Welcome to

Relations & Functions II

Table of contents

Session 01 Cartesian product of sets Relation Domain and range of relation Inverse of a relation	03 04 05 06 07	Session 03 Logarithmic function Modulus function Greatest Integer Function	55 56 63 67	Session 07 Even function Odd function Properties of Even/Odd function Composite function	135 136 138 142 149
Void relation Universal Relation Identity relation Reflexive relation Symmetric relation	10 11 13 14 18	Session 04 Fractional Part function Signum function One-One function Many-one function	76 77 84 88 91	Session 08 Properties of Composite function Periodic functions Properties of Periodic functions	158 163 164 169
Transitive relation Equivalence relation Composition of a relation Session 02 Function	20 22 29 30 31	Session 05 Number of functions Number of one-one mappings	93 104 105	Session 09 Inverse function Properties of Inverse function Binary Operation Properties of Binary Operation	177 182 188 191 192
Vertical line test Real valued function Polynomial function Identity function	35 37 39 41	Session 06 Onto function (Surjective mapping) Into function	113 114 117	Session 10 Functional Equations Transformation of graphs	198 200 207
Rational function Exponential function	48	Bijection function Principle of inclusion and exculsion	120 125	Session 11 Transformation of graphs	219 225

Cartesian product of Sets:

Let A and B are two non-empty sets. The set of all ordered pairs (a, b) [where $a \in A$ and $b \in B$] is called Cartesian product of sets A and B.

- It is denoted by $A \times B$.
- If n(A) = p, n(B) = q, then the number of elements in cartesian product of sets is $n(A \times B) = p \times q$.

Example:
$$A = \{a, b, c\}, B = \{1, 2\}$$

$$\Rightarrow A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}$$

$$\Rightarrow n(A \times B) = 6 = n(A) \times n(B)$$

Relation:

Let A and B be two sets, then a relation R from A to B is a subset of $A \times B$.

- $R \subseteq A \times B$
- Number of relations = Number of subsets of $A \times B$
- If n(A) = p, n(B) = q, and $R: A \to B$, then number of relations = 2^{pq}

Example: n(A) = 6, n(B) = 4

$$\Rightarrow n(A \times B) = n(A) \times n(B) = 6 \times 4 = 24$$

Number of relations = Number of subsets of $A \times B$

Domain and range of relation:

Let R be a relation defined from set A to set B.

Let
$$R = \{(a_1, b_1), (a_1, b_2), (a_2, b_3)\}$$

• The set of all the first components of ordered pairs belonging to R is called domain of R.

i.e., domain $\subseteq A$

• The set of all the second components of ordered pairs belonging to R is called range of R.

i.e., Range
$$\subseteq B$$

• Set B is called the co-domain of R.

Inverse of a relation:

Let A and B are two sets and R be a relation from A to B, then the inverse of R is denoted by R^{-1} is a relation from B to A and is defined as: $R^{-1} = \{(b,a),(a,b) \in R\}$

- Domain (R^{-1}) = Range of R
- Range (R^{-1}) = Domain of R

?

If $R = \{(x, y): x, y \in \mathbb{Z}, x^2 + 3y^2 \le 8\}$ is a relation on set of integers \mathbb{Z} , then domain of R^{-1} .

- $\{-2,-1,1,2\}$
- B {-1,0,1}
- (C) {-2,-1,0,1,2}
- (0, 1)

If $R = \{(x, y): x, y \in \mathbb{Z}, x^2 + 3y^2 \le 8\}$ is a relation on set of integers \mathbb{Z} , then domain of R^{-1} .

Solution:
$$R = \{(x, y) : x, y \in \mathbb{Z}, x^2 + y^2 \le 8\}$$

Domain of R^{-1} = Range of R (values of y)

$$x = 0, y^2 \le 8/3$$
 $\Rightarrow y \in \{-1, 0, 1\}$

$$x = 1, y^2 \le 7/3$$
 $\Rightarrow y \in \{-1, 0, 1\}$

$$x = 2, y^2 \le 4/3$$
 $\Rightarrow y \in \{-1, 0, 1\}$

$$x = 3, y^2 \le -1/3$$
 $\Rightarrow y \in \phi$

: Domain of
$$R^{-1} = \{-1, 0, 1\}$$

Void relation

A relation R on a set A is called a void or empty relation, if no element of set A is related to any element of A.

•
$$R = \phi$$

Example: $A = \{\text{students in boys' school}\}$

Relation $R = \{(a, b) : b \text{ is sister of } \overline{a \& a, b \in A}\}$

Universal relation

It is a relation in which each element of set A is related to every element of set A.

$$R = A \times A$$

Example: $A = \{ \text{set of all the students of a school} \}$

Relation $R = \{(a, b) : \text{ difference between the heights of } a \& b \text{ is less than } 10 \text{ meters, where } a, b \in A\}$

Explanation: It is obvious that the difference between the heights of any two students of the school has to be less than 10 m.

Therefore $(a, b) \in R$ for all $a, b \in A$.

$$\Rightarrow R = A \times A$$

 \therefore R is the universal-relation on set A.

If $A = \{\text{set of real numbers}\}$, then check whether the relation $R = \{(a,b) : |a-b| \ge 0, a,b \in A\}$ is a universal relation or not?

Solution:

Given: $a \in \mathbb{R} \& b \in \mathbb{R}$

Since, the difference of two real number is a real number.

 $a - b \rightarrow \text{Real number}$

Absolute value of all real numbers ≥ 0

$$|a-b| \ge 0$$

$$|1 - 3| \ge 0$$

$$|5-2| \ge 0$$

Identity relation:

Relation on set A is identity relation, if each and every element of A is related to itself only.

Example: $A = \{\text{set of integers}\}\$

Relation
$$R = \{(a, b) : a = b, a, b \in A\} = I_A$$

Reflexive relation:

A relation *R* defined on a set *A* is said to be reflexive if every element of *A* is related to itself.

• Relation R is reflexive if $(a, a) \in R \ \forall \ a \in A \ \text{or} \ I \subseteq R$, where I is identity relation on A.

A relation R defined on set of natural numbers,

$$R = \{(a, b) : a \text{ divides } b\}, \text{ then } R \text{ is a } \underline{\hspace{1cm}}$$

Solution: $(a,b) \rightarrow a$ divides b

For being reflexive following condition must satisfy:

 $(a, a) \Rightarrow a$ divides a, which is always true.

 \therefore R is a reflexive relation.

$$R = \{(1,1), (1,2), (2,2), (3,3)\}$$
 is:

- (A) Only identity
- B Only reflexive
- \bigcap Both a and b
- None

$R = \{(1, 1), (1, 2), (2, 2), (3, 3)\}$ is:

Solution:

 \therefore R is a reflexive relation

B Only reflexive

 \bigcap Both a and b

(D) None

Symmetric relation:

A relation R on a set A is said to be a symmetric relation, iff $(a,b) \in R \Rightarrow (b,a) \in R$.

$$a R b \Rightarrow b R a, \forall (a, b) \in R$$

Example: Consider a set $A = \{1,2,3\}$, which one is symmetric relation

$$R_1 = \{(1,1), (1,2), (2,1), (1,3), (3,1)\}$$
 Symmetric

$$R_2 = \{(1,1), (1,2), (2,1), (1,3)\}$$
 Not symmetric

$$R_3 = \{(1,1),(2,2),(3,3)\} = I_A$$
 Symmetric

- Number of Reflexive relation = $2^{n(n-1)}$
- Number of symmetric relation = $2^{\frac{n(n+1)}{2}}$

Transitive relation

A relation R on set A is said to be a transitive relation, iff $(a,b) \in R$ and $(b,c) \in R \Rightarrow (a,c) \in R, \forall (a,b,c \in A)$.

$$a R b$$
 and $b R c \Rightarrow a R c, a, b, c \in A$

Example: Consider a set $A = \{1, 2, 3\}$

$$R_1 = \{(1,2), (2,3), (1,3)\}$$
 Transitive
 $1R2 \ 2R3 \ 1R3$

$$R_2 = \{(1,1), (1,3), (3,2)\}$$
 Not transitive

$$R_3 = \{(1,1),(2,2),(3,3)\} = I_A$$
 Transitive

Show that the relation R defined on the set of real number such that $R = \{(a,b) : a > b\}$ is transitive.

Solution:

Let $(a,b) \in \mathbb{R}$ and $(b,c) \in \mathbb{R}$

So a > b and $b > c \Rightarrow a > c$

Thus $(a, c) \in \mathbb{R}$

 \therefore R is a transitive relation.

Equivalence Relation

- A relation R on a set A is said to be equivalence relation on A iff,
 - If it is reflexive, i.e., $(a, a) \in R, \forall a \in A$
 - If it is symmetric, i.e., $(a, b) \in R \Rightarrow (b, a) \in R, \forall a, b \in A$
 - If it is transitive, i.e., $(a,b) \in R$, $(b,c) \in R \Rightarrow (a,c) \in R$, $\forall a,b,c \in A$
- Identity Relation is an Equivalence Relation.

Note:

If a relation is reflexive, symmetric and transitive, then it is equivalence relation.

Let T be the set of all triangles in a plane with R a relation given by $R = \{(T_1, T_2) : T_1 \text{ is congruent to } T_2\}$. Show that R is an equivalence relation.

Solution:

Since every triangle is congruent to itself, $\Rightarrow R$ is reflexive

$$(T_1, T_2) \in R \Rightarrow T_1$$
 is congruent to T_2

$$\Rightarrow T_2$$
 is congruent to $T_1 \Rightarrow R$ is symmetric

Let
$$(T_1, T_2) \in R$$
 and $(T_2, T_3) \in R$

$$\Rightarrow$$
 T_1 is congruent to T_2 and T_2 is congruent to T_3

$$\Rightarrow T_1$$
 is congruent to T_3

$$\Rightarrow R$$
 is transitive

Hence, R is an Equivalence Relation.

Statement $1: A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer} \}$ is an equivalence relation on \mathbb{R} .

Statement $2: B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation.

