Welcome to
Q B ARIEAB
BBYU'SIVE Solutions and colligative properties

Solution

By convention

containing more than one component dispersed on a molecular scale.

Note

If one of the components of a solution is water, it will always be considered as a solvent even when it is present in a very less amount.

Solvent determines the physical state in which the solution exists.

Types of solutions

Liquid solutions

Gas in liquid e.g., carbonated drinks

Percentage Concentration Terms

\% w/w	\% w/V	\% V/V
Amount of solute in grams dissolved per 100 g of solution.	Amount of solute in grams dissolved per 100 mL of solution.	Volume of a solute (in mL) dissolved per 100 mL of solution.
$\% \mathrm{w} / \mathrm{w}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Weight of solution }(\mathrm{g})} \times 100$	$\% \mathrm{w} / \mathbf{v}=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Volume of solution }(\mathrm{mL})} \times 100$	$\% \mathbf{V} / \mathbf{V}=\frac{\text { Volume of solute }(\mathrm{mL})}{\text { Volume of solution }(\mathrm{mL})} \times 100$

Other Concentration Terms

Strength of Solution

Weight of solute
(in gram) per litre (1000 mL) of
solution.

Molarity (M)

Molality (m)

Number of moles of the solute per litre of solution.

$M \quad=\quad \frac{\text { No. of moles of solute (} \mathrm{n} \text {) }}{\text { Volume of solution (L) }}$
$=\frac{\text { No. of moles of solute }(\mathrm{n})}{\text { Mass of solvent (kg) }}$

Normality (N)

Normality
 $=\quad \frac{\text { Number of gram equivalents of solute }}{\text { Volume of solution (L) }}$

Number of gram equivalents	$=\quad \frac{\text { Mass of the species (g) }}{\text { Gram equivalent mass }}$
	$=\frac{\text { Mass of the species (g) }}{\frac{\text { Molar mass }}{\mathrm{n}-\text { factor }}}$

For Oxidising/Reducing Agents

Number of electrons involved in oxidation/ reduction half reaction per mole of oxidising/ reducing agent.

$$
5 \mathrm{e}^{-}+\mathrm{BH}^{+}+\mathrm{MnO}_{4}^{-} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathrm{n} \text {-factor }=5
$$

For Acid/Base and Salts

Number of moles of H^{+}ions displaced/ OH^{-}ions displaced per mole of acid/base.

For simple salts, n-factor is a total charge on cations or a total charge on anions.

Example: $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
n-factor = charge on the cation
$=2 \times 3=6$

Parts per Million (ppm)

$$
\operatorname{ppm}(\mathrm{w} / \mathrm{w})=\frac{\text { Weight of solute }(\mathrm{g})}{\text { Weight of solution }(\mathrm{g})} \times 10^{6}
$$

The number of parts of solute present in 1 million parts of solution.

Mole Fraction (χ)

For a binary solution,

It is a solution in which more amount of solute can be dissolved at a particular temperature.

A solution in which no more solute can be dissolved at a particular temperature.

A solution which contains more amount
of the dissolved solute than in the saturated solution at a particular temperature and pressure.

Supersaturated Solution

It should be prepared in a dust-free vessel and at a higher temperature.

I
I
V

It is metastable. Mechanical stress, such as shaking or addition of solute, causes deposition of solute.

Solubility of a Gas in Liquid

Solubility of one substance into another depends on:

Solubility of a substance is its maximum amount that can be dissolved in a specified amount of solvent (generally $\mathbf{1 0 0} \mathrm{g}$ of solvent) at a specified temperature to form a saturated solution.

1 Nature of solvent \& gas

2 Temperature

3
Pressure

1. Nature of Solvent \& Gas

Like dissolves like

Polar gases dissolve in polar solvents and non-polar gases in non-polar solvents.

When a gas undergoes ionisation in a solvent, then it is highly soluble in that solvent.
E.g., HCl is highly soluble in water.

2. Effect of Temperature

Generally,
Dissolution of gas in liquid is exothermic

Temperature Solubility I

Oxygen dissolves only to a small extent in water. It is this dissolved oxygen which sustains all aquatic life.

Solubility of gases increases with decrease of temperature. It is due to this reason that aquatic species are more comfortable in cold waters rather than in warm waters.

3. Effect of Pressure (Henry's Law)

The solubility of a gas in a liquid at a given temperature is directly proportional to its partial pressure, at which, it is dissolved.

