Welcome to

Atomic Structure

Discovery of electron

Cathode rays

In 1891, George Johnstone Stoney named the fundamental unit of electricity as 'electron'
J. J. Thomson and his team identified electron as a particle in 1897

Discovery of electron

Discharge tube: Cylindrical hard glass tube fitted with two metallic electrodes connected to a battery.

Discovery of electron

Observations

Readings of electric current was observed

Anode end of the tube showed a greenish glow on the ZnS screen

Discovery of electron

Why are Gases used under LOW pressure?

At high pressure, more number of gas molecules are present and so there is more obstructions in the paths of electrons which prevents electrons from reaching the anode.

Discovery of electron

Observation and Characteristics

1. Cathode rays move from cathode to anode.
2. Cathode rays travel in a straight line with high velocity in the absence of electric \& magnetic fields.
3. Cathode rays are more efficiently observed with the help of a fluorescent or phosphorescent material like ZnS.
4. Cathode rays rotate the light paddle wheel placed in their path. It shows that the particles of cathode ray particles are material particles which have mass and velocity.

Discovery of electron

Discovery of electron

Observation and Characteristics
5. Cathode rays are deflected in the presence of an electric field.
6. Cathode rays are deflected in the presence of a magnetic field.

Discovery of electron

Conclusions

Cathode rays consist of negatively charged particles and identified as electrons.

Charge to mass ratio

In 1897, J.J. Thomson

- Measured the charge (e) to mass (m) ratio of an electron.
- Electric \& magnetic fields were applied perpendicular to each other \& to the path of electrons

Charge to mass ratio

Charge to mass ratio is the same irrespective of

Discovery of Anode Rays

Discovered by Goldstein

He repeated experiment with a discharge tube by using a perforated cathode.

Red glow is due to anode particles which passes through perforated cathode and strikes the wall of the tube at the cathode side.

Discovery of Anode Rays

Observations and Characteristics

1. Anode rays possess positive charge

Concluded by their directions of deflections in the presence of electric \& magnetic fields
2. Anode rays travel in straight lines in the absence of both electric and magnetic fields.

Observations and Characteristics

3. e/m ratio of the canal rays is different for different gases

Properties of anode rays depends on nature of the gas taken in the discharge tube

In 1919, Rutherford discovered that the smallest and the lightest positive ions are obtained from
hydrogen and called them
protons

Discovery of Neutrons

James Chadwick

Named the electrically neutral particles emitted as neutrons

Mass of neutrons is slightly greater than that of protons

Discovered neutrons in 1932

Bombarded a thin sheet of beryllium $\left({ }_{4}^{9} \mathrm{Be}\right)$ with alpha particles $\left({ }_{2}^{4} \mathrm{He}^{2+}\right)$

Discovery of Neutrons

Thomson's Model

Thomson's Model

1. An atom has a spherical shape (radius $\sim 10^{-10} \mathrm{~m}$)
2. Mass of the atom is assumed to be uniformly distributed all over it
3. Positive charge is uniformly distributed throughout the sphere
4. Negatively charged electrons are embedded in it like raisins in a pudding

Plum Pudding

Thomson's Model

Electrons are embedded in an atom in such a way that the most stable electrostatic arrangement is achieved.

Explains the overall neutrality of an atom

Drawback:
 Not consistent with the results of later experiments

Rutherford's Experiment

A stream of high energy \boldsymbol{a}-particles was directed at a thin gold foil (thickness ~ 100 nm)

Observations of Rutherford's Experiment

When an \boldsymbol{a}-particle strikes the screen, a glow was produced at that point on the screen

Observations of Rutherford's Experiment

Observations of Rutherford's Experiment

Observation

Conclusion

Most \boldsymbol{a}-particles passed through the foil without deflection.

Few \boldsymbol{a}-particles were deflected by small angles.

Very few \boldsymbol{a}-particles (~1 of 20,000) deflected at 180°.

Presence of large empty space in the atom.

Positive charge is concentrated in a very small region.

Small positively charged core at the centre.

Nucleus

Atom consists of a small positively charged core at the center which carries almost the entire mass of the atom

Nucleus

Both, protons and neutrons present in the nucleus are collectively called nucleons.

Radius of the atom

R = Radius of nucleus of an element
$A=$ Mass number of element
$\sim 10^{-15} \mathrm{~m} \rightarrow$ Radius of the nucleus

$$
R_{0}=1.11 \times 10^{-15} \mathrm{~m} \text { to } 1.44 \times 10^{-15} \mathrm{~m}
$$

Extranuclear part

Electrons and nucleus are held together by electrostatic forces of attraction.

$F_{\text {Centripetal }}$

Nucleus is surrounded by revolving electrons.

Drawbacks of Rutherford's Model

It could not explain stability of the atom.

It could not explain line spectrum of the H atom.

It could not explain the electronic structure of the atom.

R.A. Millikan's Oil drop experiment

Charge on oil droplets measured and found to be an integral multiple of magnitude of charge on an electron (e).

Charged metal plate (-)

Charge on electron
$-1.602176 \times 10^{-19} \mathrm{C}$

Mass of the electron

From Thomson's experiment, e/m ratio calculated and from Oil drop experiment, charge of electron calculated. Using the data from these two experiments, mass
of the electron was determined.

