperature $=\mathbf{0}^{\circ} \mathbf{C}$ or $\mathbf{2 7 3} \mathbf{K}$

$$
\text { Pressure = } 1 \text { Bar }
$$

Molar volume at STP = 22.7 L
Molar volume = volume of 1 mole of gas

1 atm = 1.01325 Bar

Molar Volume at STP

$$
\rho\left(\mathbf{H}_{\mathbf{2}} \text { at STP }\right)=0.089 \mathrm{~g} / \mathrm{L}
$$

Now,

$$
\begin{aligned}
\text { Density } & =\frac{\mathrm{M}}{\mathrm{~V}} \\
0.089 \mathrm{~g} / \mathrm{L} & =\frac{2 \mathrm{~g} / \mathrm{mol}}{\mathrm{~V}}
\end{aligned}
$$

Hence, molar volume $V_{m}(\mathrm{~L} / \mathrm{mol})=\frac{2 \mathrm{~g} / \mathrm{mol}}{0.089 \mathrm{~g} / \mathrm{L}}$

$$
\mathbf{V}_{\mathrm{m}}=22.7 \mathrm{~L} \text { at STP }
$$

Interconversion of mole-volume, mass and

 number of particles

Percentage Composition

Defined as mass of an element present in 100 g compound.
Mass \% of an element $=\frac{\text { Mass of that element in one mole of the compound }}{\text { Molar mass of the compound }} \times 100$

Molar mass of $\mathrm{CO}_{2}=12+2(16)=44 \mathrm{~g}$

Example:
CO_{2}

$$
\text { Mass } \% \text { of Carbon }=\frac{12}{44} \times 100=27.27 \%
$$

$$
\text { Mass } \% \text { of Oxygen }=\frac{(2 \times 16)}{44} \times 100=72.72 \%
$$

Empirical and Molecular Formula

Empirical Formula: It represents the simplest whole number ratio of various atoms present in a compound.

Determined by the mass percent of various elements present in the compound.

Empirical and Molecular Formula

Molecular Formula: It shows the exact number of different types of atoms present in a molecule of a compound.

Obtained by using the molar mass of each element.

Empirical and Molecular Formula

Molecular formula $=$ Empirical formula $\times n$

$$
\mathbf{n}=\frac{\text { Molecular formula mass }}{\text { Empirical formula mass }}
$$

Empirical and Molecular Formula

Empirical formula mass for $\mathbf{C H}_{\mathbf{2}} \mathbf{O}=12+2+16=30$
$\mathrm{n}=\frac{\text { Molecular formula mass }}{\text { Empirical formula mass }}$
$n=\frac{180}{30}=6$

Molecular formula $=\mathbf{C}_{n} \mathbf{H}_{2 n} \mathbf{O}_{\mathrm{n}}$
Thus, Molecular formula is $\mathbf{C}_{6} \mathbf{H}_{12} \mathbf{O}_{6}$

Principle of Atom Conservation

Balancing Equations

Balancing Equations

$\mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{\mathbf{4}} \longrightarrow \mathrm{Na}_{\mathbf{2}} \mathrm{SO}_{\mathbf{4}}+\mathrm{H}_{\mathbf{2}} \mathrm{O} \quad$ Not Balanced

$\mathbf{2 N a O H}+\mathbf{H}_{2} \mathbf{S O}_{4} \longrightarrow \mathrm{Na}_{2} \mathbf{S O}_{4}+\mathbf{2 H}_{2} \mathbf{O} \quad$ Balanced

Balancing Equations

$\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	SiO_{2}	+	C
		\downarrow		
CaSiO_{3}	+	CO	+	P_{4}
$2 \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	+	$\mathbf{6 S i O}$	+	10C
		\downarrow		
$6 \mathrm{CaSiO}_{3}$	+	10 CO	+	P_{4}

Stoichiometry

Stoichiometry

$$
1 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

Stoichiometry

The reactant reacts and the products are formed in the molar ratio, which is same as the ratio of their stoichiometric coefficients.

The stoichiometric coefficients a, b, c or 1, 3, 2 are not the given number of molecules or the number of moles.

$$
\begin{aligned}
& a \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{b} \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow \mathrm{cNH}_{3}(\mathrm{~g}) \\
& 1 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
\end{aligned}
$$

Stoichiometric coefficients sum i.e. $\quad 1+3 \neq 2$
i.e., total sum of stoichiometric coefficients of reactants need not be equal to the total sum of stoichiometric coefficients of products.