P is the partial pressure of gas in equilibrium with the solution.
K_{H} is Henry's law constant.
\mathcal{X} is the mole fraction of the unreacted gas in the solution.

Gas is in equilibrium with the liquid solution

Increase in pressure increases solubility

Movable frictionless piston

Characteristics of Henry's Law Constant

Same unit as that of pressure: torr or bar

Different gases have different \mathbf{K}_{H} for the same solvent.
$\mathbf{K}_{\mathbf{H}}$ value of gas is different in different solvents.
d K_{H} value increases with increase in temperature.

Higher the value of K_{H} of a gas, lower will be its solubility.

Since, $\mathcal{X}=\frac{\mathrm{P}}{\mathrm{K}_{\mathrm{H}}}$

Graphical Analysis (Henry's Isotherm)

Plot of P vs \mathcal{X} is a straight line passing through the origin with slope equal to $\mathbf{K}_{\mathbf{H}}$.

$$
\begin{aligned}
\mathrm{T}_{1} & > \\
\mathrm{T}_{2} & \gg \mathrm{~T}_{3} \\
\mathrm{~K}_{\mathrm{H}_{1}} & >\mathrm{K}_{\mathrm{H}_{2}}
\end{aligned} \gg \mathrm{~K}_{\mathrm{H}_{3}}
$$

Note

If a mixture of gases is brought in contact with a solvent, each constituent gas dissolves in proportion to its partial pressure.

Henry's law applies to each gas independent of the pressure of other gas.

Application of Henry's Law

Application of Henry's Law

Scuba divers must cope with high concentration of dissolved gases while, breathing air at high pressure.

The bubble blocks the capillaries and creates a medical condition known as bends that are painful and dangerous to life.

To avoid bends as well as toxic effects of high concentration of nitrogen in blood, tanks used by scuba divers are filled with air diluted with helium.

Limitations of Henry's Law

Henry's law is valid only under the following conditions:

1 Pressure of the gas is not too high.

3 The gas should not undergo any chemical reaction with the solvent.

4 The gas should not undergo dissociation
in solution.

Vapour Pressure

Evaporation of a Liquid in a Closed Container

Some of the more energetic particles on the surface of the liquid move fast enough to escape from the attractive forces holding
the liquid together.

As the gaseous particles bounce around, some of them will hit the surface of the liquid again, and be trapped there.

Evaporation and Condensation

An equilibrium is set up rapidly in which, the number of particles leaving the surface is exactly balanced by the number rejoining it.

At equilibrium,

Vapour Pressure of Solution

Vapour Pressure

Pressure exerted
by the vapour of solvent 'A'
and solute 'B' in equilibrium with the liquid phase.

Vapour pressure of a liquid does not depend on:

Amount of liquid taken

2 Surface area of the liquid

3 Volume or shape of the container
(b) It depends upon the nature of the liquid Intermolecular
attractive forces
 Vapour
pressure $\underset{\text { Boiling }}{\text { point }} \downarrow$

Loosely held molecules escape more easily into the vapour phase.

Boiling Point

Temperature at which the vapour pressure of a liquid is equal to the external pressure.

At normal B.P., the vapour pressure of the pure liquid
= $\quad 1 \mathrm{~atm}$
(c)

Relative Humidity (R.H.)

Relative humidity
$=$
Partial pressure of $\mathrm{H}_{2} \mathrm{O}$ vapour at given temperature
Vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ at same temperature

A gas or gaseous mixture is said to be saturated with the vapours of a liquid if the partial pressure of the liquid vapours is equal to its (saturated) vapour pressure i.e.
R.H. = 100\%

More molecules from the liquid have enough K.E. to escape from the surface of the liquid.

K.E.

K.E. of particles \uparrow

Temperature

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \quad \Delta \mathrm{H}>0
$$

According
to Le Chatelier principle, increasing the temperature of a system in a dynamic equilibrium, favours the endothermic change.

Clausius-Clapeyron Equation

$$
\ln \frac{P_{1}}{P_{2}}=-\frac{\Delta H_{V}}{R}\left[\frac{1}{T_{2}}-\frac{1}{T_{1}}\right]
$$

$\mathbf{P}_{\mathbf{2}} \quad$ V.P. of the liquid at T_{2}
P_{1}
V.P. of the liquid at T_{1}

Clausius-Clapeyron equation is important for understanding the appearance of phase diagrams,
particularly the location and shape of the liquid-vapour and solid-vapour phase boundaries.

Phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

Did you know? Diamond and graphite are in different phases.