Subatomic Particles

Subatomic Particles	Mass (u)	Absolute Mass (kg)	Subatomic Particles	Relative Charge	Absolute Charge (C)
Electron	0.0005	9.1×10^{-31}	Electron	-1	-1.602×10^{-19}
Proton	1.007	1.6722×10^{-27}	Proton	+1	1.602×10^{-19}
Neutron	1.008	1.6749×10^{-27}	Neutron	0	0

Quantization of Charge

$q=n(e)$
The charge can't have continious range of values but only take values in multiple of charge on one electron. The magnitude of charge on an electron is the smallest unit and denoted as "e". Thus charge on an electron is -e and on a proton, it is +e.

Electrostatic Force

$$
F_{12}=F_{21}=K \frac{q_{1} q_{2}}{r^{2}} \quad K=\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\left.{N m^{2}}^{C^{2}}\right) .}{}
$$

$$
\underset{<---}{F_{12}}+q_{1} \quad+q_{2} F_{21}
$$

$$
\varepsilon_{0}=8.854 \times 10^{-12} \frac{\mathrm{C}}{\mathrm{Vm}}
$$

$$
\varepsilon_{0}=\text { Permittivity of vacuum }
$$

Potential Energy

$$
\text { P.E. } \quad=\quad \mathrm{q} \times \mathrm{V}
$$

$$
\begin{aligned}
& \text { q = Charge of the particle } \\
& \text { V = Potential of surface }
\end{aligned}
$$

P.E. $=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r} \quad$ P.E. $=K \frac{q_{1} q_{2}}{r}$

Electromagnetic Waves

Oscillating Electric \&
Magnetic field

Properties of Electromagnetic Waves

Electric \& magnetic field
oscillate perpendicular to each other

Both oscillate perpendicular to the direction of propagation of wave

Do not require any medium for propagation

Can travel in vacuum

$$
\mathrm{c}=3 \times 10^{8} \mathrm{~ms}^{-1} \text { (in vaccum) }
$$

Propagate at a constant speed i.e. with the speed of light (c)

Characteristics of Electromagnetic waves

Time Period

Wavenumber

Amplitude

Characteristics of Electromagnetic waves

Frequency: Number of times a wave oscillate from crest to trough per second

Characteristics of Electromagnetic waves

Wavelength (λ)

Frequency (v)

Number of waves passing a given point in one second SI unit : Hertz (Hz), s ${ }^{-1}$
consecutive crests or troughs
Distance between two

Related to time period as:
SI unit : m

Characteristics of Electromagnetic waves

Velocity (c or v)

Distance travelled by a wave in one second SI unit : ms^{-1}

Related to frequency (v) \& wavelength (λ) as:

Characteristics of Electromagnetic waves

Time Period (T)

Time taken to
complete one oscillation

SI unit : s

Wavenumber (v)

Number of waves per unit length
SI unit : m ${ }^{-1}$

Amplitude (A)

Height of the crest or the depth of the trough from the mean position

SI unit : m

Characteristics of Electromagnetic waves

$$
\bar{v} \quad=\frac{1}{\lambda}
$$

Consists of radiations having different wavelength or frequency

Electromagnetic Spectrum

Electromagnetic radiations are

 arranged in the order ofDecreasing frequency

Increasing wavelength

Electromagnetic Spectrum

Electromagnetic Spectrum

EM Radiation: Wave or Particle?

Wave nature of the EM radiation explains

Diffraction

Interference

EM Radiation: Wave or Particle?

Electromagnetic wave theory could not explain

Black-body radiation

Photoelectric effect

Variation of heat capacity of solids with temperature

Continuous vs Discrete

Mass $=\quad \mathrm{N}$ (mass of 1 water molecule)

Where \mathbf{N} E + I

It seems that mass of water (or any other matter) can take any values (suppose we can go till 30 decimal points) and so we can say that mass has continuous range of values. But on microscopic level, we can observe that mass of water is always an integral multiple of 1 molecule of water. i.e., mass is quantized or we can say that quantization is a property of matter.

$$
\overline{m m}
$$

What is a black body?

Idealized system

Absorbs \& emits all frequencies

Absorbs regardless of the angle of incidence

Why the name, Black Body?

Visually Black body vs

Radiatively Black Body

A true black body appears black because it is not reflecting any electromagnetic radiation.

However, everything you see to be black can not ber called as blackbody because there could be radiation coming out which is not in the visible range.

Wavelength-Intensity relationship

This graph shows intensity as a function of wavelengths emitted from a black body. It shows how bright it is at what wavelength. It shows quantization nature of energy and hence favours particle nature of light.

Particle Nature of Radiation

Planck's quantum theory explains

Planck's Quantum theory

The smallest packet or bundle of energy (quantum of radiation) is called a photon.

This is the smallest quantity of energy that can be emitted or absorbed in the form of EM radiation.

Quantum theory of Radiation

Energy (E) of a photon is proportional to its frequency ($\boldsymbol{\nu}$)

$$
\begin{aligned}
n & = \\
& =0,1,2,3, \ldots .
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{h} & =\text { Planck's constant } \\
& =6.626 \times 10^{-34} \mathrm{Js}
\end{aligned}
$$

One electron volt (eV)

Energy gained by an electron when it is accelerated from rest through
a potential difference of $1 \mathbf{V}$

Important Conversions

$1 \mathrm{eV} \quad=\quad 1.6 \times 10^{-19} \mathrm{~J}$

E (eV)
$\frac{12,400}{\lambda(\AA)}$
$E\left(\frac{\mathrm{~kJ}}{\mathrm{~mole}}\right)=E\left(\frac{\mathrm{eV}}{\text { particle }}\right) \times 96.48$

Photoelectric Effect

Phenomenon of electrons ejection

When a radiation of sufficient frequency falls on the metal surface

Photoelectrons
Electrons are ejected with the aid of light

Photoelectric Effect

When radiation of sufficient energy falls on the metal plate, there starts emission of electrons called photoelectrons.