JEE Main 2011

- Statement 1 is true, statement 2 is true and statement 2 is correct explanation of statement 1.
- Statement 1 is true, statement 2 is true and statement 2 is not correct explanation of statement 1.
- Statement 1 is true, statement 2 is false
- Statement 1 is false, statement 2 is true

Statement $1: A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer} \}$ is an equivalence relation on \mathbb{R} .

Statement $2: B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation.

JEE Main 2011

Solution: $A = \{(x, y) \in \mathbb{R} \ X \ \mathbb{R} : y - x \text{ is an integer}\}$

$$(x,y) \in A \Rightarrow y-x$$
 is an integer $\Rightarrow x-x$ is an integer $\Rightarrow (x,x) \in A$

$$\Rightarrow A$$
 is reflexive

$$(x,y) \in A \Rightarrow y-x$$
 is an integer $\Rightarrow x-y$ is an integer $\Rightarrow (x,x) \in A$

$$\Rightarrow A$$
 is symmetric

$$(x,y) \in A \text{ and } (y,z) \in A$$

$$\Rightarrow y - x$$
 is an integer and $y - z$ is an integer

$$\Rightarrow x - z$$
 is an integer $\Rightarrow (x, z) \in A \Rightarrow A$ is transitive

Return To Top

∴ A is an equivalence relation.

Statement $1: A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer} \}$ is an equivalence relation on \mathbb{R} .

Statement $2: B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation.

JEE Main 2011

Solution:

$$B = \{(x, y) \in \mathbb{R} \ X \ \mathbb{R} : x = \alpha y \text{ for some rational number } \alpha\}$$
 $(x, y) \in B \Rightarrow x = \alpha y \Rightarrow x = \alpha x \text{ for } \alpha = 1 \Rightarrow (x, x) \in B \Rightarrow B \text{ is reflexive}$
 $(x, y) \in B \Rightarrow x = \alpha y$

$$(x, y) \in B \Rightarrow x = \alpha y$$

$$(x, y) \in B \text{ and } (y, z) \in B$$

$$\text{Let } x = 0, y = 1 \text{ Thus } \alpha = 0$$

$$\Rightarrow x = \alpha y \text{ and } y = \beta z$$

$$\Rightarrow x = \alpha \beta z$$

$$\Rightarrow (y, x) \notin B$$

$$\Rightarrow B \text{ is transitive}$$

 \therefore B is not an equivalence relation.

 $\Rightarrow B$ is asymmetric

Statement $1: A = \{(x, y) \in \mathbb{R} \times \mathbb{R} : y - x \text{ is an integer} \}$ is an equivalence relation on \mathbb{R} .

Statement $2: B = \{(x, y) \in \mathbb{R} \times \mathbb{R} : x = \alpha y \text{ for some rational number } \alpha\}$ is an equivalence relation.

JEE Main 2011

- Statement 1 is true, statement 2 is true and statement 2 is correct explanation of statement 1.
- Statement 1 is true, statement 2 is true and statement 2 is not correct explanation of statement 1.
 - C Statement 1 is true, statement 2 is false
- Statement 1 is false, statement 2 is true

Composition of a Relation

The composition of two relations R & S (SoR) is a binary relation from A to C, if and only if there is $b \in B$ such that aRb & bSc where $a \in A \& c \in C$ Mathematically,

$$SoR = \{(a, c) | \exists b \in B : aRb \land bSc\}$$

Session 2

Introduction to Function and Types of Functions

Function

A function is a relation defined from set A to set B such that each and every element of set A is uniquely related to an element of set B.

• It is denoted by $f: A \to B$

Example:

A YES

B

Solution:

Answer is **No**.

For being function, every input should have unique output, here input c doesn't have any output.

Domain, Range and Co-domain of function:

Domain: Values of set A for which function is defined.

(Set of permissible inputs)

Range : All values that f takes (Range \subseteq Co – domain). (Set of output generated domain)

Co-domain: Set of all elements in set *B*.

Example:

Domain = $\{1, 2, 3, 4\}$

Range = $\{1, 4, 9, 16\}$

Co-domain = $\{1, 4, 9, 16, 25\}$

B

Vertical line test:

If any vertical line parallel to Y —axis intersect the curve on only one point, then it is a function. If it is intersecting more than one points, then it is not a function.

Vertical line test:

Real valued function:

A function which has either \mathbb{R} or one of its subsets as its range, is called a real valued function. Further, if its domain is also either \mathbb{R} or a subset of \mathbb{R} , is called a real function.

 $R_f \subseteq \mathbb{R} \Rightarrow f$ is real valued function.

Solution:

For
$$x = 1$$

$$y^2 = e^{1+1} = e^2$$

$$y = \pm e$$

We get two values of y for single value of x.

Hence, this is not a function.

B

Polynomial function:

- Domain: $x \in \mathbb{R}$
- If n = 0, we get $P(x) = a_0$ (Constant Polynomial)

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Domain: \mathbb{R}

Range: $\{a_0\}$

B

Polynomial function:

- Domain: $x \in \mathbb{R}$
- If n = 1, we get $P(x) = a_1 x + a_0$ (Linear Polynomial)

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Domain: R

Range: \mathbb{R}

B

Identity function:

•
$$a_1 = 1$$
, $a_0 = 0$

$$p(x) = x$$

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Domain: \mathbb{R}

Range :ℝ

B

Polynomial function:

- Domain: $x \in \mathbb{R}$
- If n = 2, we get $P(x) = a_2x^2 + a_1x + a_0$ (Quadratic Polynomial)

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Return To Top

Polynomial function:

- Domain: $x \in \mathbb{R}$
- If n is even, P(x) is called an even degree polynomial whose range is always a subset of \mathbb{R} .

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$$

 $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Polynomial function:

- Domain: $x \in \mathbb{R}$
- If n is odd, P(x) is called an odd degree polynomial whose range is \mathbb{R} .

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_0$ $a_0, a_1, \dots, a_n \in \mathbb{R}, n \in \mathbb{W}$

Solution:

$$f(x) = \sin^2 x + \cos^2 x = 1$$

$$D_f : x \in \mathbb{R}$$

$$R_f : y \in \{1\}$$

- (A) [−1,∞)
- (**0**,∞)
- (C) [0,∞)
- [3,∞)

Solution:

Given function:

$$f(x) = x^2 + 4x + 3$$

 $D_f:x\in\mathbb{R}$

$$R_f: y \in \left[-\frac{D}{4a}, \infty\right)$$

$$a = 1, b = 4, c = 3$$

$$-\frac{D}{4a} = -\frac{(4)^2 - 4(1)(3)}{4 \times 1} = -\frac{4}{4} = -\frac{1}{4}$$

Hence, range of the function would be $[-1, \infty)$

Rational Function:

- For $h(x) = \frac{f(x)}{g(x)}$, where f(x) and g(x) are functions of x
- Domain: Check domain of f(x) and g(x), & $g(x) \neq 0$
- If f(x) & g(x) is both are polynomials, then h(x) is rational polynomial function.

Find domain and range of $f(x) = \frac{x+1}{3x-5}$.

Given:
$$f(x) = \frac{x+1}{3x-5}$$

Domain:
$$3x - 5 \neq 0 \Rightarrow x \neq \frac{5}{3} \Rightarrow x \in \mathbb{R} - \left\{\frac{5}{3}\right\}$$

Range: Let
$$f(x) = y = \frac{x+1}{3x-5} \rightarrow \text{Convert}$$
 and make 'x' as a subject

$$\Rightarrow 3xy - 5y = x + 1$$

$$\Rightarrow x(3y-1) = 5y+1$$

$$\Rightarrow \chi = \frac{5y+1}{3y-1}$$

Since, x must be real.

$$\Rightarrow 3y - 1 \neq 0 \Rightarrow y \neq \frac{1}{3}$$

Range:
$$y \in \mathbb{R} - \left\{\frac{1}{3}\right\}$$

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x}{x^2 + 1}$, $x \in \mathbb{R}$. Then the range of f is:

JEE MAIN JAN 2019

- $\mathbb{R}-\left[-\frac{1}{2},\frac{1}{2}\right]$
- $\mathbb{R}-[-1,1]$
- (-1,1) $\{0\}$
- $\left[-\frac{1}{2},\frac{1}{2}\right]$

Let $f: \mathbb{R} \to \mathbb{R}$ be a function defined by $f(x) = \frac{x}{x^2 + 1}$, $x \in \mathbb{R}$. Then the range of f is:

Solution:

Domain of f(x) is \mathbb{R}

Let
$$y = \frac{x}{x^2 + 1} \Rightarrow yx^2 + y = x$$

$$\Rightarrow yx^2 - x + y = 0 \ (\because x \in \mathbb{R})$$

$$D \ge 0$$

$$\Rightarrow 1 - 4y^2 \ge 0 \quad \Rightarrow 4y^2 - 1 \le 0$$

$$\Rightarrow y \in \left[-\frac{1}{2}, \frac{1}{2}\right]$$

$$\therefore$$
 Range of f is $\left[-\frac{1}{2}, \frac{1}{2}\right]$

JEE MAIN JAN 2019

$$lacksquare$$
 B $\mathbb{R}-[-1,1]$

$$(-1,1)-\{0\}$$

Exponential function:

$$y = a^x$$
, $a > 0 & a \neq 1$

• Domain: $x \in \mathbb{R}$

• Range: $y \in (0, \infty)$

Increasing function (a > 1)Decreasing function (0 < a < 1) (0,1) X

Example: Find domain and range of f(x), where $f(x) = e^{2x}$

We know e > 1

Domain: $x \in \mathbb{R}$

Range: $(0, \infty)$

The range of $f(x) = e^x + 1$ is

(1,∞)

(**0**,∞)

(C) [−**1**, ∞)

(1,∞)

The range of $f(x) = e^x + 1$ is

Solution: Range of e^x : $(0, \infty)$

So, range of $e^x + 1$: $(1, \infty)$

(A) [1,∞)

(**0**,∞)

(C) [-1,∞)

D (1,∞)

Session 3

Some more types of Functions

Logarithmic function:

$$y = \log_a x$$
, $a > 0 \& a \ne 1$

• Domain: $x \in (0, \infty)$ or \mathbb{R}^+ • Range: $y \in (-\infty, \infty)$ or \mathbb{R}

Logarithmic function:

$$y = \log_a x$$
, $a > 0 \& a \neq 1$

- Domain: $x \in (0, \infty)$ or \mathbb{R}^+

• Range: $y \in (-\infty, \infty)$ or \mathbb{R}

Increasing function (a > 1)

Decreasing function (0 < a < 1)

Example: Find domain and range of $f(x) = \log(x - 2)$.