Phase Diagram

Phase diagram of a substance shows the regions of pressure and temperature at which its various phases are thermodynamically stable.

The lines separating the regions that are called phase boundaries, show the values of P and T at which two phases coexist in equilibrium.

Raoult's Law

$$
\mathbf{P}_{\mathrm{A}} \propto \mathcal{X}_{\mathrm{A}} \quad \mathrm{P}_{\mathrm{A}}=\mathcal{\chi}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{\circ}
$$

In the solution of volatile liquids, the partial vapour pressure of each component is directly
proportional to its mole fraction.

For Binary Solutions of A \& B

$$
\mathrm{P}_{\mathrm{A}}=\mathcal{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0} \quad \mathrm{P}_{\mathrm{B}}=\mathcal{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}
$$

> Solutions which obey Raoult's law over the entire range of concentration are called ideal solutions.

Relation between Total Pressure vs Mole Fraction

$$
\mathbf{P}_{\mathrm{T}}=\quad=\quad \mathcal{X}_{A} P_{A}^{0}+\mathcal{X}_{B} P_{B}^{0}
$$

$$
\begin{gathered}
\mathcal{X}_{A}+\mathcal{X}_{B}=1 \\
P_{T}=\left(P_{A}^{\circ}-P_{B}^{\circ}\right) \mathcal{X}_{A}+P_{B}^{\circ}
\end{gathered}
$$

This represents equation of a straight line of P_{T} vs \mathcal{X}_{A}

$$
\begin{equation*}
\text { If } P_{A}^{\circ}>P_{B}^{\circ} \tag{B}
\end{equation*}
$$

A is more volatile than
B.P. of $A<B . P$. of B

Composition of Vapour Phase

$\mathbf{P}_{\mathbf{A}}=\quad \mathrm{y}_{\mathrm{A}} \mathrm{P}_{\mathrm{T}} \quad$ Dalton's Law

Similarly,

$$
\mathrm{P}_{\mathrm{B}}=y_{\mathrm{B}} \mathrm{P}_{\mathrm{T}}=x_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}
$$

P_{T} in Terms of Composition of Vapour Phase

$$
\begin{array}{rlrl}
x_{A}+\chi_{B}=1 & \frac{1}{P_{T}} & =\frac{y_{A}}{P_{A}^{\circ}}+\frac{y_{B}}{P_{B}^{\circ}} \\
& =\frac{y_{A} P_{T}}{P_{A}^{\circ}}+\frac{y_{B} P_{T}}{P_{B}^{\circ}}=1 & \frac{y_{A}}{P_{A}^{\circ}}+\frac{1-y_{A}}{P_{B}^{\circ}} \\
\Rightarrow & \frac{1}{P_{T}}=\frac{y_{A}}{P_{A}^{\circ}}+\frac{y_{B}}{P_{B}^{\circ}} & P_{T} & =\frac{P_{A}^{\circ} P_{B}^{\circ}}{P_{A}^{\circ}+\left(P_{B}^{\circ}-P_{A}^{\circ}\right) y_{A}}
\end{array}
$$

P_{T} in Terms of Composition of Vapour Phase

Note

Compositions of the liquid and
vapour that are in mutual equilibrium are not necessarily the same.

The vapour will be richer in the more volatile component, if the mole fraction of components in liquid phase is comparable.

Pressure Versus Composition Phase Diagram

Temperature $=$ constant

Let, initially the pressure over the solution is very high so that no vapour exist above the liquid.

On decreasing the pressure gradually, a point (bubble point) comes when we cross the bubble-point curve and first bubble of vapour starts forming.

The area between the two curves is vapour-liquid equilibrium region. The vapours cannot exist above the bubble point curve and liquid can't exist below the dew point curve.

Pressure Versus Composition Phase Diagram

Temperature = constant

On further decreasing the pressure.A point (dew point) comes when we cross the dew-point curve.

On crossing the dew-point curve almost all the liquid has evaporated into vapour i.e. only the last drop of liquid (dew) remains.

Beyond this point, no liquid exist in the system.

Temperature vs Composition Phase Diagram

The mole fraction of one component is plotted on the horizontal axis and the boiling temperature is plotted on the vertical axis.

> If a liquid has a high vapour
> pressure at a particular temperature, it means that its molecules can escape easily from the surface.

If liquid ' A ' has higher V.P. than ' B ' at a particular temperature, then boiling point of ' A ' is lower than ' B '.