Observations

Electrons are ejected as soon as the beam of light of sufficient frequency strikes the metal surface

Minimum frequency required to eject a photoelectron from a metal surface

Observations

Observations

No electron is ejected, regardless of the intensity of light

$$
\boldsymbol{\nu}_{\text {incident }}<\boldsymbol{\nu}_{0}
$$

Even at low light intensities, electrons are ejected immediately

Particle nature of light

One photon is absorbed by only one electron in a single interaction. Not more than one photon can be absorbed by an electron.

If intense beam of light is used, large number of photons are available and large number of electrons are ejected. This observation shows particle nature of light.

Observations

When

$$
\nu_{\text {incident }}>\nu_{0}
$$

K.E.E.jected electron
c
$\nu_{\text {Incident }}$

Photoelectric Effect

 the intensity of radiation
$\begin{gathered}\text { Striking photon's } \\ \text { energy }\end{gathered}=\mathrm{hv}$

Work function
$=$
ϕ

Work Function (ϕ)

$$
\phi=\mathrm{W}_{0}=\text { Work function }
$$

Photoelectric Effect

From the Law of Energy Conservation
 $E_{\text {Incident }}=\phi \quad+\mathrm{K.}_{\cdot}$ Max

$$
m_{e}=\text { mass of the electron }
$$

$\mathbf{v}_{\text {max }}=$ maximum velocity of the electron

Photoelectric Effect

K.E. of the ejected electron is given as

Plotting K.E. vs Frequency

From the plot of kinetic energy vs frequency, it shows linear variation according to the equation:

Postulates

Stationary orbits

Concentric circular orbits around the nucleus

These orbits have fixed value of energy

Electrons revolve without radiating energy

Stationary orbits or orbits levels

Energy states /

Postulates

Quantization of Angular momentum

Angular momentum of the
electron in these orbits is always an integral multiple of $\frac{\mathrm{h}}{2 \pi}$

Postulates

Energy (hv) absorbed
Electron can jump from lower to higher orbit by absorbing energy in the form of photon
$\underset{\text { Absorbed }}{\text { Energy }}=\quad E_{3}-E_{2}$

Electrons can jump from higher to lower orbit by releasing energy in the form of photon

Energy
Released

$$
=\quad E_{2}-E_{1}
$$

Energy (hv) released

Postulates

Energy change does takes place in a discrete manner

Bohr's Frequency Rule

Frequency (v) of a radiation absorbed or
emitted when a transition occurs

$E_{1}=$ Energy of lower energy state

E_{2} = Energy of higher energy state

Bohr's Atomic Theory

Applicable only for single electron species
like $\mathrm{H}, \mathrm{He}^{+}, \mathrm{Li}^{2+}, \mathrm{Be}^{3+}$

Mathematical Analysis

Radius of Bohr orbit

Postulate

Electron revolves in a circular orbit

Required centripetal force is provided by electrostatic force of attraction

Calculating the radius of Bohr orbit

Equating both the forces,

On rearranging,
$\frac{m v^{2}}{r}=\frac{K Z e^{2}}{r^{2}}$

Calculating the radius of Bohr orbit

According to Bohr's Postulates,

Calculating the radius of Bohr orbit

Putting the value of constants,

$$
r_{n}=0.529 \frac{n^{2}}{z} \AA
$$

$$
r_{n}=\text { Radius of } n^{\text {th }} \text { Bohr orbit }
$$

> n = Energy level
$Z=$ Atomic number

Calculation of velocity of an electron in Bohr orbit

Angular momentum of the electron revolving in the $n^{\text {th }}$ orbit

Calculation of velocity of an electron in Bohr orbit

Putting equation (ii) in equation (i),

$\mathbf{v}_{\mathrm{n}}=$ Velocity of the electron in $\mathrm{n}^{\text {th }}$ Bohr orbit

Relation between $\mathbf{v}_{\mathrm{n}}, \mathbf{n}$ and \mathbf{Z}

Time period of Revolution (T)

Time period of revolution of an electron in its orbit

$\mathrm{T} \quad=\quad 1.5 \times 10^{-16} \frac{\mathrm{n}^{3}}{\mathrm{z}^{2}} \mathrm{~s}$
$T \quad \frac{n^{3}}{z^{2}}$

Frequency of Revolution (f)

Frequency of revolution of an electron in its orbit

Putting the value of constants, $r_{n} \& v_{n}$

$$
f=6.6 \times 10^{15} \frac{\mathrm{z}^{2}}{\mathrm{n}^{3}} \mathrm{~Hz}
$$

Calculation of Energy of an electron

Total energy (T.E.) of an electron revolving in a particular orbit

T.E. = K.E. + P.E.

$$
\text { K.E. }=\frac{1}{2} \mathrm{mv}^{2}
$$

K.E. Kinetic energy

$$
\text { P.E. }=-\frac{K Z Z e^{2}}{r}
$$

P.E.	Potential energy

$$
\text { T.E. }=\frac{m v^{2}}{2}+-\frac{K Z e^{2}}{r}
$$

Calculation of Energy of an electron

Centripetal force = Electrostatic force

$$
\frac{m v^{2}}{r}=\frac{\mathrm{KZe}^{2}}{\mathrm{r}^{2}}
$$

$$
\text { K.E. }=\frac{m v^{2}}{2}=\frac{K_{Z e}^{2}}{2 r}
$$

Calculation of Energy of an electron

T.E. = K.E. + P.E.
T.E. $=\frac{K Z e^{2}}{2 r}+-\frac{K Z e^{2}}{r}=-\frac{K Z e^{2}}{2 r}$

$$
\text { Т.Е. = -K.E. = } \frac{1}{2} \text { P.E. }
$$

Calculation of Energy of an electron

$$
\text { T.E. }=-\frac{K_{Z} e^{2}}{2 r}
$$

Substituting the value of ' r ' in the equation of T.E.

