Qutalash +BByJu's LIVE

Chemical Kinetics

Chemical Kinetics

It deals with the rate of a chemical reaction and the mechanism by which it proceeds.

Along with feasibility and extent, it is equally important to know the rate and the factors controlling the rate of a chemical reaction.

Chemical
Kinetics

Thermodynamics vs Chemical Kinetics

Thermodynamics tells only about the feasibility of a reaction.

However, chemical kinetics tells about the speed with which it proceeds.

Rate of a Chemical Reaction

Example: Burning of LPG fuel

Rate of a Chemical Reaction

Some reactions proceed with moderate Speed

\[

\]

Decomposition of hydrogen peroxide

$$
2 \mathrm{H}_{2} \mathrm{O}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2}
$$

Rate of a Chemical Reaction

Some reactions are very slow
Example: Rusting of iron

Rate of a Chemical Reaction

Rate can be expressed as

The rate of change of concentration, with time, of different chemical species taking part in a chemical reaction.

Known as rate of reaction w.r.t. that species

The rate of increase in concentration (appearance) of products

Rate of a Chemical Reaction

For a gaseous reaction at constant temperature,

Rate is expressed as the rate of change in partial pressure of a reactant or a product.

Types of Rate

Average Rate of Reaction

For the reaction,

$$
\begin{gathered}
\text { Average } \\
\text { rate }
\end{gathered}=\frac{\text { Total change in concentration }}{\text { Total time taken }}
$$

$$
=\left|\frac{C_{\text {final }}-C_{\text {initial }}}{\mathrm{t}_{\text {final }}-\mathrm{t}_{\text {initial }}}\right|
$$

$$
=\left|\frac{\Delta c}{\Delta t}\right|
$$

Average Rate of Reaction

Rate of disappearance of reactant (R)
$[R]_{\text {initial }}=$ Initial concentration of reactant at $\mathrm{t}_{\text {initial }}$
$[R]_{\text {final }}=$ Final concentration of reactant at $\mathrm{t}_{\text {final }}$ $[R]_{\text {final }}<[R]_{\text {initial }}$

Average Rate of Reaction

Rate of appearance of product (P)
$[P]_{\text {jinitial }}=$ Initial concentration of product at $t_{\text {initial }}$
$[P]_{\text {final }}=$ Final concentration of product at $\mathrm{t}_{\text {final }}$ $[R]_{\text {final }}<[R]_{\text {initial }}$

Average Rate of Reaction

As we know,

Average Rate of Reaction

For reactant R ,

The rate is defined in a manner so that

For product P, positive quantity

Average Rate of Reaction

Average Rate of Reaction (Graph)

Average Rate of Reaction (Graph)

Concentration of P vs time Rate $=\frac{+\left\{\left[P_{2}\right]-\left[P_{1}\right]\right\}}{\left(t_{2}-t_{1}\right)}=+\frac{\Delta[P]}{\Delta t}$

Instantaneous Rate of Reaction

Instantaneous rate of

Rate of reaction at a particular instant

$$
r_{\text {avg }}=-\frac{\Delta[R]}{\Delta t}=+\frac{\Delta[P]}{\Delta t}
$$

Instantaneous rate of appearance of P

Relation Between Rates

of Different Species Involved in a Reaction

Rate of Reaction

Example

Rate of Reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})
$$

1 mol N_{2} reacts with $3 \mathrm{~mol} \mathrm{H}_{2}$ to produce $2 \mathrm{~mol} \mathrm{NH}_{3}$.

$$
\begin{gathered}
\begin{array}{c}
\text { Rate of } \\
\text { consumption of } \mathrm{N}_{2}
\end{array}
\end{gathered}=\frac{1}{3}\binom{\text { Rate of }}{\text { consumption of } \mathrm{H}_{2}}
$$

$$
=\frac{1}{2}\binom{\text { Rate of }}{\text { formation of } \mathrm{NH}_{3}}
$$

Rate of a Chemical Reaction

Rate of a Chemical Reaction

Average rate
of reaction,
$r_{\text {avg }}$
:---:
rate of
reaction, $\mathrm{r}_{\text {inst }}$

$$
=+\frac{1}{c} \frac{\Delta[\mathrm{C}]}{\Delta t}=+\frac{1}{\mathrm{~d}} \frac{\Delta[\mathrm{D}]}{\Delta t}
$$

$$
=\left(+\frac{1}{\mathrm{c}} \frac{\mathrm{~d}[\mathrm{C}]}{\mathrm{dt}}\right)=\left(+\frac{1}{\mathrm{~d}} \frac{\mathrm{~d}[\mathrm{D}]}{\mathrm{dt}}\right.
$$

Important

The value of the rate of reaction is independent on the stoichiometric coefficients of substances involved in a reaction.