Solution:
$$f(x) = \log_{10}(x-2)$$
;

Domain:
$$x - 2 > 0 \Rightarrow x > 2$$

$$D_f = (2, \infty)$$
 Range: $y \in \mathbb{R}$

The domain of the definition of the function

$$f(x) = \frac{1}{4 - x^2} + \log_{10}(x^3 - x)$$
 is:

JEE MAIN APR 2019

- $(1,2) \cup (2,\infty)$
- (-2,-1) \cup (-1,0) \cup (2, ∞)
- $(-1,0) \cup (1,2) \cup (2,\infty)$
- $(-1,0) \cup (1,2) \cup (3,\infty)$

$$f(x) = \frac{1}{4 - x^2} + \log_{10}(x^3 - x)$$
 is:

JEE MAIN APR 2019

Solution:

$$f(x) = \frac{1}{4 - x^2} + \log_{10}(x^3 - x)$$

$$4 - x^2 \neq 0 \implies x \neq \pm 2 \cdots (i)$$

and
$$x^3 - x > 0 \Rightarrow x(x^2 - 1) > 0$$

$$\Rightarrow x \in (-1,0) \cup (1,\infty) \cdots (ii)$$

From equation (i) and (ii)

$$x \in (-1,0) \cup (1,2) \cup (2,\infty)$$

B
$$(-2,-1) \cup (-1,0) \cup (2,\infty)$$

$$(-1,0) \cup (1,2) \cup (3,\infty)$$

Note:

• For $h(x) = f(x)^{g(x)}$, to be defined for f(x) > 0, and normal condition for g(x).

Solution:

$$f(x) = \left(1 + \frac{3}{x}\right)^{\frac{1}{x-2}}$$

$$\left(1+\frac{3}{x}\right) > 0 \text{ and } x - 2 \neq 0$$

$$\Rightarrow x \in (-\infty, -3) \cup (0, \infty) \text{ and } x \neq 2$$

$$\Rightarrow x \in (-\infty, -3) \cup (0, 2) \cup (2, \infty)$$

Find domain and range of f(x), where $f(x) = x^4 + x^2 + 4$.

JEE MAIN JAN 2019

Solution:
$$f(x) = x^4 + x^2 + 4 = y$$

Since
$$f(x)$$
 is a polynomial, it's domain is \mathbb{R} .

For range,
$$y = x^4 + x^2 + 4 = (x^2)^2 + 2 \times \frac{1}{2} \times x^2 + \frac{1}{4} - \frac{1}{4} + 4$$

$$= \left(x^2 + \frac{1}{2}\right)^2 + \frac{15}{4}$$

Since,
$$x^2 \ge 0 \Rightarrow x^2 + \frac{1}{2} \ge \frac{1}{2}$$

$$\therefore y \ge \left(\frac{1}{2}\right)^2 + \frac{15}{4}$$

$$y \in [4, \infty)$$

Alternate Method:

We know that, $x^2, x^4 \ge 0$ $\Rightarrow y \ge 4$

B

Modulus function

Domain: $x \in \mathbb{R}$

Range: $y \in [0, \infty)$

Find the domain and the range of $f(x) = \frac{\sqrt{x^2}}{|x|}$.

$$f(x) = \frac{\sqrt{x^2}}{|x|} = \frac{|x|}{|x|} = 1$$
 Where $x \neq 0$ $\therefore \sqrt{(f(x))^2} = |f(x)|$

$$\because \sqrt{(f(x))^2} = |f(x)|$$

Domain:
$$x \in \mathbb{R} - \{0\}$$

Range:
$$f(x) \in \{1\}$$

$$\left(-\infty, \frac{1}{2}\right]$$

Find the range of the function f(x) = 1 - |x - 2|.

Greatest integer function(Step function)

• y = [x] =Greatest Integer less than or equal to x

- $(-\infty, -2]$
- (-∞,1]
- $\begin{bmatrix} -2,-1 \end{bmatrix}$
- $(-\infty, -1)$

If $[x] \le -2$, then $x \in$

 $\Rightarrow x \in (-\infty, -1)$

Greatest integer function

• y = [x] = Greatest Integer less than or equal to x

Domain: $x \in \mathbb{R}$

Range: $y \in \mathbb{Z}$

Properties:

- $x 1 < [x] \le x$
- [x+m] = [x] + m; for $m \in \mathbb{I}$.
- $[x] + [-x] = \begin{cases} 0, x \in \mathbb{I} \\ -1, x \notin \mathbb{I} \end{cases}$

Find the domain and range of the function : f(x) = [x + 1] + 1, (where [.] denotes G.I.F)

Solution:
$$f(x) = [x+1] + 1 \Rightarrow f(x) = [x] + 2$$
 $[x+m] = [x] + m$; for $m \in \mathbb{I}$.

Find the domain and range of the function : f(x) = [x + 1] + 1, (where [.] denotes G.I.F)

Solution:
$$f(x) = [x + 1] + 1 \Rightarrow f(x) = [x] + 2$$
 $y = [x] + 2$

Domain: $x \in \mathbb{R}$

Range : Z

(1,2)

B [-1,2)

[1,2]

(-1,0)

Solution:

$$f(x) = \sqrt{1 - [x]^2}$$

$$1 - [x]^2 \ge 0$$

$$\Rightarrow [x]^2 - 1 \le 0$$

$$\Rightarrow [x]^2 \le 1$$

$$\Rightarrow -1 \le [x] \le 1$$

$$\Rightarrow x \in [-1, 2)$$

Find the range of the function:

$$f(x) = x^{[x]}, x \in [1,3]$$
 (where [x] denotes G.I.F.).

$$f(x) = x^{[x]}, x \in [1,3]$$
 (where [x] denotes G.I.F.).

$$f(x) = x^{[x]}, x \in [1, 3]$$

Case 1:
$$x \in [1, 2)$$

$$f(x) \in [1,2) \cdots (i)$$

Case 2:
$$x \in [2,3)$$

$$f(x) = x^2 \ (\because [x] = 2$$

$$f(x) \in [4,9) \cdots (ii) \qquad f(x) \in \{27\} \cdots (iii)$$

Case 3:
$$x = 3$$

$$f(x) = x \ (\because [x] = 1)$$
 $f(x) = x^2 \ (\because [x] = 2)$ $f(x) = x^3 \ (\because [x] = 3)$

$$f(x) \in \{27\} \cdots (iii)$$

$$(i) \cup (ii) \cup (iii)$$

$$f(x) \in [1,2) \cup [4,9) \cup \{27\}$$

Session 4

Fractional part function, Signum function and One – one and Many-one function

Key Takeaways

Fractional Part Function

$$\bullet \quad y = \{x\} = x - [x]$$

Domain: $x \in \mathbb{R}$ Range: $y \in [0,1)$

A 1

B 0.53

C 0.47

−0.53

Solution:

$$y = \{x\} = x - [x]$$
$$= 1.53 - 1 = 0.53$$

$$O = -0.53$$

Key Takeaways

Fractional Part Function

•
$$y = \{x\} = x - [x]$$

Domain: $x \in \mathbb{R}$ Range: $y \in [0,1)$

Properties:

•
$$\{x + n\} = \{x\}, n \in \mathbb{I}$$

•
$$\{x\} + \{-x\} = \begin{cases} 0, x \in \mathbb{I} \\ 1, x \notin \mathbb{I} \end{cases}$$

Examples:

$$\{1.25\} = 1.25 - [1.25]$$
 $\{-1.25\} = -1.25 - [-1.25]$
= $-1.25 - 1$ = $-1.25 - (-2)$
= 0.25 = $-1.25 + 2 = 0.75$

Find the domain and range of the function :

$$f(x) = 2\{x + 1\} + 3$$
, (where $\{.\}$ denotes fractional part function).

olution:
$$f(x) = 2\{x+1\} + 3 \Rightarrow f(x) = 2\{x\} + 3$$

$$| \{x+n\} = \{x\}, n \in \mathbb{I}$$

$$0 \le \{x\} < 1$$

$$0 \le 2\{x\} < 2$$

$$0+3 \le 2\{x\}+3 < 2+3$$

$$3 \le f(x) < 5$$

Domain: $x \in \mathbb{R}$

Range: $f(x) \in [3,5)$

Find the range of the function : $f(x) = \frac{\{x\}}{1+\{x\}}$, (where $\{.\}$ denotes fractional part function).

Solution: Let
$$y = f(x) = \frac{\{x\}}{1 + \{x\}}$$

On cross multiplying,

$$y(1 + \{x\}) = \{x\} \Rightarrow y + y\{x\} = \{x\}$$

$$\Rightarrow \{x\} = \frac{y}{1 - y} \quad (\because \{x\} \in [0, 1)) \quad \Rightarrow 0 \le \frac{y}{1 - y} < 1$$

$$y \in [0,1) \longrightarrow (I)$$

Find the range of the function : $f(x) = \frac{\{x\}}{1+\{x\}}$, (where $\{.\}$ denotes fractional part function).