$$
\text { T.E. }=-\frac{K Z e^{2}}{2} \quad \mathbf{x} \frac{4 \pi^{2} Z e^{2} m K}{n^{2} h^{2}}=-\frac{2 \pi^{2} Z^{2} e^{4} m K^{2}}{n^{2} h^{2}}
$$

$$
\text { т.E. }=-\frac{2 \pi^{2} m e^{4} K^{2}}{h^{2}} \frac{z^{2}}{n^{2}}
$$

Calculation of Energy of an electron

Putting the value of constants we get:

Negative sign of T.E. shows attraction between electrons \& nucleus.

Electron in an atom is more stable than a free electron

Energy of an electron

$$
E_{n} \quad \propto-\frac{z^{2}}{n^{2}}
$$

$z \uparrow \quad E_{n} \downarrow$

Energy of an electron

Distance of electron from the nucleus

Energy

Energy of an electron

Negative sign of T.E.

Attraction between

 Electrons \& NucleusNegative sign of T.E.
Electron in an atom is more stable than a free electron

Energy of an electron

E_{n}	-13.6 $\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}}$ eV/atom
E_{n}	$-2.18 \times 10^{-11} \frac{z^{2}}{n^{2}}$ erg/atom
E_{n}	-313.6 $\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \mathrm{kcal} / \mathrm{mol}$
E_{n}	$-2.18 \times 10^{-11} \frac{z^{2}}{n^{2}}$ erg/atom
E_{n}	-313.6 $\frac{\mathrm{z}^{2}}{\mathrm{n}^{2}} \mathrm{kcal} / \mathrm{mol}$

Energy of an electron

Energy Difference

$$
\begin{aligned}
\Delta E & = \\
\Delta E\left(\frac{\mathrm{eV}}{\text { atom }}\right) & =\left(-13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}_{2}{ }^{2}}\right)-\left(-13.6 \frac{\mathrm{z}^{2}}{\mathrm{n}_{1}{ }^{2}}\right) \\
\Delta E \quad & =13.6 Z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \frac{\mathrm{eV}}{\text { atom }} \\
\Delta E \quad & =2.18 \times 10^{-18} Z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \frac{\mathrm{J}}{\text { atom }}
\end{aligned}
$$

Energy level diagram

Ground state
$\mathrm{n}=1$

Energy level diagram

Ground state (G.S.)

Lowest energy state of any atom or ion

$$
n=1
$$

G.S. energy of H-atom
$-13.6 \mathrm{eV}$
G.S. energy of He^{+}ion

Excited state

States of atom or ion other than the ground state $n \neq 1$

Ionisation energy (I.E.)

Minimum energy required

 to remove an electronfrom
$n=1$ to $n=\infty$

$$
\Delta E=13.6 Z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \frac{\mathrm{eV}}{\text { atom }}
$$

Putting $n_{2}=\infty \& n_{1}=1$
ΔE
$=$
$13.6 Z^{2} \frac{\mathrm{eV}}{\text { atom }}$

Ionisation energy (I.E.)

Ionisation potential (I.P.)

Potential difference through which a free electron must be accelerated from rest

$$
\text { I.P. } \mathrm{He}^{+}=\quad=54.4 \mathrm{~V}
$$

Excitation Energy

Energy required to

 move an electron from $\mathrm{n}=1$ to any other state

10.2 eV

$$
\left.\begin{array}{c}
\text { Excitation } \\
\text { energy of } \\
1^{\text {st }} \text { E.S. }
\end{array}\right) \quad\left(\begin{array}{c}
1^{\text {st }} \\
\text { excitation } \\
\text { energy }
\end{array}\right.
$$

Excitation potential

Potential difference through which an electron must be accelerated from rest such that its
K.E. = Excitation energy

Binding or Separation energy

Energy required to move an electron

From
any state to $\mathrm{n}=\infty$
B.E. Ground state $=\quad$ I.E.Atom or lon

Summary

Ground State

\square

Excited State

Ionization Energy
$\mathrm{n}>1$

Binding Energy
From
any state to $\mathrm{n}=\infty$

Excitation Energy

From $\mathrm{n}=1$ to any other state

Spectroscopy

Spectrograph / Spectroscope

Instrument
used to separate radiation of different wavelengths

Spectrogram

Spectrum of the given radiation

Classification: Based on Origin

Emission

Absorption

Emission Spectrum

Spectrum of radiation emitted by a substance

Continuous Spectrum

Continuous distribution of colours (VIBGYOR)
such that each colour merges into the next one