However, the rate w.r.t. any species is dependent of its stoichiometric coefficient.

Unit of Rate of a Chemical Reaction

We know,
$1 \mathrm{~L}=1 \mathrm{dm}^{3}=10^{-3} \mathrm{~m}^{3}=10^{3} \mathrm{~cm}^{3}$

Rate $=\frac{\Delta \mathrm{C}}{\Delta \mathrm{t}}$

Where,
$\Delta \mathrm{C}:$ Change in concentration
of any species

$\Delta \mathrm{t}$: Time change corresponding
to the concentration change

Note.

For a gaseous reaction at a constant temperature, rate is expressed as

$$
\text { Unit of rate equation }=\mathrm{atm} \mathrm{~s}^{-1}
$$

Factors Affecting Rate of a Chemical Reaction

1

Effect of concentration

Effect of nature of reactant and product

Kinetic studies help us determine the speed of a reaction and describe the conditions that can alter the reaction rate.

Effect of temperature
4

Effect of Concentration

From law of mass action, we know

Concentration of reactants

The rate of reaction is often found to be proportional to the concentrations of the reactants raised to a power.

Generally, rate of reaction decreases with passage of time,

Due to decrease in concentration of reactants

Rate Law or Rate Expression

Simple rate laws can be obtained by starting

Instantaneous rate with pure reactants.

For these reactions,
It is an equation that expresses the rate of reaction as a function of the concentration of all the species present in the overall chemical equation for the reaction at some time.

Rate Law or Rate Expression

$$
\mathrm{aA}+\mathrm{bB} \longrightarrow \mathrm{cC}+\mathrm{dD}
$$

k: Proportionality constant (rate constant)
\mathbf{x} and \mathbf{y} : May or may not be equal to stoichiometric coefficients (a and b) of reactants

Where a, b, c, and d are stoichiometric coefficients of reactants and products

Rate Law

Rate of reaction $=k[A]^{x}[B]^{y}$

Eq. 1 can also be written as

It is the expression in which the reaction rate is given in terms of the molar concentration of reactants.

With each term raised to some power

Which may or may not be the same as the stoichiometric coefficient of the reacting species

Rate Law

It can only be established by experiments.

It may differ for the same reaction under different conditions.

For homogeneous gas phase reactions, it is often more convenient to express the rate law in terms of partial pressure, which is related to molar concentration as:

Rate Constant

$$
\text { Rate }=\mathrm{k}[\text { Reactant }]^{\text {order }}
$$

It is the rate of reaction when the concentration of reactant is unity.

It is also known as the specific reaction rate

Where \mathbf{n} is the order of the reaction

Rate Constant

The rate constant (k) depends only on temperature and not on concentration.

$$
\mathrm{k}=\frac{\text { Rate }}{[\text { Reactant }]^{n}}
$$

$$
\text { Rate }=\frac{\mathrm{dC}}{\mathrm{dt}}
$$

Order of a Reaction

$$
\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \longrightarrow \text { Products }
$$

The power to which the concentration of a species is raised in a rate law is the order of the reaction with respect to that species.

Experimentally,

Order of a Reaction

$$
\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \longrightarrow \text { Products }
$$

Rate $\propto[A]^{p}[B]^{q}[C]^{r}$

Order of a Reaction:

 It is the sum of powers of the concentration of the reactants in the rate law of a chemical reaction.
Remember!

$\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \longrightarrow$ Products

$$
\text { Rate } \propto[A]^{p}[B]^{q}[C]^{r}
$$

'p' may or may not be equal to 'a'.
' q ' may or may not be equal to 'b'.
'r' may or may not be equal to ' c '.