Stoichiometry

$$
\begin{gathered}
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \\
\text { or } \\
\mathrm{H}_{2}(\mathrm{~g}) \\
+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
\end{gathered}
$$

This doesn't mean that $\frac{1}{2} \mathrm{O}_{2}$ molecule is reacting.

Stoichiometry

It means that when $\mathbf{H}_{\mathbf{2}}, \mathbf{O}_{\mathbf{2}}$ combine and $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ is produced, it happens in a $\mathbf{1 : 1 / 2 : 1}$ ratio or $\mathbf{2 : 1 : 2}$

$$
\begin{gathered}
1 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \\
\frac{\mathbf{n}\left(\mathrm{N}_{2}, \text { consumed }\right)}{\mathbf{n}\left(\mathrm{H}_{2}, \text { consumed }\right)}=\frac{1}{3} \\
\frac{\mathbf{n}\left(\mathrm{~N}_{2}, \text { consumed }\right)}{\mathbf{n}\left(\mathrm{NH}_{3}, \text { produced }\right)}=\frac{1}{2} \\
\frac{\left.\mathbf{n}(\mathrm{H}), \text { (} \mathrm{N}_{2} \text { consumed }\right)}{\mathbf{n}\left(\mathrm{NH}_{3}, \text { produced }\right)}=\frac{3}{2}
\end{gathered}
$$

Stoichiometry

$$
1 \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

$$
\frac{\mathbf{n}\left(\mathrm{N}_{2}, \text { consumed }\right)}{\mathbf{1}}=\frac{\mathbf{n}\left(\mathrm{H}_{2}, \text { consumed }\right)}{\mathbf{3}}
$$

$$
\frac{\mathbf{n}\left(\mathrm{N}_{2}, \text { consumed }\right)}{1}=\frac{\mathbf{n}\left(\mathrm{NH}_{3}, \text { produced }\right)}{2}
$$

$$
\frac{\mathbf{n}\left(\mathrm{H}_{2}, \text { consumed }\right)}{\mathbf{3}}=\frac{\mathbf{n}\left(\mathrm{NH}_{3}, \text { produced }\right)}{\mathbf{2}}
$$

$$
\frac{\mathbf{n}\left(\mathrm{N}_{2}, \text { consumed }\right)}{1}=\frac{\mathbf{n}\left(\mathrm{H}_{2}, \text { consumed }\right)}{\mathbf{3}}=\frac{\mathbf{n}\left(\mathrm{NH}_{3}, \text { produced }\right)}{\mathbf{2}}
$$

Stoichiometry

Conclusion

Stoichiometry can be applied to volume of gaseous reactants and products at same temperature and pressure.

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

Limiting Reagent

The limiting reagent (or limiting reactant) is the one which is consumed first in a chemical reaction and determines the amount of product formed. We will take an example to understand this concept.

Example:
$2 A+3 B \longrightarrow 4 C+5 D$
Starting with $\mathbf{8}$ moles of \mathbf{A} and $\mathbf{6}$ moles of \mathbf{B}, find the moles of \mathbf{C} formed.
*Here, 8 moles of A need 12 moles of B (because stoichiometric ratio is $2: 3$) but we have only 6 moles of B.

So, B is the limiting reagent and A is in excess. So, only 4 moles of A is consumed with 6 moles of B and 8 moles of C and 10 moles of D are formed.

\% Yield

The reactions not always yield 100 \% but sometimes its production is lesser than the theoretical amount(calculated amount).

In such case, \% yield can be given as:

$$
\% \text { yield }=\frac{\text { Actual amount of product }}{\text { Theoretical amount of product }} \times 100
$$

\% Yield

Let's see an example:

Example:

$$
2 A+3 B \longrightarrow 4 C+5 D \quad \text { yield }=70 \%
$$

Starting with 8 moles of A and 6 moles of B, find the moles of C formed. Here, B is the limiting reagent because for its 6 moles to react, only 4 moles of A is required.

We know that the amount of product will be determined only by limiting reagent.

So, after consumption of 6 moles of $B,(4 / 3) \times 6$ moles $=8$ moles of C formed (if yield is 100\%).