Continuous Spectrum

Classification: Based on Nature

Line

Discrete
Emission
Spectrum

Continuous

Line Spectrum

Ordered arrangement of lines of a particular wavelength separated by dark space

Line spectrum

Emission Spectra

Application of Line Spectrum

Each element has a unique line spectrum

Identification of unknown atoms

Classification: Based on Nature

Line

Band

Continuous

Band Spectrum

Continuous bands separated by some dark space

Molecular spectrum

Classification : Based on Origin

Emission

Spectrum

Absorption

Absorption Spectrum

Absorption Spectrum

Some dark lines in the continuous spectrum

Represent absorbed radiations

Emission Spectrum of Hydrogen

Line Spectrum of Hydrogen

Emission Spectral Lines/ De-Excitation Series

Due to de-excitation of electron from higher to lower orbit

Energy Level Diagram for H atom

Rydberg's Formula

Electron makes transition from n_{2} to n_{1}

$$
\Delta E=\frac{h c}{\lambda}=2.18 \times 10^{-18} z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \frac{\mathrm{J}}{\text { atom }}
$$

$$
\frac{1}{\lambda}=\frac{2.18 \times 10^{-18} z^{2}}{h c}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) m^{-1}
$$

Rydberg's Formula

$\frac{1}{\lambda}=1.09678 \times 10^{7} \times z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) m^{-1}$
$\frac{1}{\lambda}=109678 \times Z^{2}\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right) \mathrm{cm}^{-1}$

- 0
R_{H} Rydberg constant

Rydberg's Formula

For any atom

$$
\frac{1}{\lambda}=R_{H} Z^{2} \times\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right)
$$

Rydberg's Formula

For H atom

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{n_{1}{ }^{2}}-\frac{1}{n_{2}{ }^{2}}\right)
$$

Spectral series of H atom

Paschen

Brackett

Lyman Series

For an electron present in H atom

${ }^{\text {st }}$ spectral series.
Found in UV region by Lyman

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{1^{2}}-\frac{1}{n_{2}{ }^{2}}\right)
$$

$$
\mathrm{n}_{1}=1 \text { (Final state) }
$$

$$
n_{2}=2,3,4 \ldots
$$

$$
\text { (Initial states, } n_{2}>1 \text {) }
$$

Lyman Series

Lyman Series

Lyman Series

Where,
E in eV

Lyman Series

$1^{\text {st }}$ spectral line

$\lambda_{\text {max }}$

Last spectral line

$\lambda_{\text {min }}$

Series limit

Limiting/last line of any spectral series

Since $n_{2}=\infty$

Lyman Series

Balmer Series

$2^{\text {nd }}$ spectral series

Found in visible region by Balmer

For H atom
Only first 4 lines belongs to visible region

Rest belongs to UV region

Balmer Series

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{2^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$$
n_{1}=2 \text { (Final state) }
$$

$$
n_{2}=3,4,5 \ldots
$$

$$
\text { (Initial states, } n_{2}>2 \text {) }
$$

Balmer Series

Balmer series
$\mathrm{n}=1$

Paschen Series

$3^{\text {rd }}$ spectral series; Found in IR region by Paschen

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{3^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$$
\mathrm{n}_{1}=3 \text { (Final state) }
$$

$$
n_{2}=4,5,6 \ldots
$$

(Initial states, $\mathrm{n}_{2}>3$)

Paschen Series

$\mathrm{n}=2$

Paschen series

$\mathrm{n}=1$

Brackett Series

$4^{\text {th }}$ spectral series; Found in IR region by Brackett

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{4^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$$
n_{1}=4 \text { (Final state) }
$$

$$
n_{2}=5,6,7 \ldots
$$

(Initial states, $n_{2}>4$)

Brackett Series

n = 2
Brackett series
$\mathrm{n}=1$

Pfund Series

$5^{\text {th }}$ spectral series; Found in IR region by Pfund

$$
\begin{gathered}
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{5^{2}}-\frac{1}{n_{2}^{2}}\right) \\
n_{1}=5 \text { (Final state) } \\
n_{2}=6,7,8 \ldots \\
\text { (Initial states, } \left.n_{2}>5\right)
\end{gathered}
$$

$\mathrm{n}=2$
Pfund series
$\mathrm{n}=1$

Humphrey Series

$6^{\text {th }}$ spectral series; Found in IR region by Humphrey

$$
\frac{1}{\lambda}=R_{H} \times\left(\frac{1}{\sigma^{2}}-\frac{1}{n_{2}^{2}}\right)
$$

$$
\mathrm{n}_{1}=6 \text { (Final state) }
$$

$$
n_{2}=7,8,9 \ldots
$$

(Initial states, $\mathrm{n}_{2}>6$)

$n=2$
Humphrey series
$\mathrm{n}=1$

Line Spectrum of Hydrogen

Maximum Number of Spectral Lines

Maximum number of lines

$=$

Maximum number of different

 types of photons
Maximum Number of Lines

Maximum Lines for the transition from 4 to 1
4 to 3
4 to 2 to 2
4 to $1 \quad 3$ to $1 \quad 2$ to 1

Maximum Number of Lines

Spectral Lines $=\frac{\left(n_{H}-n_{L}+1\right)\left(n_{H}-n_{L}\right)}{2}=\frac{(\Delta n+1)(\Delta n)}{2}$

$$
\Delta n \quad n_{H}-n_{L}
$$

$\mathbf{n}_{\mathbf{H}} \quad$ Higher energy level
$n_{\mathrm{L}} \quad$ Lower energy level

Maximum Number of Lines

For transition upto $\mathbf{n}=1$ or $\mathbf{n}=\mathbf{n}_{\text {Series }}$

Maximum Number of Lines

Example

Number of spectral lines in Lyman series from $4^{\text {th }}$ shell

$$
=n_{H}-1=4-1=3
$$

Example

$$
\begin{aligned}
& 4 \text { to } 3 \\
& 3 \text { to } 2 \\
& 2 \text { to } 1 \quad 4 \text { to } 2 \quad 3 \text { to } 1 \quad 4 \text { to } 1
\end{aligned}
$$