Characteristics of Order of a Reaction

The order of a reaction can be zero or any whole number.

It can be a fractional number.

It can even be negative with
3) respect to a particular reactant.

Overall order can never be negative.

Order of a Reaction

Example:

Order of a Reaction

Example:

$$
5 \mathrm{Br}^{-}(\mathrm{aq})+\mathrm{BrO}_{3}^{-}(\mathrm{aq})+6 \mathrm{H}^{+}(\mathrm{aq}) \longrightarrow 3 \mathrm{Br}_{2}(\mathrm{l})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Order of a Reaction

A balanced equation does not necessarily give us a true picture of how the reaction takes place.

I
I
\downarrow
Rarely, a reaction gets completed in one step.

The reaction involves only a single step.

For an elementary reaction,

The sum of stoichiometric coefficients

Order of the reaction

Remember!

For the elementary reaction,

Remember!

For a complex reaction,
The reaction
involves more
than one step.

Steps involved:

$$
\begin{array}{cc}
2 \mathrm{NO} \rightleftharpoons \mathrm{~N}_{2} \mathrm{O}_{2} & \text { Step } 1 \\
\mathrm{~N}_{2} \mathrm{O}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} & \text { Step 2 } \\
\mathrm{N}_{2} \mathrm{O}+\mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+\mathrm{H}_{2} \mathrm{O} & \text { Step 3 }
\end{array}
$$

For example:

$$
2 \mathrm{NO}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2}+2 \mathrm{H}_{2} \mathrm{O}
$$

Methods to Analyse Rate of a Reaction

1 Initial rate method

Integrated rate law method

2

3 Graphical method

Unit method
4

Initial Rate Method

$$
\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \longrightarrow \text { Products }
$$

The method involves finding the initial rate of the reaction

By taking known concentrations of different reactants.

Initial Rate Method

Involves comparison of different initial rates of a reaction
\downarrow
By varying the concentration of one of the reactants

While other reactants are kept constant

$$
\mathrm{aA}+\mathrm{bB}+\mathrm{cC} \longrightarrow \text { Products }
$$

The concentration of A is changed, by keeping the concentrations of B and C same as before.

Two different initial concentrations of $A,\left[A_{0}\right]_{1}$, and $\left[A_{0}\right]_{2}$ are taken.

The initial rates of the reaction are determined as,

$$
\mathrm{k}^{\prime}=\mathrm{k}[\mathrm{~B}]^{\mathrm{q}}[\mathrm{C}]^{\mathrm{r}}
$$

The value of 'p' can be calculated by measuring the values of $r_{1}, r_{2},\left[A_{0}\right]_{1}$, and $\left[A_{0}\right]_{2}$.

Following the same method, \mathbf{q} and r can also be calculated.

Methods to Analyse Rate of a Reaction

The rate law tells about the dependency of the rate of the reaction on the concentration of reactant(s).

But it does not tell how the concentration changes with time

Integrated Rate Law Method

This method, quantitatively, gives the concentration of reactant(s) as a function of time.

The form of the integrated rate equation depends on the order of
 reaction.

Zero-Order Reaction

For a general reaction
For a zero-order reaction

According to the rate law,

Rate of reaction

Plot of Rate vs Time

$$
\begin{array}{r}
-\frac{d[A]}{d t}=k[A]^{0} \\
-\frac{d[A]}{d t}=\begin{array}{c}
k
\end{array}
\end{array}
$$

Rate $=k[A]^{0}$

Zero-order

Concentration \longrightarrow

For a zeroorder reaction

Zero-Order Reaction

Integrating both sides from time $(\mathrm{t})=0$ to t

Zero-Order Reaction

$$
-\int_{[\mathrm{A}]_{0}}^{[\mathrm{A}]_{\mathrm{t}}} \mathrm{~d}[\mathrm{~A}]=\mathrm{k} \int_{0}^{\mathrm{t}} \mathrm{dt}
$$

Integrated rate law of zero-order

$$
\left.\{-[\mathrm{A}]\}_{[\mathrm{A}]_{\mathrm{k}}}^{[\mathrm{A}]_{0}}\right)=(\mathrm{k}[\mathrm{t}]]_{0}^{\mathrm{t}}
$$