But it is 70%, so the amount of moles of $C=8 \times(70 / 100)=5.6$ moles.

Percentage Purity

Percentage of a specified compound or element in an impure sample.

What is a solution?

Homogeneous mixture
of two or more substances

Concentration Terms

Molarity

Mass of solute in grams present in per 100 mL of solution

Concentration Terms

Percentage

 concentration (\%w/v)$$
\% \mathrm{w} / \mathrm{v}=\frac{\text { mass of solute in } \mathrm{g}}{\text { volume of solution in } \mathrm{mL}} \times 100
$$

Number of moles of the solute present in 1 litre of the solution

Let's understand

$\mathbf{0 . 9 \%}$ w/v means 0.9 g of solute present in 100 mL of solution

Percentage concentration (\%v/v)

Let's understand

20\% v/v or by volume means 20 mL of solute present in $\mathbf{1 0 0} \mathbf{~ m L}$ of solution

Strength of solution

Unit $=\mathrm{g} / \mathrm{L}$

Concentration
of solution expressed in gram/litre

HYDROCHLORIC ACID

Molality

$$
\text { Molality (m) }=\frac{\text { No. of moles of solute }}{\text { Mass of solvent in } \mathrm{kg}}
$$

Number of moles of solute present in $\mathbf{1 k g}$ of solvent

SI unit is $\mathrm{mol}^{\mathbf{k g}}{ }^{-1}$ or $\mathbf{m}($ molal $)$

1.0 Molal NaOH

Mole fraction

If substance 'A is dissolved in substance ' \mathbf{B} ' and $\mathbf{n}_{\mathbf{A}}$ and $\mathbf{n}_{\mathbf{B}}$ are their respective moles, then

Ratio of the number of moles of a particular component to the total number of moles of the solution

Mole fraction of $A=\quad$ No. of moles of A No. of moles of solution

Mole fraction

For a solution containing i number of components, we have

Mole fraction is a pure number and has no units.

$$
x_{i}=\frac{n_{1}}{n_{1}+n_{2}+\ldots+n_{i}}=\frac{n_{1}}{\Sigma n_{i}}
$$

where, $\mathrm{X}_{1}+\mathrm{X}_{2}+\ldots+\mathrm{X}_{\mathrm{i}}=1$

Mole Percentage

If substance ' \mathbf{A} ' is dissolved in substance ' \mathbf{B} ', $\mathbf{n}_{\mathbf{A}}$ and $\mathbf{n}_{\mathbf{B}}$ are their respective moles, then

Ratio of the number of moles of a particular component to the total number of moles of the Solution multiplied
by 100 .

Mole percentage of $A=\frac{\text { No. of moles of } A}{\text { No. of moles of solution }} \times 100$

Mole Percentage

$$
\% \mathrm{w} / \mathrm{w}=\frac{\text { mass of solute in } \mathrm{g}}{\text { mass of solution in } \mathrm{g}} \times 100
$$

Mass of solute present in per $100 \mathbf{g}$ of solution

Let's understand

72\% w/w or by weight means $\mathbf{7 2} \mathrm{g}$ of solute present in $\mathbf{1 0 0} \mathbf{g}$ of solution

TRIMANOC 72\% w/w

Parts per million (ppm, 10-6)

$$
\operatorname{ppm}(\mathrm{w} / \mathrm{w})=\frac{\text { mass of solute }(\mathrm{g})}{\text { mass of solution }(\mathrm{g})} \times 10^{6}
$$

Number of parts of the solute present in every 1 million parts of the solution

$$
\operatorname{ppm}(\mathrm{w} / \mathrm{v})=\frac{\text { mass of solute }(\mathrm{g})}{\text { volume of solution }(\mathrm{mL})} \times 10^{6}
$$

$$
\operatorname{ppm}(\mathrm{v} / \mathrm{v})=\frac{\text { volume of solute }(\mathrm{mL})}{\text { volume of solution }(\mathrm{mL})} \times 10^{6}
$$

PPM Significance

Parts Per Billion (ppm, 109)

Number of parts of the solute present in every 1 billion parts of the solution

$$
\mathrm{ppb}=\frac{\text { Mass of solute }(\mathrm{g})}{\text { Mass of solution }(\mathrm{g})} \times 10^{9}
$$