$1^{\text {st }}$ Atom $\quad 2^{\text {nd }}$ Atom $\quad 3^{\text {rd }}$ Atom $\quad 4^{\text {th }}$ Atom

$$
y^{b} \$
$$

Pathway to Quantum Mechanical Model

Dual Nature of Matter

de Broglie proposed that particle has dual nature

Particle nature

Louis de Broglie

Einstein suggested that light has dual nature i.e., particle nature as well as wave nature.

de Broglie Hypothesis

Matter Wave

de Broglie Hypothesis

Planck's equation

Einstein's Mass
Energy relationship

de Broglie Hypothesis

Equating both

$$
\frac{h c}{\lambda}=\mathrm{mc}^{2}
$$

For photon

By same analogy, de Broglie proposed

de Broglie Wavelength (λ)

Davisson and Germer's Experiment

Experimental verification of de Broglie's prediction

It was observed that an electron beam undergoes diffraction

Wavelength of a ball \& an electron!

de Broglie wavelength: $\lambda=\frac{h}{m v}$

Cricket ball

$$
\begin{aligned}
& \mathrm{m}=150 \mathrm{~g} \\
& \mathrm{v}=25 \mathrm{~m} \mathrm{~s}^{-1} \\
& \lambda=\frac{6.626 \times 10^{-34}}{\left(150 \times 10^{-3}\right) \times 25} \\
& \lambda=1.767 \times 10^{-34} \mathrm{~m}
\end{aligned}
$$

λ is insignificant.

Electron

$$
\begin{aligned}
& \mathrm{m}=9.1 \times 10^{-31} \mathrm{~kg} \\
& \mathrm{v}=2 \times 10^{3} \mathrm{~m} \mathrm{~s}^{-1}
\end{aligned}
$$

$$
\lambda=\frac{6.626 \times 10^{-34}}{\left(9.1 \times 10^{-31}\right) \times 2 \times 10^{3}}
$$

$$
\lambda=0.364 \times 10^{-6} \mathrm{~m}
$$

$$
\text { = } 364 \mathrm{~nm}
$$

λ is significant.

Matter Waves

Due to
larger mass

de Broglie's Equation \& Kinetic Energy

Multiplying both sides by m \& rearranging

de Broglie's Equation \& Kinetic Energy

A charged particle accelerated from rest across a potential difference of V

| K.E. | = |qV|

de Broglie's Equation \& Kinetic Energy

$$
\lambda=\frac{h}{\sqrt{2 m \times q V}}
$$

Electron as a Wave

Electron exist

Circumference, $2 \pi r=n \lambda$

Out of phase

Electron don't exist

Circumference,
$2 \pi r \neq n \lambda$
$\mathrm{n}=$ Number of waves made in Bohr's orbit

An integral number of complete wavelengths must fit around the circumference of the orbit.

Electron as a Wave

When electrons are in phase,

Bohr's Postulate verified

n = Energy level

Heisenberg's Uncertainty Principle (H.U.P.)

Exact position and momentum of a microscopic particle cannot be determined simultaneously

Werner Heisenberg

Heisenberg's Uncertainty Principle

Principle of Optics

If a light (wavelength ' λ ') is used to locate the position of a particle, then

Minimum error in the position measurement ($\Delta \mathrm{x}$)

Heisenberg's Uncertainty Principle

For a photon

Heisenberg's Uncertainty Principle

High energy photon strikes particle

Similarly

For accurate momentum

Heisenberg's Uncertainty Principle

For an electron

Heisenberg's Uncertainty Principle

$$
\text { If } \Delta x=10^{-8} \mathrm{~m} \text { then } \Delta v=10^{4} \mathrm{~ms}^{-1}
$$

Position | High |
| :---: |
| accuracy |$>\Delta x$ is small

Velocity
Uncertain $\Delta v=10^{-8} \mathrm{~ms}^{-1}$ then $\Delta x=10^{4} \mathrm{~m}$

Conclusion: Heisenberg's uncertainty principle is meaningless for bigger particles.

Velocity	High accuracy$>\Delta v$ is small
Position	Uncertain
Δx is large	

Significance of the Uncertainty Principle

Not an instrumental error, rather conceptual error

Rules out the existence of definite paths of electrons

Introduced concept of probability of finding the electrons

Precise statements of position\& momentum
of an electron replaced with probability

Forms the basis of
Quantum Mechanical Model of atom

Limitations of Bohr Model

Could not explain the line spectra of atoms containing more than one electron

Could not explain the presence of doublet i.e. two closely spaced lines

Limitations of Bohr Model

Unable to explain the splitting of spectral lines
3 in the presence of magnetic field (Zeeman effect) and electric field (Stark effect).

No conclusion was given for the principle of quantisation of angular momentum

Unable to explain de Broglie's concept \& Heisenberg's Uncertainty Principle

Wavefunction

SWE is solved to get values of Ψ and their corresponding energies

A function that contains all the dynamical information about a system

Schrodinger Wave Equation

Ψ corresponds to atomic orbital

Characterized by a set of quantum numbers

Quantum Numbers

1 Principal Quantum Number (n)
Set of four numbers required to define an electron in an atom completely

2 Azimuthal Quantum number (/)

3 Magnetic Quantum Number $\left(m_{l}\right)$

4 Spin Quantum Number (s)

Principal Quantum Number (n)

Designates the shell to which the electron belongs

Signifies energy level for single electron species

Proposed by Niels Bohr

Principal Quantum Number (n)

Azimuthal Quantum Number (I)

Designates the subshell to which the electron belongs

Accounts for the fine lines in atomic spectrum

Azimuthal Quantum Number (I)

> Also known as

Describes the 3-D shape of the orbital or the electron cloud

Subsidiary Quantum Number

Orbital Angular momentum Quantum Number

Boundary Surface Diagram

Encloses the 3D region where probability of finding electrons is maximum

Example

Shape : Spherical

Classification of Orbitals

Shape of Orbitals

s - orbital
 Shape : Spherical

p - orbital
 Shape : Dumb bell

Shape : Double dumb bell

Shapes of Orbitals

Orbital	Shape
s	Spherical
p	Dumb bell
d	Double dumb bell
f	Leaf like / Complicated

Subshell

> Collection of similar shaped orbitals of same n.