Plot of Concentration of Reactant vs Time

$$
\begin{equation*}
[\mathrm{A}]_{\mathrm{t}}=[\mathrm{A}]_{0}-\mathrm{kt} \tag{1}
\end{equation*}
$$

Rate Constant for Zero-Order Reaction

$$
\text { Unit of } k=\mathrm{mol}^{1-n} \mathrm{~L}^{\mathrm{n}-1} \mathrm{~s}^{-1}
$$

Time of Reaction Completion (t_{c})

At this time, the reactants are consumed completely.
$\stackrel{\downarrow}{\downarrow}$

So, at t_{c},

Half-Life Period $\left(\mathrm{t}_{1 / 2}\right)$

When the concentration of reactants becomes half of its initial concentration

It means that the reaction is half-completed.

Half-Life Period ($\mathrm{t}_{1 / 2}$)

$$
\mathrm{k}=\frac{[\mathrm{A}]_{0}-[\mathrm{A}]_{\mathrm{t}}}{\mathrm{t}}
$$

Putting concentration value at $\mathrm{t}_{1 / 2}$ in eq. (1),

$$
\begin{aligned}
& t_{1 / 2}=\frac{[A]_{0}-\left\{[A]_{0} / 2\right\}}{k} \\
& t_{1 / 2}=\frac{[A]_{0}}{2 k} \\
& t_{1 / 2} \subset[A]_{0}
\end{aligned}
$$

Plot of $\mathrm{t}_{1 / 2}$ vs Concentration

Examples of Zero-Order Reaction

Generally, the decomposition of gases on metal surfaces

$$
\text { ii } 2 \mathrm{HI}(\mathrm{~g}) \xrightarrow{\mathrm{Au}} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$ at high concentration follows zero-order kinetics.

$$
2 \mathrm{NH}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{Pt}} \mathrm{~N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

$$
\text { iii } 2 \mathrm{PH}_{3}(\mathrm{~g}) \xrightarrow{\mathrm{Ni}} 2 \mathrm{P}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

[^0]$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \xrightarrow{\mathrm{h} v} 2 \mathrm{HCl}(\mathrm{~g})
$$

Zero-Order Reaction

In a zero-order reaction equal concentration of reactants get consumed in equal time.

Example

Zero-Order Reaction

Generally, in a zero-order reaction,
Replace k by nk in all the previous formulas.

$-\frac{\mathrm{d}[\mathrm{A}]}{\mathrm{ndt}}$

First-Order Reaction

For a general reaction,

According to the rate law,

$$
\text { Rate }=k[A]^{n}
$$

For a first-order reaction,
 Where,

$$
\begin{array}{lc}
\mathrm{n} & \quad: \text { Order }=1 \\
\mathrm{k} & \quad \text { Rate constant } \\
{[\mathrm{A}]} & \text { : Concentration of } \\
& \text { reactant } \mathrm{A}
\end{array}
$$

Plot of Rate vs Time

First-Order Reaction

First-Order Reaction

First-Order Reaction

The integrated rate law of first-order reaction

First-Order Reaction

$$
\begin{aligned}
& \frac{2.303}{t} \log \frac{[A]_{0}}{[A]}=k \\
& \log [A]_{0}-\log [A]=\frac{k t}{2.303} \\
& \log [A]=\log [A]_{0}-\frac{k t}{2.303}
\end{aligned}
$$

Plot of $\log [A]$ vs Time

$$
\log [A]=\log [A]_{0}-\frac{k t}{2.303}
$$

First-Order Reaction

$$
\ln \frac{[\mathrm{A}]_{0}}{[\mathrm{~A}]}=\mathrm{kt}
$$

Multiplying eq. (2) by -1 ,

Eliminating natural log from both the sides,

Plot of $[A]$ vs Time

$$
[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-k t}
$$

Half-Life Period for First-Order Reaction

Reaction will be half-completed.

Putting the value of x in eq. (1),

$$
\begin{equation*}
\ln \frac{a}{a-x}=k t \tag{1}
\end{equation*}
$$

Plot of $\mathrm{t}_{1 / 2}$ vs Concentration

$$
t_{1 / 2}=\frac{0.693}{k}
$$

$$
\begin{aligned}
& \text { Does not depend } \\
& \text { on the concentration } \\
& \text { of reactants }
\end{aligned}
$$

Unit of Rate Constant (k)

Note!