Solution:

$$0 \le \frac{y}{1 - y} < 1$$

$$\Rightarrow \frac{y}{1 - y} < 1 \Rightarrow \frac{y}{1 - y} - 1 < 0$$

$$\Rightarrow \frac{2y - 1}{1 - y} < 0 \Rightarrow \frac{2y - 1}{y - 1} > 0$$

$$y \in \left(-\infty, \frac{1}{2}\right) \cup (1, \infty) \longrightarrow (II)$$
By $(I) \cap (II)$ we get:

$$y \in \left[0, \frac{1}{2}\right)$$

Key Takeaways

B

Signum Function

•
$$y = \operatorname{sgn}(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases} = \begin{cases} 1, & x > 0 \\ -1, & x < 0 \\ 0, & x = 0 \end{cases}$$

- Domain: $x \in \mathbb{R}$ Range: $y \in \{-1,0,1\}$
- $\operatorname{sgn}(\operatorname{sgn}(\operatorname{sgn}\cdots\cdots(\operatorname{sgn} x) = \operatorname{sgn}(x))$

Solution:

$$f(x) = \operatorname{sgn}\left(\frac{x^3 + x^2}{x + 1}\right)$$

$$\Rightarrow f(x) = \operatorname{sgn}\left(\frac{x^2(x+1)}{x+1}\right) \qquad \boxed{\operatorname{Domain}: x \in \mathbb{R} - \{-1\}}$$

Domain:
$$x \in \mathbb{R} - \{-1\}$$

$$\Rightarrow f(x) = \operatorname{sgn}(x^2)$$

Thus,
$$f(x) \in \{0,1\} \ (\because x^2 \ge 0)$$

If
$$x^2 > 0 \Rightarrow f(x) = \operatorname{sgn}(x^2) = 1$$

If
$$x^2 = 0 \Rightarrow f(x) = \operatorname{sgn}(x^2) = 0$$

Range:
$$f(x) \in \{0,1\}$$

One input - one output

Name	Kishor 🤼
Roll no.	BYJUS01
Score	92%

Name	Arya 🌋
Roll no.	BYJUS02
Score	93%

Name	Roohi 🙎
Roll no.	BYJUS03
Score	95%

Name	Ayan 🧸
Roll no.	BYJUS04
Score	92%

Name	Alia 👭
Roll no.	BYJUS05
Score	93%

Many inputs - one output

Name	Kishor 🧸
Roll no.	BYJUS01
Score	92%

Name	Roohi 🙎
Roll no.	BYJUS03
Score	95%

Name	Ayan 🤶
Roll no.	BYJUS04
Score	92%

Name	Alia 👭
Roll no.	BYJUS05
Score	93%

One – one function (Injective function/Injective mapping):

A function $f: A \to B$ is said to be a one-one function if different elements of set A have different f images in set B.

Methods to determine whether a function is ONE-ONE or NOT:

For
$$x_1, x_2 \in A$$
 and $f(x_1), f(x_2) \in B$
 $f(x_1) = f(x_2) \Leftrightarrow x_1 = x_2 \text{ or } x_1 \neq x_2 \Leftrightarrow f(x_1) \neq f(x_2)$

Example:

A function $f: \mathbb{R} \to \mathbb{R}$ such that

$$f(x) = 3x + 5$$

Suppose for some $x_1, x_2 \in \mathbb{R}$

$$f(x_1) = f(x_2)$$

$$\Rightarrow 3x_1 + 5 = 3x_2 + 5$$

$$\Rightarrow x_1 = x_2$$

$$f(x)$$
 is one-one.

$$f(x) = x^2$$

Suppose for some $x_1, x_2 \in \mathbb{R}$

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^2 = x_2^2$$

$$\Rightarrow x_1^2 - x_2^2 = 0$$

$$\Rightarrow (x_1 - x_2)(x_1 + x_2) = 0$$

$$\Rightarrow x_1 = x_2 \text{ or } x_1 = -x_2$$

$$f(x)$$
 is not one-one.

Check whether the given function f(x) is one-one or many one: $f(x) = x^2 + x + 2$

Suppose for some $x_1, x_2 \in \mathbb{R}$ Solution:

Solution: Suppose for some
$$x_1, x_2 \in \mathbb{R}$$

$$f(x_1) = f(x_2)$$

$$\Rightarrow x_1^2 + x_1 + 2 = x_2^2 + x_2 + 2$$

$$\Rightarrow x_1 + x_1 + z = x_2 + x_2 + z$$

$$\Rightarrow x_1^2 - x_2^2 + x_1 - x_2 = 0$$

$$\Rightarrow (x_1 + x_2)(x_1 - x_2) + x_1 - x_2 = 0$$

$$\Rightarrow (x_1 - x_2)(x_1 + x_2 + 1) = 0$$

$$\Rightarrow x_1 = x_2 \text{ or } x_1 + x_2 = -1$$

We get two conclusions here

f(x) is many-one function

Which indicates that many such $x_1 \& x_2$ are possible

Return To Top

Many one function:

A function $f: A \to B$ is said to be a many-one function if there exist at least two or more elements of set A that have same f image in B.

Methods to determine whether a function is ONE-ONE or MANY ONE:

A function $f: A \to B$ is many one iff there exists at least two elements $x_1, x_2 \in A$ such that $f(x_1) = f(x_2)$ $(f(x_1), f(x_2) \in B \text{ but } x_1 \neq x_2)$

Session 5

Methods to Find Whether a Function is One-One or not, Number of Functions and Number of One-One mappings

Methods to determine whether a function is ONE-ONE or MANY ONE:

Horizontal line test: If we draw straight lines parallel to x –axis, and they cut the graph of the function at exactly one point, then the function is ONE-ONE.

Methods to determine whether a function is ONE-ONE or MANY ONE:

Horizontal line test: If there exists a straight lines parallel to x –axis, which cuts the graph of the function at atleast two points, then the function is MANY-ONE.

- (a), (b) & (e) are one-one mapping
- B (a) & (e) are many-one mapping

(a) & (c) are one-one mapping

D

None

Solution:

Solution: Exponents and logarithmic functions are one-one.

- (a), (b) & (e) are one-one mapping
- B (a) & (e) are many-one mapping

(a) & (c) are one-one mapping

D

None

Identify the following functions as One-one or Many-one: $f(x) = \sqrt{1 - e^{\left(\frac{1}{x} - 1\right)}}$

Solution: Suppose for some $x_1, x_2 \in \mathbb{R}$ $f(x_1) = f(x_2)$

$$\Rightarrow \sqrt{1 - e^{\left(\frac{1}{x_1} - 1\right)}} = \sqrt{1 - e^{\left(\frac{1}{x_2} - 1\right)}}$$

On squaring both sides:

$$\Rightarrow 1 - e^{\left(\frac{1}{x_1} - 1\right)} = 1 - e^{\left(\frac{1}{x_2} - 1\right)}$$

$$\Rightarrow e^{\left(\frac{1}{x_1}-1\right)} = e^{\left(\frac{1}{x_2}-1\right)}$$

$$\Rightarrow e^{\frac{1}{x_1}} = e^{\frac{1}{x_2}}$$

$$\Rightarrow x_1 = x_2$$

Hence, One-one

Methods to determine whether a function is ONE-ONE or MANY ONE:

Any function which is either increasing or decreasing in given domain is one-one, otherwise many Many-one.

Determine whether a function $f(x) = \sin x + 5x$ is ONE-ONE or MANY-ONE

Solution:

$$f(x) = \sin x + 5x$$

$$f'(x) = \cos x - 5 < 0$$

⇒ Always decreasing → one-one

Determine whether a function $f(x) = x^3 + x^2 + x + 1$ is ONE-ONE or MANY-ONE

Solution:

$$f(x) = x^3 + x^2 + x + 1$$

$$f'(x) = 3x^2 + 2x + 1$$

$$D = 2^2 - 4(3 \times 1) = -8 < 0$$

Hence
$$f'(x) > 0$$
 always

$$\Rightarrow f(x)$$
 is always increasing \rightarrow one-one

Key Takeaways

Number of functions:

Let a function $f: A \rightarrow B$ n(A) = 4, n(B) = 5

Thus, total number of function from A to B $\Rightarrow 5 \cdot 5 \cdots 5$ (4 times)= 5^4

If $n(A) = m, n(B) = n \ (m < n)$ Thus, total number of functions from A to B= $n \cdot n \cdot n \cdots n(m \text{ times}) = n^m$

Key Takeaways

Number of ONE-ONE Mappings:

Let a function $f: A \to B$

$$n(A) = 4$$
, $n(B) = 5$

Thus total number of function from A to B

$$\Rightarrow 5(5-1)(5-2)\cdots(5-4+1) = {}^{5}P_{4}$$

Thus, number of mappings

$$\Rightarrow n(n-1)(n-2)\cdots(n-m+1)=n^m$$

$$^{n}P_{m}$$
, if $n \ge m$ 0, if $n < m$

Number of MANY-ONE mappings:

Number of Many-ONE Function

= (Total Number of Functions) – (Number of One-One Functions)

If $A = \{1, 2, 3, 4\}$, then the number of functions on set A, which are not ONE-ONE is:

A 240

B 248

C 232

D 256

If $A = \{1, 2, 3, 4\}$, then the number of functions on set A, which are not ONE-ONE is:

Solution:

Number of many one functions

= Total number of functions-Number of ONE-ONE functions

$$= 4^4 - {}^4P_4 \cdot 4^4$$

$$= 256 - 24$$

$$= 232$$

C 232

Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f: A \rightarrow B | 2 \in f(A) \text{ and } f \text{ is not one-one } \}$ is _____.

Solution:

Only one Image

Only two Image and 2 has to be there

3

When all element (a, b, c) are related to only one image

JEE Main Sept 2020

To select one more image From {1,3,4}

Return To Top

Let $A = \{a, b, c\}$ and $B = \{1, 2, 3, 4\}$. Then the number of elements in the set $C = \{f: A \rightarrow B | 2 \in f(A) \text{ and } f \text{ is not one-one } \}$ is _____.

JEE Main Sept 2020

Solution: Only one Image-

Only two Image and 2 has to be there- ${}^3C_1 \{2^3 - 2\} = 18$

The number of elements in set C = 1 + 18 = 19

Determine whether the following function is ONE-ONE or MANY-ONE:

$$f(x) = \ln x$$

Solution:

Any function which is either increasing or decreasing in the whole domain is one-one, otherwise many-one.

Identify the following function as One-One or Many-One:

$$f(x) = 2 \tan x; \left(\frac{\pi}{2}, \frac{3\pi}{2}\right) \to R$$

Solution:

One-One Function.