Temperature vs Composition Phase Diagram

Dew-point curve
Boiling
temperature
at the given
pressure,
as a function of the
mole fraction in
the vapour phase.

Bubble-point curve

Boiling
temperature at the given pressure, as a function of the mole fraction in the liquid phase.

Pressure Composition Diagram

$$
P_{T}=\left(P_{A}^{\circ}-P_{B}^{\circ}\right) \mathcal{X}_{A}+P_{B}^{\circ}
$$

This represents equation of a straight line of P_{T} vs \mathcal{X}_{A}

P_{T} in Terms of Composition of Vapour Phase

$$
\begin{aligned}
\frac{1}{P_{T}}= & \frac{y_{A}}{P_{A}^{\circ}}+\frac{y_{B}}{P_{B}^{\circ}} \\
= & \frac{y_{A}}{P_{A}^{\circ}}+\frac{1-y_{A}}{P_{B}^{\circ}} \\
P_{T}= & \frac{P_{A}^{\circ} P_{B}}{P_{A}^{\circ}+\left(P_{B}^{\circ}-P_{A}\right) y_{A}}
\end{aligned}
$$

Ideal Solution

Solutions that obey Raoult's law over the entire range of concentration.

If the forces of attraction between $\mathbf{A}-\mathbf{A}, \mathbf{B}-\mathbf{B}$ is similar to $A-B$, then A and B will form ideal solution.

Ideal Solution

Characteristics

(i)

Raoult's law is obeyed.
(ii)
$\Delta H_{\text {mix }}=0$, i.e., there should not be an enthalpy change when components of ideal solutions are mixed.
(iii)

$$
\Delta \mathbf{V}_{\text {mix }}=0,(1 \mathrm{~L}+7 \mathrm{~L}=2 \mathrm{~L}) \text { i.e., }
$$

there should not be a change in volume on mixing.

Examples

n-Hexane and n-Heptane

Ethyl bromide and Ethyl iodide

Benzene and Toluene

Chlorobenzene and Bromobenzene

Non-Ideal Solution

Solutions that do not obey Raoult's law over the entire range of concentration

If the forces of attraction between $\mathbf{A}-\mathbf{A}$, $B-B$ is
different from $A-B$, then A and B will form non-ideal solution.

Characteristics:

1 Raoult's law is not obeyed.

Positive deviating solution

If the forces of attraction between A-A, B-B is stronger than A-B

Partial pressure of each component A and B is higher than that calculated from Raoult's law.

Hence, the total pressure over the solution is also higher than the solutions, if were ideal.

If the forces of attraction between
A-A, B-B are weaker than A-B

Partial pressure of each component A and B is lower than that calculated from Raoult's law

Hence, the total pressure over the solution is also lower than the solutions, if were ideal.

Positive deviating solution

Negative deviating solution

$$
\begin{array}{ll}
x_{A}=1 & \text { Mole fraction } \\
\chi_{B}=0 & x_{A}=0 \\
\chi_{B}=1
\end{array}
$$

$$
\text { V.P. } \uparrow>B . P . ~ \downarrow
$$

B.P. of solution <
B.P. of both A and B

$$
\begin{array}{ll}
\chi_{A}=1 & \text { Mole fraction } \\
\chi_{B}=0 & \chi_{A}=0 \\
\chi_{B}=1
\end{array}
$$

B.P. of solution
B.P. of both A and

Positive deviating solution

Negative deviating solution

Chloroform and Acetone

Chloroform and Methyl acetate

$$
\mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{HCl}
$$

$$
\mathrm{H}_{2} \mathrm{O} \text { and } \mathrm{HNO}_{3}
$$

Acetic acid and Pyridine

Phenol and Aniline

Gomparing Ideal \& Non-Ideal Solutions

Non-ideal solutions

Ideal solutions
Positive deviation Negative deviation

$\mathrm{P}_{\mathrm{T}}=\mathcal{\chi}_{A} \mathrm{P}_{\mathrm{A}}^{\circ}+\mathcal{\chi}_{B} \mathrm{P}_{\mathrm{B}}^{\circ}$	$\mathrm{P}_{\mathrm{T}}>\mathcal{X}_{A} \mathrm{P}_{\mathrm{A}}^{0}+\mathcal{X}_{B} \mathrm{P}_{\mathrm{B}}^{\circ}$	$\mathrm{P}_{\mathrm{T}}<\mathcal{X}_{\mathrm{A}} \mathrm{P}_{\mathrm{A}}^{0}+\mathcal{X}_{\mathrm{B}} \mathrm{P}_{\mathrm{B}}^{\circ}$
$A-A \& B-B$ molecular interaction are similar as A-B	$A-A \& B-B$ molecular interaction are stronger than A-B	$A-A$ \& $B-B$ molecular interaction are weaker than A-B
$\Delta_{\text {mix }} \mathrm{H}=0$	$\Delta_{\text {mix }} \mathrm{H}>0$	$\Delta_{\text {mix }} \mathrm{H}<0$
$\triangle_{\text {mix }} \mathrm{V}=0$	$\triangle_{\text {mix }} V>0$	$\Delta_{\text {mix }} \mathrm{V}<0$