In the first-order reaction, an equal percentage of reactants get consumed in equal time.

Example

Generally, for a first-order reaction,
Replace k by $n k$ in all the previous formulas.

Examples

1 Decomposition of $\mathbf{H}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ takes place.

Pressure Measurement

As we know,

V: Volume
n : Number of moles
P: Pressure
R: Gas constant
T: Temperature

Pressure Measurement

Pressure Measurement

In terms of concentration	$A \longrightarrow B+C$				A (g)	\rightarrow	B (g)	$+$	C (g)
At time t,	$a-x$	x	x	$t=0$					
					P_{0}		0		0
				$\mathrm{t}=\mathrm{t}$	$\mathrm{P}_{0}-\mathrm{P}_{\mathrm{r}}$		P_{r}		P_{r}

$P_{0}:$ Initial pressure
P_{r} : Pressure due to amount of
reactant consumed up to time ' t '

Pressure Measurement

The pressure measurement can be done in two ways

(i) Partial pressure of the reactant
(ii) Total pressure of the reaction system

Pressure Measurement

In terms of concentration
At time t,
$P_{o}-P_{r}$
$P_{r} \quad P_{r}$
P_{r}

According to Dalton's law,

Pressure Measurement

Pressure Measurement

For the first-order reaction,

Substituting values from eq. (1) in the first law expression,

Substituting the value of P_{r},

$$
k t=\ln \frac{P_{0}}{2 P_{0}-P_{t}}
$$

Unit of Rate Constant (k)

Half-Life Period for nth Order Reaction

Any reaction of any order will follow this relation.

Half-Life Period for nth Order Reaction

For first-order reaction,
$\mathrm{t}_{1 / 2}$ is independent
of $[\mathrm{A}]_{0}$

For zero-order reaction,

For second-order reaction,

$$
t_{1 / 2} \quad \frac{1}{[A]_{0}}
$$

Pseudo Order Reactions

The order of a reaction is sometimes altered by conditions.

A reaction whose order is different from the actual order due to excess concentration of one of the reactants is known as pseudo order reaction.

Pseudo First-Order Reaction

For a second-order reaction,

If the concentration of one reactant, A, is taken in excess,

The change in concentration of A is negligible during the reaction.

Pseudo First-Order Reaction

So, it can be considered as constant.

Now, the reaction rate depends on the concentration of the other reactant (B) only.

The reaction becomes a first-order reaction.

Pseudo First-Order Reaction

$$
\text { Rate }=k[A][B]
$$

Where $\mathrm{k}^{\prime}=\mathrm{k}[\mathrm{A}]$

Examples of Pseudo First Order Reaction

Hydrolysis of Ethyl Acetate
0.01 mol of ethyl
acetate $+10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

Hydrolysis of Ethyl Acetate

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

Rate $=k\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]$ negligible ($\approx 0.01 \mathrm{~mol}$ out of 10 mol consumed),

Pseudo first-order reaction

Hydrolysis of Ethyl Acetate

Hydrolysis of Ethyl Acetate

Graphical Representation

Rate vs Concentration of Reactant(s)

For a general reaction,

Rate law,

$$
-\frac{\mathrm{d}[\mathrm{~A}]}{\mathrm{dt}}=\mathrm{k}[\mathrm{~A}]^{\mathrm{n}}
$$

Rate vs Concentration of Reactant(s)

For $n^{\text {th }}$ order reaction

$$
\text { Rate }=k[A]^{n}
$$

Concentration of Reactant(s) vs Time (For Zero-Order)

$$
[\mathrm{A}]=[\mathrm{A}]_{0}-\mathrm{kt}
$$

Concentration of Reactant(s) vs Time (For First-Order)

$$
[\mathrm{A}]=[\mathrm{A}]_{0} \mathrm{e}^{-\mathrm{kt}}
$$

$$
\log [A]=\log \left[A_{0}\right]-\frac{k t}{2.303}
$$

$\mathrm{t}_{1 / 2}$ vs Concentration of Reactant(s)