Azimuthal Quantum Number (I)

For a given value of Principal Quantum Number (n)

Subshell

\boldsymbol{I}	Subshell	Description
$\mathbf{0}$	s	Sharp
$\mathbf{1}$	p	Principal
$\mathbf{2}$	d	Diffused
$\mathbf{3}$	f	Fundamental
$\mathbf{4}$	g	Generalised

Subshell Representations

Number of subshells in the $\mathrm{n}^{\text {th }}$ shell

n	$/$	Subshell notation
1	0	$1 s$
2	0,1	$2 s, 2 p$
3	$0,1,2$	$3 s, 3 p, 3 d$
4	$0,1,2,3$	$4 s, 4 p, 4 d, 4 f$

Azimuthal Quantum Number (I)

Orbital angular momentum (L)

Subshell	Orbital angular momentum
s	0
p	$\sqrt{2} \hbar$
d	$\sqrt{6} \hbar$

Magnetic Quantum Number (m,

Proposed by Linde

Designates the orbital to which the electron belongs

2
Describes the orientation of orbitals

3 of atomic spectrum in magnetic field

Magnetic Quantum Number (m,

Can have values from - I to + I

 including zeroEach value corresponds to an orbital

Magnetic Quantum Number (m_{l})

Maximum number of orbitals in a subshell

$$
=\quad 2 /+1
$$

Subshell	Number of orbitals
s	1
p	$3\left(p_{x}, p_{y}, p_{z}\right)$
d	$5\left(d_{x y}, d_{y z}, d_{z x}, d_{x-y}^{2} d_{z}\right)$
f	7

s - orbital

Shape : Spherical

Non-directional in nature

p - orbital

Shape : Dumb bell
 Directional in nature

p_{z}

p_{y}

p_{x}

d - orbital

Shape : Dumb bell
Directional in nature

Remember!

An orbitals can accommodate maximum of 2 electrons.

Maximum number of electrons in a subshell

$$
=\quad 2(21+1)
$$

Subshell	s	p	d	f
$/$	0	1	2	3
Number of electrons	2	6	10	14

Spin Quantum Number (s or ms)

Presence of two closely spaced lines in atomic spectrum

Spin of an electron

Proposed by George Uhlenbeck (left)

$$
s=+\frac{1}{2}
$$

$$
s=-\frac{1}{2}
$$ and Samuel Goudsmit (Right)

Spin Quantum Number (s)

Spin magnetic moment (μ)
 $=\quad \sqrt{n(n+2)}$ B.M.

$$
\mathrm{n}=\text { number of unpaired electron }
$$

Orbit and Orbital

Orbit	Orbital
Well defined circular path around the nucleus where electrons revolve	3D region around the nucleus where electrons are most likely to be found
Maximum number of electrons in $\mathrm{n}^{\text {th }}$ orbit is $\mathbf{2 n} \mathbf{n}^{2}$	Cannot accommodate more than two electrons

Orbit and Orbital

Orbit	Orbital
Not in accordance with Heisenberg's Uncertainty Principle	In accordance with Heisenberg's Uncertainty Principle
Designated as K, L, M, N, ...	Designated as s, p, d, f, ...

Rules for Filling Electrons in Orbitals

Aufbau Principle

Pauli's Exclusion Principle

Hund's Rule of Maximum Multiplicity

Aufbau Principle

Electrons are

 filled in various orbitals in order of their increasing energies
Energies of Subshells of H-like Species

Energy of single electron species depends only on the Principal Quantum Number

$$
1 s<2 s=2 p<3 s=3 p=3 d<4 s=4 p=4 d=4 f<\ldots
$$

Order of Energy

Energies of Subshells of H-like Species

Energy of Subshells of Multi-electron Species

Different subshells have different energy which depends on:

Principal Quantum
Number

> Azimuthal Quantum Number

($\mathrm{n}+\mathrm{l}$) rule or Bohr-Bury's Rule

Lower value of ($\mathrm{n}+\mathrm{I}$)

Lower will be energy of subshell

Two subshells with
same ($\mathrm{n}+$ I) value

Subshell with lower ' n '
value has lower energy

Comparison of orbital energy

Energies of Subshells of Multi electron Species

Energies of Subshells of Multi electron Species

H-like v/s Multi-electron species

H-like species

Multi-electron species

Energy of a subshell depends on ' n ' only.

Only attractive forces are present between the nucleus and the electron.

Energy of a subshell depends on ($\mathbf{n}+\mathbf{I}$).

Electrons experience attractive forces towards the nucleus as well as repulsive forces from other electrons.

One-electron species

Multiple-electron species

Repulsion

Attraction

Pauli's Exclusion Principle

No two electrons in an atom can have the same set of all four quantum numbers

Wolfgang Pauli

Pauli's Exclusion Principle

Restrict the filling of number of electrons in an orbitals

Wrong

Subshell electron capacity

Friedrich Hund

Hund's Rule of Maximum Multiplicity

No electron pairing takes place in
the orbitals in a subshell
Until each orbital is occupied by 1 electron with parallel spin

Hund's rule is an empirical rule

Determines the lowest energy arrangement of electrons

Why Maximum multiplicity?