Session 6 Onto & Into Functions

Onto function (surjective mapping)

If the function $f: A \to B$ is such that each element in B (co-domain) must have at least one pre-image in A, then we say that f is a function of A 'onto' B.

- Or, if range of f = Co domain of f.
- $f: A \to B$ is surjective iff $\forall b \in B$, there exists some $a \in A$ such that f(a) = b.
- If not given, co-domain of function is taken as R

Onto function (surjective mapping)

If the function $f: A \to B$ is such that each element in B (co-domain) must have at least one pre-image in A, then we say that f is a function of A 'onto' B.

Example: $f(x) = \sin x : R \rightarrow [-1,1]$

Onto Function

Range : [-1, 1]

Solution:

$$f(x) = \cos x : R \to [-1,2]$$

Range of $f(x) = \cos x$ is [-1, 1]

But given co-domain is [-1,2]

Here, Range ⊂ Co-domain

$$\Rightarrow [-1,1] \subset [-1,2]$$

Hence f(x) is not onto Function

Into function

- If the function $f: A \to B$ is such that there exists at least one element in B (co-domain) which is not the image of any element in domain (A), then f is 'into'.
- For an into function range of $f \neq Co$ domain of f and Range of $f \subset Co$ domain of f.

If a function is onto, it cannot be into and vice – versa.

Key Takeaways

Into function

Example: $f(x) = x^2 + x - 2$, $x \in \mathbb{R}$

Solution:

Range of
$$f(x) = \left[-\frac{9}{4}, \infty \right)$$

Thus, range ≠ co-domain

∴ INTO Function

Check whether the following functions are into function or not

- (i) f(x) = [x], where [] denotes greatest integer function
- (ii) $g: \mathbb{R} \to [0,1)$ given by $g(x) = \{x\}$ where $\{\}$ represents fractional part function

Solution:

 $\Rightarrow f(x)$ is into function

g(x) is onto function

Bijection Function

If $f: A \to B$ is both an injective and a surjective function, then f is said to be bijection or one to one and onto function from A to B.

- If A, B are finite sets and $f: A \to B$ is a bijective function, then n(A) = n(B)
- If A, B are finite sets and n(A) = n(B) then number of bijective functions defined from A to B is n(A)!

Note:

A function can be of one of these four types:

- One-one, onto (injective and surjective) also called as Bijective functions.
- One one, into (injective but not surjective)
- Many one, onto (surjective but not injective)
- Many one, into (neither surjective nor injective)

B

If the function $f: \mathbb{R} - \{-1,1\} \to A$, defined by $f(x) = \frac{x^2}{1 - x^2}$, is surjective, then A is equal to:

JEE MAIN APRIL 2016

Solution:

$$f(x) = y = \frac{x^2}{1 - x^2}$$

$$\Rightarrow y - yx^2 = x^2$$

$$\Rightarrow x^2 = \frac{y}{1+y} \ (\because x^2 \ge 0)$$

$$\Rightarrow \frac{y}{1+y} \ge 0$$

$$\Rightarrow y \in (-\infty, -1) \cup [0, \infty)$$

$$\therefore A = \mathbb{R} - [-1, 0)$$

$$\mathbb{R}-[-1,0)$$

$$\mathbb{R}-(-1,0)$$

$$\mathbb{C}$$
 $\mathbb{R}-\{-1\}$

If $f: \mathbb{R} \to [a, b]$, $f(x) = 2\sin x - 2\sqrt{3}\cos x + 1$ is onto function, then the value of b - a is

Solution:

$$f(x) = 2\sin x - 2\sqrt{3}\cos x + 1$$

$$\left(\because a\cos\theta + b\sin\theta \in \left[-\sqrt{a^2 + b^2}, \sqrt{a^2 + b^2}\right]\right)$$

$$\Rightarrow f(x) \in [-3, 5]$$

Thus,
$$B = [-3, 5]$$

$$b - a = 8$$

$$f(x) = \sin\left(\frac{\pi x}{2}\right) : [-1, 1] \to [-1, 1] \text{ is } \underline{\qquad}.$$

- (A) One-one, onto Function
- B Many-one, onto Function
- C One-one, into Function
- (D) Many-one, into Function

$$f(x) = \sin\left(\frac{\pi x}{2}\right) : [-1, 1] \to [-1, 1] \text{ is } \underline{\qquad}.$$

Solution:

Range = Co-domain ⇒ Onto

∴ One-one, onto

A One-one, onto Function

B Many-one, onto Function

C One-one, into Function

D Many-one, into Function

$$n(A \cup B) = n(A) + n(B) - n(A \cap B)$$

Principle of inclusion and exclusion

$$n(A \cup B \cup C)$$

$$= n(A) + n(B) + n(C) - n(A \cap B) - n(A \cap C) - n(B \cap C) + n(A \cap B \cap C)$$
include

exclude

include

Principle of inclusion and exclusion

Key Takeaways

Principle of inclusion and exclusion

 $n(A_i)$ = Total functions when y_i excluded

$$n(A_1 \cup A_2 \cup A_3 \cup \cdots A_n)$$

= Total functions where atleast one of element excluded

$$= \sum n (A_i) - \sum n (A_i \cap A_j) + \sum n (A_i \cap A_j \cap A_k) - \cdots$$

$$\cdots + (-1)^n n (A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_n)$$

$$= {^{n}C_{1}(n-1)^{m}} {^{-n}C_{2}(n-2)^{m}} {^{+n}C_{3}(n-3)^{m} - \cdots$$

Principle of inclusion and exclusion

 $n(A_i)$ = Total functions when y_i excluded

 $n(A_1 \cup A_2 \cup A_3 \cup \cdots A_n)$ = Total functions where atleast one of element excluded

$$=\sum n\left(A_{i}\right) -\sum n\left(A_{i}\cap A_{j}\right) +\sum n\left(A_{i}\cap A_{j}\cap A_{k}\right) -\cdots$$

$$\cdots + (-1)^n n (A_1 \cap A_2 \cap A_3 \cap \cdots \cap A_n)$$

$$= {^{n}C_{1}(n-1)^{m}} - {^{n}C_{2}(n-2)^{m}} + {^{n}C_{3}(n-3)^{m}} - \cdots$$

Number of onto functions

= Total functions –
$$n(A_1 \cup A_2 \cup A_3 \cup \cdots A_n)$$

$$= n^{m} - ({}^{n}C_{1}(n-1)^{m} - {}^{n}C_{2}(n-2)^{m} + \cdots)$$

- In how many ways can 5 distinct balls be distributed into 3 distinct boxes such that
- (i) any number of balls can go in any number of boxes
- (ii) Each box has atleast one ball in it.

Solution:

Total ways in which all balls can go in boxes:

$$= 3 \times 3 \times 3 \times 3 \times 3$$

$$= 3^5$$

- In how many ways can 5 distinct balls be distributed into 3 distinct boxes such that
- (i) any number of balls can go in any number of boxes
- (ii) Each box has atleast one ball in it.

Solution:

Number of $= 3^5 - {}^3C_1 2^5 + {}^3C_2 1^5$

Principle of inclusion and exclusion

= Total functions
$$-n(A_1 \cup A_2 \cup A_3 \cup \cdots A_n)$$

 $n^m - ({}^nC_1(n-1)^m - {}^nC_2(n-2)^m + \cdots), (m > n)$

$$= n^{m} - ({}^{n}C_{1}(n-1)^{m} - {}^{n}C_{2}(n-2)^{m} + \cdots)$$

_
$$n!, (m=n)$$

ser of farietions,

(Number of onto functions)

- A 3⁵
- B 150
- C 5³
- D 93

Solution:

Number of functions from A to $B = 3^5 = 243$

Number of onto functions from A to $B = 3^5 = 243$

$$= 3^5 - {}^5C_12^5 + {}^5C_21^5 = 150$$

: Total number of into functions

$$= 243 - 150 = 93$$

Session 7

Even-Odd Functions and Composite Functions

Even Function

• If $f(-x) = f(x) \forall x$ in domain of 'f', then f is said to be an even function.

Example:
$$f(x) = \cos x$$

$$f(-x) = \cos(-x) = \cos x = f(x)$$

Example:
$$f(x) = |x|$$

$$f(-x) = |-x| = |-1 \times x| = |-1| \times |x| = |x| = f(x)$$

Example:
$$f(x) = x^2 + 3$$

$$f(-x) = (-x)^2 + 3 = x^2 + 3 = f(x)$$

B

Even Function

- If $f(-x) = f(x) \forall x$ in domain of 'f', then f is said to be an even function.
- The graph of every even function is symmetric about the y- axis.

Example:

Example:

Odd Function

• If $f(-x) = -f(x) \forall x$ in domain of 'f', then f is said to be an odd function.

Example:
$$f(x) = x$$

$$f(-x) = -x = -f(x)$$

Example:
$$f(x) = \sin x$$

$$f(-x) = \sin(-x) = -\sin x = -f(x)$$

Example:
$$f(x) = \tan x$$

$$f(-x) = \tan(-x) = -\tan x = -f(x)$$

B

Odd Function

- If $f(-x) = -f(x) \forall x$ in domain of 'f', then f is said to be an odd function.
- The graph of an odd function is symmetric about the origin.

Example:

Example:

• If an odd function is defined at x = 0, then f(0) = 0.

Solution:
$$f(x) = \frac{x}{e^x - 1} + \frac{x}{2} + 1$$

$$f(-x) = \frac{-x}{e^{-x} - 1} - \frac{x}{2} + 1 = \frac{-xe^x}{1 - e^x} - \frac{x}{2} + 1$$

$$= \frac{xe^x}{e^x - 1} - \frac{x}{2} + 1 = \frac{x(e^x - 1) + x}{e^x - 1} - \frac{x}{2} + 1$$

$$= x + \frac{x}{e^x - 1} - \frac{x}{2} + 1$$

$$=\frac{x}{e^x-1}+\frac{x}{2}+1$$

$$\Rightarrow f(x) = f(-x)$$
 : Even function

Find whether the following function is even / odd or none: $f(x) = \ln\left(\frac{1+x}{1-x}\right)$, |x| < 1

Solution:

$$f(x) = \ln\left(\frac{1+x}{1-x}\right), |x| < 1$$

$$f(x) = \ln\left(\frac{1+x}{1-x}\right)$$

$$f(-x) = \ln\left(\frac{1-x}{1+x}\right) = -\ln\left(\frac{1+x}{1-x}\right)$$

$$\Rightarrow f(-x) = -f(x)$$

Hence the function is odd

Properties of Even/Odd Function

• Some functions may neither be even nor odd.