Non-ideal solutions

Non-ideal solutions		
	Positive deviation	
Negative deviation		
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {sys }}>0$
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}=0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}<0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {surr }}>0$
$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$	$\left(\Delta_{\text {mix }} \mathrm{S}\right)_{\text {univ }}>0$
$\left(\Delta_{\text {mix }} \mathrm{G}\right)_{\text {sys }}<0$	$\left(\Delta_{\text {mix }} \mathrm{G}\right)_{\text {sys }}<0$	$\left(\Delta_{\text {mix }} \mathrm{G}\right)_{\text {sys }}<0$

Azeotropic Mixtures

Very large deviations from ideality lead to a special class of mixtures known as azeotropes, azeotropic mixtures, or constant-boiling mixtures.

Composition of liquid mixtures at which, distillation cannot separate the two liquids because the
condensate has the same composition as that of the azeotropic liquid.

Liquid mixtures which boils at a constant temperature and can be distilled without any change in the composition.

A boiling liquid mixture at the azeotropic composition produces vapours of exactly the same composition as that of the liquid.

Azeotropes are of two types:

1. Maximum boiling azeotropes
2. Minimum boiling azeotropes

Minimum Boiling Azeotropes

Minimum Boiling Azeotropes

Non-ideal solutions showing large positive deviation from Raoult's law, form minimum boiling azeotropes that boil at a temperature lower than the boiling points of its components ' A ' and ' B '.

Non-ideal solutions showing large negative deviation from Raoult's law, form maximum boiling azeotropes that boil at a temperature higher than the boiling points of its components ' A ' and ' B '.

A mixture of HNO_{3} and $\mathrm{H}_{2} \mathrm{O}$ containing $\approx 68 \% \mathrm{HNO}_{3}$ and 32% water by mass

Formic acid - water mixture containing 77.6% formic acid and 22.4% water by mass.

Minimum Boiling Azeotropes

Maximum Boiling Azeotropes

Minimum Boiling Azeotropes

Maximum Boiling Azeotropes
a_{B}

Immiscible Liquids

A mixture of two immiscible liquids will boil when the total vapour pressure is equal to the external pressure.

The boiling point of the mixture is thus, lower than that of either constituent.
B.P. of a solution of two immiscible liquids is less than the individual B.P. of both the liquids.

This concept is used in steam distillation.
B.P. of water and benzene mixture $=68.9^{\circ} \mathrm{C}$
$\begin{aligned} & \text { B.P. of benzene } \\ & \text { (pure) }\end{aligned}=80.2^{\circ} \mathrm{C}$

Distillation

In a simple distillation, the vapour over a boiling mixture is withdrawn and condensed in a separate container.

1
\vdots
The collected liquid is called condensate or distillate and the remaining liquid is called residue.

Condensate

This is the principle of distillation and is used to separate a more volatile liquid from a less volatile liquid.

A liquid (generally organic) that is immiscible with water, and has a higher B.P. than water can be boiled (distilled) at a much lower temperature by passing steam through it.

Organic liquid can be purified from impurities using steam distillation.

Dissolution \& Crystallisation

Dissolution

When a solid solute is added to the solvent, some solute dissolve and its concentration increases in the solution.

Crystallisation

Some solute particles in the solution collide with the other solid solute particles and get separated out of the solution.

At equilibrium

$$
\begin{aligned}
\text { Rate of dissolution } & =\text { Rate of crystallisation } \\
\text { Solute }+ \text { Solvent } & \rightleftharpoons \text { Solution }
\end{aligned}
$$

Equilibrium

At this stage, the concentration of solute in solution will remain constant under the given temperature and pressure conditions

1
1
1
\downarrow
Such a solution is said to be saturated with the given solute.