Electronic Configuration

Electronic Configuration of Various Elements

Electronic Configuration of Various Elements

Ne

$1 k$	$1 k$	11	$1 k$	$1 k$
$1 s^{2}$	$2 s^{2}$	$2 p^{6}$		

Mg

Simplified Electronic Configuration

Configuration of Sodium:

Ne

Simplified configuration:

Electronic Configuration

a) ${ }_{21} \mathrm{Sc} \rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}$
$\rightarrow[A r] 4 s^{2} 3 d^{1}$
$\rightarrow \quad[A r] 3 d^{1} 4 s^{2}$

$3 \mathrm{~d}^{1}$

Number of unpaired electrons 1

Total spin

$$
+\frac{1}{2} \text { or }-\frac{1}{2}
$$

Electronic Configuration

b) ${ }_{26} \mathrm{Fe} \rightarrow 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{6}$

$$
\rightarrow \quad[\operatorname{Ar}] 4 s^{2} 3 d^{6}
$$

$$
\rightarrow \quad[\mathrm{Ar}] 3 d^{6} 4 s^{2}
$$

1	1	1	1	1
$\mathbf{3 d}^{\mathbf{6}}$				$\mid 1$ $\mathbf{4 s}$

Number of unpaired electrons

Total spin

$$
+\frac{4}{2} \text { or }-\frac{4}{2}
$$

Exceptions

d^{5} is more stable than d^{4} configuration

Exceptions

${ }^{63} \mathrm{C}$
 29

d^{10} is more stable than d^{9} configuration

Half-filled \& Fully Filled Orbitals

Exactly half filled \&

fully filled orbitals make the configuration more stable

$$
p^{3}, p^{6}, d^{5}, d^{10}, f^{7} \& f^{14}
$$

configurations are stable

Stability of half filled \& fully filled orbitals

Symmetry

Consequently, their
 shielding of one another is relatively small

Electrons are more strongly attracted by the nucleus

Have less energy and more stability

Exchange Energy

Energy released when two or more electrons with the same spin in the degenerate orbitals
I
V
Tends to exchange their positions

Number of exchanges that can take place is maximum

When subshell is either half filled or fully filled.

Exchange Energy

4 exchange by electron 'a'

2 exchange by electron ' c '

3 exchange by electron 'b'

1 exchange by electron 'd'

Electronic Configuration of Ions

Electronic Configuration of Cations

Formed by removing outermost electron from a neutral atom

Electronic Configuration of Cations

In d-block metals
electrons are first removed from ns orbital, then from the penultimate ($\mathrm{n}-\mathbf{1}$)d orbital

Examples

Fe: $[\mathbf{A r}] 3 d^{6} \mathbf{4} \mathbf{s}^{\mathbf{2}}$ or Ar	11	1	1	1	1	11

$\mathrm{Fe}^{\mathbf{2 +}}:[\mathrm{Ar}] \mathbf{3 d}^{6} \mathbf{4 s} \mathbf{s}^{\mathbf{0}}$ or Ar | 11 | 1 | 1 | 1 | 1 | |
| :---: | :---: | :---: | :---: | :---: | :---: |

$\mathrm{Fe}^{\mathbf{3 +}}:[\mathrm{Ar}] \mathbf{3 d ^ { 5 }} \mathbf{4} \mathbf{s}^{\mathbf{0}}$ or Ar| 1 | 1 | 1 | 1 | 1 |
| :--- | :--- | :--- | :--- | :--- |

Examples

Electronic Configuration of Anions

Formed by adding electrons to a neutral atom according to the 3 rules (Pauli's, Aufbau \& Hund's rule)

Schrodinger Wave Equation (SWE)

Based on the dual nature of matter

Describes the behavior of electron around the nucleus

Wavefunction

Ψ corresponds to the allowed solutions of SWE

Ψ contains all the information related to the motion of an electron in an atom

Amplitude of a standing wave is a function of x

Similarly, Ψ is a function of coordinates

Physical Significance of Ψ

Physical significance of $\Psi \Psi^{2}$

Maxwell's wave theory

Intensity of wave
 \propto Square of amplitude

Max Born suggested that

Nodes

Region where the probability density is zero i.e. where the probability of finding an electron is zero

$$
\Psi \text { or } \Psi^{2}=0
$$

Nodes

Radial Node

Angular Node

Plane or a surface passing through the nucleus
where probability of finding an electron is zero

Number of angular nodes in an orbital \square

Nodes

Total number of nodes

Radial nodes
($\mathrm{n}-\mathrm{I}$-1)

Angular nodes
 (I)

What are these radial and angular nodes?

Angular node

Radial Node vs Angular Node

Radial node

Angular node

Spherical regions where the Flat planes or cones where probability of finding an electron is zero.

Have fixed radii. the probability of finding an electron is zero.

Have fixed angles.

Number of radial nodes is given by (\mathbf{n} - I-1)

Number of angular nodes is given by (I)

Nodes of 's' orbitals

1s
2s
3s

Angular Nodes of ' p ' orbitals

Angular Nodes of 'd' orbitals

Angular Nodes of 'd' orbitals

Radial Probability of 1s

Radial Probability of 2 s

Radial Probability of 3s

Radial Probability of $2 p$

Radial Probability of 3p

Nodes in p-orbital