Interconversiom of Concentration Terms

Relation between Molarity and Strength

$$
\begin{array}{ll}
S=M \times M_{0} \quad & \begin{array}{l}
\text { Where, } \\
\\
\\
\\
\\
\\
M=\text { Strength of solution } \\
\\
\\
M_{0}=\text { Molar mass }
\end{array}
\end{array}
$$

- Relation between \% w/v and \% w/w

$$
\% w / v=\% w / w \quad x_{\rho} \left\lvert\, \begin{aligned}
& \text { Where, } \\
& \rho=\text { density of the solution }
\end{aligned}\right.
$$

Interconversiom of Concentration Terms

Relation between Molarity and \%/v

$$
M=\frac{10}{M_{\text {solute }}} \times \% \mathrm{w} / \mathrm{v}
$$

$M_{\text {solute }}=$ Molar mass of the solute

Relation between Molarity and Molality

$$
\mathrm{m}=\frac{1000 \times M}{1000 \times \rho-M \times M_{\text {solute }}}
$$

Relation between Molality and Mole fraction

Interconversiom of Concentration Terms

Relation between Molarity and Mole fraction

$$
M=\frac{X_{B} \times 1000 \times \rho}{X_{A} M_{A} \times X_{B} M_{B}}
$$

Where,

$$
\rho=\text { Density of the solution }
$$

$X_{B}, X_{B}=$ Mole fraction
$M_{A^{\prime}} M_{B}=$ Molar mass
M = Molarity

Dilution

Consider a solution having volume $\mathbf{V}_{\mathbf{1}}$ and molarity $\mathbf{M}_{\mathbf{1}}$

Dilute it upto volume $\mathbf{V}_{\mathbf{2}} \mathrm{mL}$

Concentration decreases to $\mathbf{M}_{\mathbf{2}}$

Before adding solvent

Lower volume

Higher concentration

Dilution

After adding solvent

$M_{1}=$ Initial molarity of the solution
$M_{2}=$ Final molarity of the solution
$V_{1}=$ Initial volume of the solution
$V_{2}=$ Final volume of the solution

Dilution

150 mL of water (further added)

150 mL of 2 Molar Aq. solution of NaCl

Addition or mixing

Solution 1 having volume \mathbf{V}_{1} and molarity $\mathbf{M}_{\mathbf{1}}$

Mixed with another solution of same solute
$M_{R}=$ Resultant molarity of the
solution

Solution 2 having volume $\mathbf{V}_{\mathbf{2}}$ \& molarity $\mathbf{M}_{\mathbf{2}}$

$$
V_{\text {final }} \text { is not necessarily equal to }\left(V_{1}+V_{2}\right)
$$

Addition or mixing

$+$

150 mL of 2 M NaCl (aq.) 150 mL of 2 M
NaCl (aq.)

Addition or mixing

Addition or mixing

Neutralisation - Mixing of acid and base

Neutralisation - Mixing of acid and base

$$
M_{R}=\text { Resultant molarity of the solution }
$$

Gravimetric Analysis

Gravimetric analysis by weight is the process of isolating and weighing an element or a definite compound of an element in as pure form as possible.

Gravimetric analysis is an analytical technique based on the measurement of mass of solid substances and/or volume of gaseous species.

Gravimetric Analysis

Consider this reaction :

Equivalent Mass

Number of parts by mass of an element which reacts or displaces from a compound 1.008 parts by mass of hydrogen, $\mathbf{8}$ parts by mass of oxygen or 35.5 parts by mass of chlorine.

Equivalent Mass

Some Special Cases of Acids

Equivalents

An equivalent is an amount of a substance that reacts with a definite amount of another substance in a given chemical reaction.

Significance of n-Factor

$$
\text { Equivalents }=\mathrm{n} \times \mathrm{n}_{\mathrm{f}}=\mathrm{M} \times \mathrm{V} \times \mathrm{n}_{\mathrm{f}}
$$

Where,

Equivalent Mass of Different Species

For Elements:

Amount of an element that reacts with or displace 1 g of hydrogen, 8 g of oxygen or 35.5 g of chlorine.

For Ions:

Equivalent Mass of Different Species

Normality

Number of gram equivalents of solute dissolved
per litre of solution

Normality

Normality

Volume of solution (L)

Number of

 equivalents

Mass of the species
$=$
Molar mass
n - factor