Factors Affecting Solubility of Solid in Liquid

Nature of solvent \& solute

1. Nature of Solvent \& Solute

Like dissolves like
Sodium chloride dissolves readily in water, whereas naphthalene and anthracene do not.
Polar solutes dissolve in polar solvents and non-polar solute dissolve in non-polar solvents.

2. Effect of Temperature on Solubility

$$
\text { Solute + Solvent } \rightleftharpoons \text { Solution }
$$

By Le Chatelier's principle,

Solubility

By Le Chatelier's principle,

Pressure does not have any significant effect on solubility of solids in liquids.

Solids and liquids are highly incompressible and practically remain unaffected by changes in the pressure.

Colligative Properties

The properties of the solution that are dependent only on the total number of solute particles relative to solvent/solution

They are not dependent on the nature of particle i.e., shape, size, charge, etc.

Abnormal Colligative Property

If solute gets associated or dissociated in solution, then experimental/observed/actual value of colligative property will be different from the theoretically predicted value.

For electrolytic solutes, the number of particles would be different from the number of particles actually added due to dissociation or association of the solute.

$$
\mathrm{NaCl}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(I) \longrightarrow \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})
$$

Example: On adding 1 mole of NaCl in excess water gives 1 mole of Na^{+}and 1 mole of Cl^{-}ions i.e. 2 moles of solute.

Abnormality in colligative property can be calculated in terms of van't-Hoff factor.

van't Hoff Factor

The actual extent of dissociation/ association can be expressed with a correction factor known as van't Hoff factor (i).

Moles of solute particles in solution after dissociation/ association

van't-Hoff Factor (i)

i for Dissociation of Electrolyte

$$
\begin{aligned}
& A_{x} B_{y}(a q) \rightleftharpoons x A^{y+}+y B^{x-} \\
& t=0 \\
& \mathrm{t}=\mathrm{t}_{\mathrm{eq}} \\
& C(1-\alpha) \\
& x C \alpha \quad y C \alpha \\
& \begin{aligned}
\text { Net concentration } & =C-C \alpha+x C \alpha+y C \alpha \\
& =C[1+(x+y-1) \alpha] \\
& =C[1+(n-1) \alpha]
\end{aligned}
\end{aligned}
$$

i for Dissociation of Electrolyte

$$
\begin{aligned}
& =\frac{C[1+(n-1) \alpha]}{C} \\
& =1+(n-1) \alpha
\end{aligned}
$$

" a " is degree of dissociation

i for Association of Electrolyte

$$
\begin{aligned}
\text { If } \mathrm{n} & =2 \longrightarrow \text { Dimerization } \\
& =3 \longrightarrow \text { Trimerization } \\
& =4 \longrightarrow \text { Tetramerization }
\end{aligned}
$$

At equilibrium,

$$
\begin{aligned}
\begin{array}{c}
\text { Net } \\
\text { concentration }
\end{array} & =C-C \beta+\frac{C \beta}{n} \\
& =C\left[1+\left(\frac{1}{n}-1\right) \beta\right]
\end{aligned}
$$

Examples

1. Relative Lowering of Vapour Pressure (RLVP)

V.P. of a solution containing a non-volatile solute (solid solute) is always found to be less than the V.P. of the pure solvent.

Relative Lowering of Vapour Pressure (RLVP)

Reason of Lowering of V.P.

Some of the solute molecules will occupy some surface area of the solution.

> Tendency of the solvent particles to go into the vapour phase slightly decreases.

Hence, $\mathrm{P}^{\circ}>\mathrm{P}_{\mathrm{S}}$, where P° is V.P. of the pure solvent and P_{S} is the V.P. of the solution.

Relative Lowering of Vapour Pressure

Relative Lowering of Vapour Pressure

Raoult's Law (For non-volatile solutes)

The vapour pressure of a solution of a non-volatile solute is equal to the vapour pressure of the pure solvent at that temperature multiplied by its mole fraction.

$$
P_{S}=\mathcal{X}_{\text {solvent }} P^{0}=\left(1-\mathcal{X}_{\text {solute }}\right) P^{0}
$$

Relative Lowering of Vapour Pressure

Relative Lowering of Vapour Pressure

$$
\begin{gathered}
\frac{P^{\circ}-P_{S}}{P_{S}}=\frac{W_{\text {solute }}}{M_{\text {solute }}} \times \frac{1000}{W_{\text {solvent }}} \times \frac{M_{\text {solvent }}}{1000} \\
\frac{P^{\circ}-P_{S}}{P_{S}}=M \text { Molality } \times \frac{M_{\text {solvent }}}{1000}
\end{gathered}
$$

If solute gets associated or dissociated

$$
\frac{P^{\circ}-P_{S}}{P_{S}}=\frac{i \times n}{N}=i \times \text { Molality } \times \frac{M_{\text {solvent }}}{1000}
$$

Ostwald-Walker Method

When dry air is passed through a volatile liquid, there occurs a loss of weight of liquid which is directly proportional to its vapour pressure.