Example:
$$f(x) = 3x + 2$$

• The only function which is defined on the entire number line and is even as well as odd is f(x) = 0.

Properties of Even/Odd Function

 All functions (whose domain is symmetric about origin) can be expressed as sum of an even and an odd function

$$f(x) = \underbrace{\frac{f(x)+f(-x)}{2}}_{\text{even}} + \underbrace{\frac{f(x)-f(-x)}{2}}_{\text{odd}}$$

Example: Let a function $f(x) = x + e^x$, express it as sum of an even and an odd function

$$f(x) = x + e^x$$

$$f(x) = \frac{(x+e^x)+(-x+e^{-x})}{2} + \frac{(x+e^x)-(-x+e^{-x})}{2}$$

Let $f(x) = a^x$ (a > 0) be written as $f(x) = f_1(x) + f_2(x)$, where $f_1(x)$ is an even function and $f_2(x)$ is an odd function. Then $f_1(x + y) + f_1(x - y)$ equals :

JEE MAIN 2019

- $2f_1(x+y) f_1(x-y)$
- $2f_1(x) f_1(y)$
- $C \qquad \qquad 2f_1(x) f_2(y)$
- $\begin{array}{ccc}
 \hline
 D & 2f_1(x+y) f_2(x-y)
 \end{array}$

Let $f(x) = a^x$ (a > 0) be written as $f(x) = f_1(x) + f_2(x)$, where $f_1(x)$ is an even function and $f_2(x)$ is an odd function. Then $f_1(x + y) + f_1(x - y)$ equals:

B

Solution:

$$f(x) = a^x$$
 $f(x) = f_1(x) + f_2(x)$

$$f_1(x+y) + f_1(x-y) = \frac{a^{x+y} + a^{-(x+y)}}{2} + \frac{a^{x-y} + a^{-(x-y)}}{2}$$
$$= \frac{a^x (a^y + a^{-y}) + a^{-x} (a^y + a^{-y})}{2}$$

$$=\frac{(a^{y}+a^{-y})(a^{x}+a^{-x})}{2}$$

$$=\frac{2f_1(y).2f_1(x)}{2}$$

$$=2f_1(x).f_1(y)$$

$$\dot{f}_1(x+y) + f_1(x-y) = 2f_1(x) f_1(y)$$

JEE MAIN 2019

Properties of Even/Odd Function

•
$$f(x) = x^2$$
, $g(x) = |x|$
• $f(x) = x^2$, $f(x) = |x|$
• Even Even

f	g	$f \pm g$	f.g	$f/g(g \neq 0)$
Even	Even	Even	Even	Even

$$h(x) = f(x) + g(x) = x^{2} + |x|$$

$$h(-x) = (-x)^{2} + |-x|$$

$$= (x)^{2} + |x| = h(x) \to \text{Even}$$

$$h(x) = f(x) \times g(x) = x^{2} \times |x|$$

$$h(-x) = (-x)^{2} \times |-x|$$

$$= (x)^{2} \times |x| = h(x) \to \text{Even}$$

Properties of Even/Odd Function

•
$$f(x) = x, g(x) = \sin x$$

 \downarrow \downarrow odd odd

Even Even Even Even Odd Odd Odd Even Even	f	g	$f \pm g$	f . g	$f/g(g \neq 0)$
Odd Odd Even Even	Even	Even	Even	Even	Even
EVCIT EVCIT	Odd	Odd	Odd	Even	Even

$$h(x) = f(x) + g(x) = x + \sin x$$

$$h(-x) = -x - \sin x$$

$$= -h(x) \to \text{odd}$$

$$p(x) = f(x) \times g(x) = x \times \sin x$$

$$p(-x) = (-x) \times (-\sin x)$$

 $= p(x) \rightarrow \text{even}$

Properties of Even/Odd Function

•
$$f(x) = x^2$$
, $g(x) = x$
 \downarrow \downarrow even odd

$$h(x) = f(x) + g(x) = x^2 + x$$

f	g	$f \pm g$	f.g	$f/g(g \neq 0)$
Even	Even	Even	Even	Even
Odd	Odd	Odd	Even	Even
Even	Odd	NENO	Odd	Odd

$$h(-x) = (-x)^2 - x$$

= $x^2 - x \neq h(x)$ Neither even
 $\neq -h(x)$ nor odd

$$p(x) = f(x) \times g(x) = x^{2} \times x$$
$$p(-x) = (-x)^{2} \times (-x)$$
$$= -p(x) \rightarrow \text{odd}$$

Composite Functions $f: X \to Y_1$ $g: Y_2 \to Z$

$$f:X\to Y_1$$

$$g: Y_2 \to Z$$

• Here
$$g(f(a)) = \beta$$
 $g(f(c)) = g(1) = \text{not defined}$

$$g(f(b)) = \delta$$
 $g(f(d)) = g(5) = \text{not defined}$

$$g: Y_2 \to Z$$

$$R_f \subseteq D_g$$

So, g(f(x)) is defined for only those values of x for which range of f is a subset of domain of g.

 $f: X \to Y_1$ and $g: Y_2 \to Z$ be two functions and D is set of x such that if $x \in X$, then $f(x) \in Y_2$

If $D \neq \emptyset$, then the function h defined by h(x) = g(f(x)) is called composite function of g and f and is denoted by $g \circ f$. It is also called as function of a function.

$$D_{gof}:\{a,b\}$$
 $R_{gof}:\{\beta,\delta\}$

Note: Domain of g of is D which is subset of X (the domain of f). Range of g of is a subset of range of g. If D = X, then $f(x) \subseteq Y_2$

Pictorially, gof(x) can be viewed as -

- (i) Two functions f and g defined from $\mathbb{R} \to \mathbb{R}$ such that f(x) = x + 1,
- g(x) = x + 2, then find a) g(f(x)) b) f(g(x))
- (ii) Two functions f and g defined from $\mathbb{R} \to \mathbb{R}$ such that $f(x) = x^2$, g(x) = x + 1, then show that $f(g(x)) \neq g(f(x))$

Solution: (i)
$$g(f(x)) = (f(x)) + 2 = (x+1) + 2 = (x+3)$$

$$f(g(x)) = (g(x)) + 1 = (x + 2) + 1 = (x + 3)$$

$$\Rightarrow gof(x) = fog(x)$$

(ii)
$$g(f(x)) = (f(x)) + 1 = x^2 + 1$$

$$f(g(x)) = (g(x))^2 = (x+1)^2 = x^2 + 2x + 1$$

$$\Rightarrow gof(x) \neq fog(x)$$

Note:

The composition of functions are not commutative in general i.e., two functions f and g are such that if $f \circ g$ and $g \circ f$ are both defined, then in general $f \circ g \neq g \circ f$.

JEE MAIN 2019

- \triangle 2f(x)
- $(f(x))^2$
- C $2f(x^2)$
- -2f(x)

If $f(x) = \log_e\left(\frac{1-x}{1+x}\right)$, |x| < 1, then $f\left(\frac{2x}{1+x^2}\right)$ is equal to:

JEE MAIN 2019

Solution:

$$f(x) = \log_e\left(\frac{1-x}{1+x}\right)$$
 Let $g(x) = \frac{2x}{1+x^2}$

Then
$$f(g(x)) = \log_e \left(\frac{1 - g(x)}{1 + g(x)}\right)$$

$$= \log_e \left(\frac{1 - \frac{2x}{1 + x^2}}{1 + \frac{2x}{1 + x^2}} \right) = \log_e \left(\frac{(1 - x)^2}{(1 + x)^2} \right)$$

$$\therefore f(g(x)) = 2\log_e\left(\frac{1-x}{1+x}\right) = 2f(x)$$

$$\left(D\right) -2f(x)$$

The composition of functions are associative i.e. if three functions f,g,h are such that fo(goh) and (fog)oh are defined, then fo(goh)=(fog)oh

Example: Let
$$f(x) = x$$
, $g(x) = \sin x$, $h(x) = e^x$, domain of f , g , h is \mathbb{R}

$$fo(goh)(x) = fo(g(e^x)) = f(\sin e^x) = \sin e^x$$

$$(f \circ g) \circ h(x) = (\sin(h(x))) = \sin e^x$$

$$\therefore fo(goh) = (fog)oh$$

Session 8 Composite Functions and Periodic Functions

(8) Hello, Rahul

Trending

Best Sellers New Releases

Movers and Shakers

Digital Devices Echo & Alexa

Fire TV

Videos)

Shop By Department Mobiles, Computers

TV, Appliances >

Gadgets)

Rahul wishes to order a laptop from BuyCart.

He has two coupons with the following discounts.

- 1) 30% off on your first purchase.
- 2) Rs. 5000 off on your first purchase.

If he can avail both the coupons, which coupon will he apply first and why?

All

Hello, Rahul Account & Lists Returns & Orders

(A) Hello, Rahul

Add to Cart

Buy Now

☐ Add gift options

SAVE 30% OFF your first purchase

Gadgets

Fire TV

Videos

Shop By Department

Mobiles, Computers

TV, Appliances

Gadgets

View Details

Let x = Price of laptop

f(x) = 0.70x; g(x) = x - 5000

Option 1:

h(x) = f(g(x))

Option 2:

k(x) = g(f(x))

If
$$f(x) = \begin{cases} 1-x, x \le 0 \\ x^2, x > 0 \end{cases}$$
 $g(x) = \begin{cases} -x, x < 1 \\ 1-x, x \ge 1 \end{cases}$, then find $f \circ g(x)$

Solution:

$$fog(x) = \begin{cases} 1 - g(x), g(x) \le 0\\ (g(x))^2, g(x) > 0 \end{cases}$$

$$fog(x) = \begin{cases} 1 - (-x), x \in [0, 1) \\ 1 - (1 - x), x \ge 1 \\ (-x)^2, x < 0 \end{cases}$$

$$\therefore fog(x) = \begin{cases} (x)^2, x \in (-\infty, 0) \\ 1 + x, x \in [0, 1) \\ x, x \in [1, \infty) \end{cases}$$

Properties of Composite Function

- If f and g are one one , then $g \circ f$ if defined will be one one.
- If f and g are bijections and $g \circ f$ is defined, then $g \circ f$ will be a bijection iff range of f is equal to domain of g.