$$
t_{1 / 2}=\frac{[\mathrm{A}]_{0}}{2 \mathrm{k}}
$$

$$
t_{1 / 2}=\frac{0.693}{k}
$$

$$
t_{1 / 2}=\frac{1}{k[A]_{0}}
$$

Unit Method

Unit of k : $\mathrm{mol}^{1-n} \mathrm{~L}^{\mathrm{n}-1} \mathrm{~s}^{-1}$

For an $n^{\text {th }}$ order reaction, we know that,

$$
\mathrm{k}=\frac{\text { Rate }}{[\text { Concentration] }} \mathrm{n}
$$

In this method, the order of a reaction can be determined by observing the unit of the rate constant.

Effect of the Temperature on Rate of Reaction

Arrhenius Equation (With and Without Gatalyst)

Trying to Interpret Arrhenius Theory

Example

Elementary reaction

According to Transition state theory,

The reaction can take place only when a molecule of A_{2} and a molecule of B_{2} collide.

Trying to Interpret Arrhenius Theory

Reaction and Transition State Complex

Trying to Interpret Arrhenius Theory

Plot of Potential Energy vs Reaction Coordinate

$$
A_{2}+B_{2} \longrightarrow 2 A B
$$

Endothermic

 or exothermic

Reaction coordinate \qquad

Enthalpy Change During a Reaction

We know enthalpy change for a reaction

$$
A+B \rightarrow C+D
$$

For exothermic reaction

Activated
complex

Progress of the reaction \longrightarrow

Enthalpy Change During a Reaction

$$
A+B \rightarrow C+D
$$

| For endothermic |
| :---: | :---: |
| reaction |$\Delta H=\Sigma H_{P}-\Sigma H_{R}>0$

Enthalpy Change During a Reaction

For a reversible exothermic reaction

$$
\text { Reactants } \rightleftharpoons \text { Products }
$$

Enthalpy change can also be expressed in terms of activation energy,

Enthalpy Change During a Reaction

For a reversible exothermic reaction

```
Reactants \(\rightleftharpoons\) Products
```

Enthalpy change can also be expressed in terms of activation energy,

$\mathrm{E}_{\mathrm{a}_{\mathrm{f}}}=$ Activation energy of the forward reaction $\mathrm{E}_{\mathrm{a}_{\mathrm{b}}}=$ Activation energy of the backward reaction

Remember!

Greater the height of the energy barrier

Greater will be the activation energy

Slower will be the reaction rate

Dearement in Energy After Transition State

Endothermic or exothermic

The final enthalpy of the reaction depends upon the nature of reactants and products.

Activation Energy vs Threshold Energy

Maxwell-Boltzmann Statistics and Arrhenius Theory

All molecules in the reacting species do not have the same kinetic energy.

\downarrow

It is difficult to predict the behaviour of any one molecule with precision.

Statistics is used to predict the behaviour of a large number of molecules.

The distribution of kinetic energy may be described by plotting the fraction of molecules $\left(N_{E} / N_{T}\right)$ with a given kinetic energy (E) versus kinetic energy.

Where, N_{E} is the number of molecules with energy, E
\mathbf{N}_{T} is the total number of molecules

Maxwell-Boltzmann Statistics and Arrhenius Theory

When temperature is raised

The maxima of the curve moves to the higher energy value I
\downarrow

Curve broadens out I
I

Greater proportion of molecules possess much higher energies

Maxwell-Boltzmann Statistics and Arrhenius Theory

Maxwell-Boltzmann Statistics and Arrhenius Theory

By increasing the temperature or decreasing the activation energy, the rate of reaction increases.