Greater is the volatility of liquid, greater will be the loss of weight of liquid

Ostwald-Walker Method

Step 1

1 Initially, note down the weights of the solution set, solvent set Containers \& of dehydrating agent.

Step 2

Note down the same weights after the experiment is complete.

> Loss of weight of solvent containers

Gain in weight of dehydrating agent
Loss of weight of solution containers

Elevation in Boiling Point

When a non-volatile solute is added into a volatile liquid to form solution, V.P. decreases.

Solution needs to be heated to a higher temperature to boil it, so that V.P. becomes equal to external pressure.

Pure solvent

Atmospheric pressure

Solution
(with solute)

Lower vapour pressure

Elevation in Boiling Point

Hence, to make the V.P. equal to $P_{\text {ext }}$, we have to heat the solution by a greater amount in comparison to pure solvent.
V.P. of solution $<$ V.P. of pure solvent

$$
\begin{array}{lll}
\Delta T_{b} & = & T_{b}-T_{b}^{\circ} \\
\Delta T_{b} & \propto & m
\end{array}
$$

Temperature $(\mathrm{K}) \longrightarrow$

Elevation in Boiling Point

$\mathbf{K}_{\mathrm{b}}=$ B.P. elevation constant or, Molal elevation constant or, Ebullioscopic constant

$$
\mathrm{K}_{\mathrm{b}}=\frac{R T_{b}^{\circ}{ }^{2} \mathrm{M}}{1000 \times \Delta H_{\mathrm{vap}}}
$$

K_{b}

It is equal to elevation in boiling point of 1 molal solution.
K / m or ${ }^{\circ} \mathrm{C} / \mathrm{m}$ or $\mathrm{K} \mathrm{kg} \mathrm{mol}^{-1}$

Ebullioscopic Constant (K_{b})

$$
\begin{array}{c|c|c|}
\hline L_{\text {vap }}=\frac{\Delta H_{v a p}}{M} & \begin{array}{l}
\text { For water, } \\
\bullet L_{v a p}=2257.2 \mathrm{~J} / \mathrm{g} \\
T_{b}^{0}=373 \mathrm{~K}
\end{array} \\
\mathrm{~K}_{\mathrm{b}}=\frac{\mathrm{RT}_{\mathrm{b}}^{\mathrm{o}^{2}}}{1000 \times \mathrm{L}_{\mathrm{vap}}} & \mathrm{~K}_{\mathrm{b}} & =\frac{8.314 \times(373)^{2}}{1000 \times 2257.2} \mathrm{~K} \mathrm{~kg}
\end{array}
$$

Note

1 If solute gets associated/dissociated then $\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{i} \times \mathrm{K}_{\mathrm{b}} \times$ Molality

2 K_{b} is the property of solvent

3 Elevation in B.P. is proportional to the lowering of vapour pressure.

Understanding Elevation of B.P. Using $\mathbf{\Delta S}$

As only solvent particles are going into vapours,

$$
\Delta H_{\text {vap, solvent }}=\Delta H_{\text {vap, solution }} \Rightarrow T_{b, \text { solvent }} \ll \quad T_{b, \text { solution }}
$$

Freezing Point (F.P.)

Temperature at which, the vapour pressure of a solid becomes equal to the vapour pressure of liquid at 1 atm is called normal freezing point.
V.P. of solid $\quad=\quad$ V.P. of liquid

Depression in Freezing Point

When a non-volatile solute is dissolved in the solvent, the V.P. of the solvent in the solution

decreases.

V.P. of solid and liquid solvent will become equal at a lower temperature, i.e., F.P. of solution is lower than that of a pure solvent.

Depression in Freezing Point

ΔT_{f}

The difference between F.P. of a pure solvent $\mathrm{T}_{\mathrm{f}}^{\circ}$ and F.P. of its solution $\mathbf{T}_{\boldsymbol{f}}$.
K_{f} is equal to the depression in freezing point of 1 molal solution.