Periodic Functions:

• Mathematically, a function f(x) is said to be periodic function if \exists a positive real number T, such that

$$f(x+T)=f(x), \forall x \in \text{domain of } 'f'; T>0$$

• Here T is called period of function f and smallest value of T is called fundamental period.

Note:

Domain of periodic function should not be restricted (bounded).

Key Takeaways

Periodic Functions:

Example: $f(x) = \sin x$

$$f(x+T) = f(x) \Rightarrow \sin(x+T) = \sin x$$

$$\Rightarrow \sin(x+T) - \sin x = 0 \Rightarrow 2\sin\left(\frac{T}{2}\right)\cos\left(\frac{2x+T}{2}\right) = 0$$

$$\Rightarrow \frac{1}{2} = n\pi \Rightarrow T = 2n\pi, n \in \mathbb{I}$$
 Thus, fundamental period = 2π

Periodic Functions

B

Note:

If a function is dis-continuous, it's discontinuity should repeat after a particular interval for the function to be periodic.

Find the period of function.

 $i) f(x) = \tan x$ $ii) f(x) = \{x\}$ where $\{.\}$ denotes fractional part function.

Solution:

$$i) \ f(x+T) = f(x)$$

$$ii) \ f(x) = \{x\}$$

Find the period of function.

i)
$$f(x) = \tan x$$
 ii) $f(x) = \{x\}$ where $\{.\}$ denotes fractional part function.

Solution:

$$i) \ f(x+T) = f(x) \qquad \tan(x+\pi) = \tan x \qquad \qquad ii) \ f(x) = \{x\}$$

$$ii) \ f(x) = \{x$$

Key Takeaways

Properties of Periodic Functions:

• If a function f(x) has a period T, then $\frac{1}{f(x)}$, $(f(x))^n$ $(n \in \mathbb{N})$, |f(x)|, $\sqrt{f(x)}$ also has a period T (T may or may not be fundamental period.)

Example:
$$y = \csc x$$

Fundamental period = 2π

Return To Top

Example: $y = |\sin x|$

Fundamental period = π

Example: $y = \cos^2 x$

Fundamental period = π

Key Takeaways

Properties of Periodic Functions:

- If a function f(x) has a period T, then f(ax + b) has the period $\frac{T}{|a|}$.
- For $y = \sin x$, fundamental period = 2π
- For $y = \sin 2x$, fundamental period = π

Properties of Periodic Functions

 Every constant function defined for unbounded domain is always periodic with no fundamental period.

Example:

• $f(x) = \sin^2 x + \cos^2 x$, domain is \mathbb{R}

$$\Rightarrow f(x) = 1$$

Periodic with no fundamental period.

Find the period of function. i) $f(x) = x \cdot \frac{1}{x}$ ii) $f(x) = \cos x \cdot \sec x$

i)
$$f(x) = x \cdot \frac{1}{x}$$
 (domain $x \in \mathbb{R} - \{0\}$)

ii)
$$f(x) = \cos x \cdot \sec x$$
 (domain $x \in \mathbb{R} - \left\{ (2n+1) \left(\frac{\pi}{2} \right), n \in \mathbb{Z} \right\} \right)$

A 2

 $\frac{1}{2}$

C 3

 $\frac{1}{3}$

Fundamental period of $y = \left\{\frac{x}{3}\right\}$, where $\{\cdot\}$ denotes fractional part function is

B

Solution:

If a function f(x) has a period T, then f(ax + b) has the period $\frac{T}{|a|}$.

For $\{x\}$, fundamental period = 1

For $\left\{\frac{x}{3}\right\}$, fundamental period = 3

Session 9 Inverse Functions & Binary operations

Properties of Periodic Functions:

• If f(x) has a period T_1 and g(x) has a period T_2 , then

$$f(x) \pm g(x)$$
, $f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is L.C.M of T_1 and T_2 (provided L.C.M exists).

L.C.M of
$$\left(\frac{a}{b}, \frac{c}{d}\right) = \frac{\text{L.C.M }(a,c)}{\text{H.C.F }(b,d)}$$

However, L.C.M need not be fundamental period.

• If L.C.M does not exists, then $f(x) \pm g(x)$, $f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is non-periodic or aperiodic.

Solution:

i)
$$f(ax + b)$$
 has the period $\frac{T}{|a|}$

$$\sin\frac{3x}{2} \to T_1 = \frac{2\pi}{\frac{3}{2}} = \frac{4\pi}{3}$$

$$\cos\frac{9x}{4} \to T_2 = \frac{2\pi}{\frac{9}{4}} = \frac{8\pi}{9}$$

L.C.M of
$$\frac{4\pi}{3}$$
, $\frac{8\pi}{9}$ \Rightarrow L.C.M of $\left(\frac{4}{3}, \frac{8}{9}\right)\pi$

$$\left(\frac{\text{L.C.M }(4,8)}{\text{H.C.F }(3,9)}\right)\pi = \frac{8}{3}\pi$$

$$ii)$$
 Period of $f(x) \pm g(x)$ is L.C.M of (T_1, T_2)

L.C.M of
$$(\pi, \pi) = \pi$$

$$\frac{\pi}{2}$$
 may also be period.

$$f\left(x + \frac{\pi}{2}\right) = \left|\sin\left(x + \frac{\pi}{2}\right)\right| + \left|\cos\left(x + \frac{\pi}{2}\right)\right|$$

$$= |\cos x| + |-\sin x|$$

$$= f(x)$$

Period is $\frac{\pi}{2}$.

Properties of Periodic Functions:

• If g is a function such that $g \circ f$ is defined on the domain of f and f is periodic with T, then $g \circ f$ is also periodic with T as one of its period.

Example:

- $h(x) = \{\cos x\}$, where $\{\cdot\}$ is fractional part function Let $f(x) = \cos x$, $g(x) = \{x\}$ then h(x) = g(f(x)), period 2π
- $h(x) = \cos\{x\}$, where $\{\cdot\}$ is fractional part function. Let $f(x) = \cos x$, $g(x) = \{x\}$ then h(x) = f(g(x)), period 1

Properties of Periodic Functions:

• If g is a function such that $g \circ f$ is defined on the domain of f and f is periodic with T, then $g \circ f$ is also periodic with T as one of its period.

Note:

• If g is a function such that $g \circ f$ is defined on the domain of f and f is aperiodic, then $g \circ f$ may or may not be periodic.

Example:

$$h(x) = \cos(x + \sin x)$$

$$h(x) = h(x + 2\pi)$$

$$\Rightarrow$$
 period of $h(x)$ is 2π

B

Inverse Function

Let y = f(x): $A \to B$ be a one – one and onto function, i.e. a bijection, then there will always exist a bijective function x = g(y): $B \to A$ such that if (α, β) is an element of f, (β, α) will be an element of g and the functions f(x) and g(x) are said to be inverse of each other.

• $g = f^{-1}: B \to A = \{(f(x), x) | (x, f(x)) \in f\}$

$$(\alpha, \beta) \in f$$

Then

$$(\beta, \alpha) \in f^{-1}$$

Inverse Function

• Why function must be bijective for it to be invertible?

• Inverse of a bijection is unique and also a bijection.

Inverse Function

- To find inverse:
 - (i) For y = f(x), express x in terms of y

Example: $y = e^x$

$$x = \ln y$$

(ii) In x = g(y), replace y by x in g to get inverse.

$$y = \ln x = f^{-1}(x)$$

$$f(x) = \frac{2x+3}{4} : \mathbb{R} \to \mathbb{R}, \text{ then find it's inverse.}$$

Solution: Let
$$f(x) = y = \frac{2x+3}{4}$$

$$\Rightarrow x = \frac{4y-3}{2} = g(y)$$

$$\therefore g(x) = f^{-1}(x) = \frac{4x-3}{2} \colon \mathbb{R} \to \mathbb{R}$$

To find inverse:

For
$$y = f(x)$$
, express x in terms of y
In $x = g(y)$, replace y by x in g to get inverse.

are symmetric about y = x

Function and its inverse

Example: $f(x) = e^x$, $g(x) = \ln x$

If $f(x) = x^2 + x + 1$: $[0, \infty) \to [1, \infty)$, find its inverse.

Solution:

Since f(x) is bijective.

Let
$$y = x^2 + x + 1 \implies x^2 + x + 1 - y = 0$$

Solving for x,

$$\Rightarrow x = \frac{-1 \pm \sqrt{1 - 4(1 - y)}}{2} = \frac{-1 \pm \sqrt{4y - 3}}{2}$$

But since inverse of a function is unique,

$$\Rightarrow x = \frac{-1 + \sqrt{4y - 3}}{2} = g(y)$$

$$f^{-1}(x) = \frac{-1 + \sqrt{4x - 3}}{2} : [1, \infty) \to [0, \infty)$$

B

Properties of Inverse Function

- The graphs of f and g are the mirror images of each other about the line y=x.
- If functions f and f^{-1} intersect, then at least one point of intersection lie on the line y=x.

$$f(x) = x^3 \Rightarrow f^{-1}(x) = \sqrt[3]{x}$$

Properties of Inverse Function

• If f and g are inverse of each other, then $f \circ g = g \circ f = x$.