Calculation of Activation Energy (\mathbf{E}_{2})

Graphically

Arrhenius equation

$$
k=A e^{-E_{a} / R T}
$$

Taking natural logarithm on both sides

Plotting In k versus (1/T), can give a straight line

$$
\ln k \quad=\quad \ln A \quad-\quad \frac{E_{a}}{R} \times \frac{1}{T}
$$

Plot of In k vs 1/T

$$
\begin{equation*}
\ln k=\ln A-\frac{E_{a}}{R} \times \frac{1}{T} \tag{1}
\end{equation*}
$$

From the graph

E_{a} can be

 calculated
Rate Constant at Different Temperatures

At temperature T_{1}, Arrhenius equation:

At temperature T_{2}, Arrhenius equation:

k_{2} : Rate constant at temperature T_{2}

Rate Constant at Different Temperatures

Subtracting eq (1) from eq (2)

$$
\begin{array}{lll}
\ln k_{1}=\ln A-\frac{E_{a}}{R T_{1}} & \ldots \text { (1) } & \ln \frac{k_{2}}{k_{1}}=\frac{E_{a}}{R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right) \\
\ln k_{2}=\ln A-\frac{E_{a}}{R T_{2}} & \ldots \text { (2) } & \\
& \log \frac{k_{2}}{k_{1}}=\frac{E_{a}}{2.303 R}\left(\frac{1}{T_{1}}-\frac{1}{T_{2}}\right)
\end{array}
$$

Rate Constant at Different Temperatures

> If the rate constant k_{1} and k_{2} and the corresponding temperatures $$
T_{1} \text { and } T_{2} \text { are known. }
$$

E_{a} can be calculated

Catalyst

Catalyst is a substance that can alter the rate of reaction

Without undergoing any permanent chemical change

This phenomenon
shown by a catalyst is known as catalysis

Example

The presence of a positive catalyst is assumed

$$
2 \mathrm{H}_{2} \mathrm{O}_{2}+\mathrm{MnO}_{2} \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{O}_{2} \uparrow+\mathrm{MnO}_{2}
$$

General Characteristics of Catalyst

A catalyst does not initiate any reaction; it simply speeds up the reaction.

Only a small amount of catalyst can catalyse a large amount of reactants.

It does not alter the Gibbs energy ($\Delta \mathrm{G}$) of a reaction

Catalyses spontaneous reactions but not nonspontaneous reactions

Function of Catalysts

A catalyst provides an alternate pathway or reaction mechanism

By reducing the activation energy between reactants and products and hence, lowering the potential energy barrier.

Positive Catalyst

Negative Catalyst

Collision Theory

Though Arrhenius equation is applicable under a wide range of circumstances
\downarrow
A more advanced theory was developed

With greater insights into the energetic and mechanistic aspects of reactions

Collision Theory

The reactant molecules are assumed to be hard spheres

A reaction occurs when molecules, having sufficient energy, collide with each other

It is based on the kinetic theory of gases

Activation Energy

Not all collisions result in product formation

A few reactant molecules acquire activation energy

Activation energy is inversely related to the rate of a reaction

Collision Theory

For a bimolecular elementary reaction

$Z_{A B}$: Collision frequency of reactants, A and B $e^{-E_{a}} /$ RT : Fraction of molecules with energies equal to or greater than E_{a}

Collision Theory

$$
\begin{equation*}
\text { Rate }=Z_{A B} e^{-E_{\mathrm{a}} / R T} \tag{1}
\end{equation*}
$$

Rate expression predicts the value of rate constant fairly accurately for simple atoms/molecules

For complex molecules, significant deviations are observed

Not all collisions lead to product formation i.e., only few collisions are effective.

Collision Theory

The collisions in which molecules collide with sufficient threshold energy and proper orientation

1
I

So as to facilitate the breaking of bonds between the reacting species and the formation of new bonds to form products

Collision Frequency

The number of collisions per
second per unit volume
of the reaction mixture is

Known as collision frequency (Z)

Collision frequency can be increased by increasing the concentration and temperature

Both factors contribute towards more number of collisions per unit time per unit volume

Effective Collision

How can we predict if the collisions are effective or not?

Sufficient Kinetic Energy

The minimum amount of energy

The colliding molecules must possess to participate in a chemical reaction

Threshold energy

Only the molecule that satisfies this condition can cross the energy barrier.

Proper Orientation

Energy alone does not determine the effectiveness of a collision

The reacting molecules must collide in a proper orientation to make the collision effective.

Proper Orientation

Proper collision

Proper Orientation

Improper collision

The proper orientation of the reactant molecules leads to bond formation

Whereas improper orientation makes them simply bounce back and no products are formed.

Effective Collision

Final expression of rate becomes

Orientation factor

[^0]: iv