Cryoscopic Constant $\left(K_{f}\right)$

- $\mathrm{T}_{\mathrm{f}}^{0}$ is F.P. of pure solvent (K)
- M is the molar mass of solvent in $\mathrm{g} / \mathrm{mol}$
- $\Delta H_{\text {fus }}$ is the molar enthalpy of fusion of the solvent ($\mathrm{J} / \mathrm{mol}$)
- $R=8.314 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
- $L_{\text {fus }}$ is latent heat of fusion
(J/g or cal/g)

K_{f} of Water

$$
\begin{aligned}
& \text { For water } \\
& \text { - } L_{\text {fus }}=334.72 \mathrm{~J} / \mathrm{g} \\
& \text { - } \mathrm{T}_{\mathrm{f}}^{0}=273 \mathrm{~K}
\end{aligned}
$$

$K_{f}=\frac{8.314 \times(273)^{2}}{1000 \times 334.72} \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$
$=\quad 1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$

Note

Depression in freezing point is 1 proportional to the lowering of vapour pressure i.e. $\Delta T_{f} \propto \Delta P$

At freezing point or below it, only solvent molecules will freeze \& not solute molecules.

2 If solute gets associated/dissociated then $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{i} \times \mathrm{K}_{\mathrm{f}} \times$ Molality

Understanding Depression in F.P. Using $\mathbf{\Delta S}$

Understanding Depression in F.P. Using $\mathbf{\Delta S}$

As only solvent particles freeze,

$$
\Delta H_{\text {fus, solvent }} \quad=\quad \Delta H_{\text {fus, solution }}
$$

Osmosis

The spontaneous flow of solvent particles from solvent side to solution side, or from solution of low concentration side to solution of high concentration side through a semi-permeable membrane (SPM).

Semi-permeable Membrane (SPM)

A membrane that allows only solvent particles to move across it.

Animal/plant cell membrane formed just below the outer skins.
$\mathrm{Cu}_{2}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ \& Silicate of Ni , Fe, Co can act as SPM.

Example of Osmosis

A raw mango placed in a
i concentrated salt solution loses water \& shrivel into pickle.

People taking a lot of salt, experience water retention in tissue cells. This ii results in puffiness or swelling called edema.

Osmotic Pressure (II)

The external pressure that must be applied on the solution side to just stop the process of osmosis.

van't - Hoff Formula

II

∞
Concentration
(Molarity)

van't - Hoff Formula

Osmotic Pressure (II)

If two solutions of concentrations $\mathrm{C}_{1} \& \mathrm{C}_{2}$ are kept separated by SPM, and $\mathrm{C}_{1}>\mathrm{C}_{2}$ then the solvent particles movement take place from lower to higher concentration.

So, an extra pressure is applied on the higher concentration side to stop osmosis.

$$
P_{e x t} \quad=\quad \Pi_{1}-\Pi_{2}
$$

Osmotic Pressure (II)

If solute gets associated or dissociated then $\boldsymbol{\Pi}=\mathbf{i} \mathbf{x}$ CRT

Osmotic pressure of very dilute solutions is also quite
significant. So, its measurement in lab is very
easy.

Reverse Osmosis

If the pressure applied on the solution side is more than the osmotic pressure of the solution, then the solvent particles will move from solution to solvent side.

$$
P_{e x t} \quad>\quad \text { П }
$$

Based on the difference in osmotic pressure, the solutions can be classified as:

Isotonic Solution

Two solutions having same osmotic pressure are considered as isotonic solution.

Hypotonic \& Hypertonic Solutions

Pressure is applied on the hypertonic solution to stop the flow of solvent particles.

Types of Solutions

Plasmolysis

When the cell is placed in a solution having its osmotic pressure greater than that of the cell sap, water passes out of the cell due to osmosis.

Consequently, the cell material shrinks gradually. The gradual shrinking of the cell material is called plasmolysis.

Applications of Osmotic pressure

a. Determination of molecular
mass of the solute.

$$
M_{\text {solute }}=\frac{W R T}{\Pi V}
$$

- w is mass of solute
- V is volume of the solution
- II is osmotic pressure of the solution
- T is temperature
- R is universal gas constant

Widely used to determine molar masses of proteins and other biomolecules, as they are generally not stable at higher temperatures

This method has the advantage over other methods as pressure measurement is around the room temperature.

Note

If solute gets associated or dissociated then theoretical molar mass of solute will be different from experimentally calculated molar mass.

c. Dialysis

Artificial kidney removes waste products from blood through osmosis.

Blood with waste product

through membrane