However, $f \circ g$ and $g \circ f$ can be equal even if f and g are not inverse of each other, but in that case $f \circ g = g \circ f \neq x$

Properties of Inverse Function

However, $f \circ g$ and $g \circ f$ can be equal even if f and g are not inverse of each other, but in that case $f \circ g = g \circ f \neq x$

Example:
$$f(x) = x + 2$$
, $g(x) = x + 1$

Then,
$$f \circ g(x) = (x+1) + 2 = x + 3$$

And,
$$gof(x) = (x + 2) + 1 = x + 3$$
, $\Rightarrow fog = gof \neq x$

but f and g are non inverse of each other.

• If f and g are two bijections, $f:A\to B,g:B\to C$, then inverse of g of exists and

$$(gof)^{-1} = f^{-1}og^{-1}$$

Definition:

A binary operation * on a set A is a function *: $A \times A \rightarrow A$.

Denoted as $*(a,b) \rightarrow a * b$

Example: Show that addition is a binary operation on *R*, but division is not a binary operation.

Solution: $+: R \times R \to R$ is given by $+(a,b) \to a+b$, is a function on R $\div: R \times R \to R \text{ is given by } \div (a,b) \to \frac{a}{b}, \text{ is not a function on } R$ and not a binary operation as for b=0, $\frac{a}{b}$ is not defined.

Properties of Binary Operation:

(i) Commutative:

A binary operation * on a set X is called commutative if a*b=b*a for every $a,b\in X$.

Example: Addition is commutative on R, but subtraction is not.

Solution:
$$a + b = b + a \rightarrow \text{commutative}$$

but $a - b \neq b - a \rightarrow \text{not commutative}$

(ii) Associative:

A binary operation * is said to be associative

$$(a * b) * c = a * (b * c), \forall a, b, c \in A.$$

Example:
$$(8+5) + 3 = 8 + (5+3)$$
 associative $(8-5) - 3 \neq 8 - (5-3)$ not associative

Properties of Binary Operation:

(iii) Identity:

Given a binary operation $*: A \times A \to A$, an element $e \in A$, if it exists, is called identity for the operation if a*e=a=e*a, $\forall a \in A$

Note: i. 0 is identity for addition on R

ii. 1 is identity for multiplication on R

(iv) Inverse:

Given a binary operation $*: A \times A \to A$, with identity element e in A, an element $a \in A$, is said to be invertible w.r.t *, if there exists an element e in e such that e is and e and e is called inverse of e and is denoted by e.

Properties of Binary Operation:

Note: *i.* -a is inverse of a for addition operation on R.

$$a + (-a) = 0 = (-a) + a$$

ii. $\frac{1}{a}$ is inverse of $a(a \neq 0)$ for multiplication operation on $R - \{0\}$.

$$a \times \frac{1}{a} = 1 = \frac{1}{a} \times a$$

 $a, b \in Q - \{-1\}$, then:

- (i) Show that * is both commutative and associative on $Q \{-1\}$
- (ii) Find the identity element in $Q \{-1\}$
- (iii) Show that every element of $Q \{-1\}$ is invertible. Also, find inverse of an arbitrary element.

Solution:

Solution: Given
$$a * b = a + b + ab$$
.

Let
$$a, b \in Q - \{-1\}$$

Then
$$a * b = a + b + ab$$

$$= b + a + ba$$

$$= b * a$$

Therefore,
$$a*b=b*a$$
, $\forall a,b \in Q-\{-1\}$

Let
$$a$$
, b , $c \in Q - \{-1\}$, then

$$a * (b * c) = a * (b + c + bc) = a + (b + c + bc) + a(b + c + bc)$$

$$= a + b + c + ab + bc + ac + abc$$

- Let * be a binary operation on $Q \{-1\}$, defined by a * b = a + b + ab for all $a, b \in Q - \{-1\}$, then:
 - (i) Show that * is both commutative and associative on $Q \{-1\}$ (ii) Find the identity element in $Q - \{-1\}$
 - (iii) Show that every element of $Q \{-1\}$ is invertible. Also, find inverse of an arbitrary element.

Solution:
$$(a * b) * c = (a + b + ab) * c$$

$$= a + b + ab + c + (a + b + ab)c$$

= a + b + c + ab + bc + ac + abc

Therefore,
$$a * (b * c) = (a * b) * c, \forall a, b, c \in Q - \{-1\}$$

Thus,
$$*$$
 is associative on $Q - \{-1\}$.
(ii) Let e be the identity element in $Q - \{-1\}$ with

respect to * such that

$$a*e=a=e*a, \quad \forall \ a\in Q-\{-1\}$$

$$a * e = a = e * a$$
, $\forall a \in Q = \{-1\}$

$$a+e+ae=a$$
 and $e+a+ea=a, \forall a \in Q-\{-1\}$

$$e + ae = 0$$
 and $e + ea = 0$, $\forall a \in Q - \{-1\}$
 $e(1 + a) = 0$ and $e(1 + a) = 0$, $\forall a \in Q - \{-1\}$

Let * be a binary operation on $Q - \{-1\}$, defined by a * b = a + b + ab for all

 $a, b \in Q - \{-1\}$, then: (i) Show that * is both commutative and associative on $Q - \{-1\}$

(ii) Find the identity element in $Q - \{-1\}$ (iii) Show that every element of $Q - \{-1\}$ is invertible. Also, find inverse of an arbitrary element.

Solution:

$$e = 0, \forall a \in Q - \{-1\}$$
 [because $a \neq -1$]

Thus, 0 is the identity element in $Q - \{-1\}$ with respect to *.

(iii) Let
$$a \in Q - \{-1\}$$
 and $b \in Q - \{-1\}$ be the inverse of a . Then,

a * b = e = b * aa*b=e and b*a=e

$$a+b+ab=0$$
 and $b+a+ba=0$

$$a + b + ab = 0$$
 and $b + a + ba = 0$
 $b(1 + a) = -a, \forall a \in O - \{-1\}$

$$b = -\frac{a}{1+a} \forall a \in Q - \{-1\} \text{ [because } a \neq -1]$$

$$b = -\frac{a}{1+a}$$
 is the inverse of $a \in Q - \{-1\}$

Session 10

Functional Equations and Transformation of Graphs

Solution:

$$Let f(x) = y = x^2 - 3x$$

Let
$$f(x) = y = x^2 - 3x$$

$$\Rightarrow x^2 - 3x - y = 0$$

$$\Rightarrow x = \frac{3-\sqrt{9+4y}}{2}$$
 Then, $f^{-1}(x) = \frac{3-\sqrt{9+4x}}{2}$

Since,
$$f(x) = f^{-1}(x) = x$$

So,
$$x^2 - 3x = x$$

$$\Rightarrow x = 0$$
, 4

But, acc. to given domain

$$x = 0$$

Functional Equations

If x, y are independent real variable, then

- $f(x+y) = f(x) + f(y) \Rightarrow f(x) = kx, k \in \mathbb{R}$.
- $f(x+y) = f(x).f(y) \Rightarrow f(x) = a^{kx}, k \in \mathbb{R}.$
- $f(xy) = f(x) + f(y) \Rightarrow f(x) = k \log_a x, k \in \mathbb{R}, a > 0, a \neq 1.$
- $f(xy) = f(x).f(y) \Rightarrow f(x) = x^n$, $n \in \mathbb{R}$.
- If f(x) is a polynomial of degree 'n', such that

$$f(x).f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right) \Rightarrow f(x) = 1 \pm x^n$$

If f(x) is a polynomial function such that $f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$, such that f(3) = -26. Then f(4) = ?

- A 64
- B -65
- -63
- D 65

If f(x) is a polynomial function such that $f(x) \cdot f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$, such that f(3) = -26. Then f(4) = ?

 $3^n = -27$

 $-3^n = -27$

Solution:

$$f(x). f\left(\frac{1}{x}\right) = f(x) + f\left(\frac{1}{x}\right)$$

$$\Rightarrow f(x) = 1 \pm x^{n}$$

$$\Rightarrow f(3) = -26 \Rightarrow 1 \pm 3^n = -26 <$$

$$\Rightarrow$$
 $-3^n = -27 \Rightarrow n = 3$

$$f(x) = 1 - x^3$$

$$f(4) = -63$$

A 64

If a function f(x) satisfies the relation f(x + y) = f(x) + f(y), where $x, y \in \mathbb{R}$ and f(1) = 4. Then find the value of $\sum_{r=1}^{10} f(r) = ?$

- A 100
- B 220
- C 160
- D 300

If a function f(x) satisfies the relation $\overline{f(x+y)} = f(x) + f(y)$, where $x, y \in \mathbb{R}$ and f(1) = 4. Then find the value of $\sum_{r=1}^{10} f(r) = ?$

Solution:

$$f(x + y) = f(x) + f(y)$$
 $\Rightarrow f(x) = kx$

$$\Rightarrow f(1) = 4 = k$$

$$\therefore \sum_{r=1}^{10} f(r) = \sum_{r=1}^{10} 4r = 4 \sum_{r=1}^{10} r$$

A 100

B 220

(C) 160

D 300

For $x \in \mathbb{R} - \{0\}$, the function f(x) satisfies $f(x) + 2f(1-x) = \frac{1}{x}$. Find the value of f(2).

Solution:
$$f(x) + 2f(1-x) = \frac{1}{x}$$

Put
$$x = 2$$
 $\Rightarrow f(2) + 2f(-1) = \frac{1}{2} \cdots (i)$

Put
$$x = -1 \Rightarrow f(-1) + 2f(2) = -1 \cdots (ii)$$

$$2f(-1) + 4f(2) = -2$$

$$f(2) + 2f(-1) = \frac{1}{2}$$

$$- - - -$$

$$3f(2) = -\frac{5}{2} \implies f(2) = -\frac{5}{6}$$

$$(2) = -\frac{5}{6}$$

Return To Top

Let the function $f:[0,1] \to R$ be defined by $f(x) = \frac{4^x}{4^x + 2}$

Then the value of $f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \dots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right)$ is____.

Solution:
$$f(x) + f(1-x) = \frac{4^x}{4^{x+2}} + \frac{4^{1-x}}{4^{1-x}+2}$$

$$= \frac{4^{x}}{4^{x}+2} + \frac{\frac{4}{4^{x}}}{\frac{4}{4^{x}+2}} = \frac{4^{x}}{4^{x}+2} + \frac{4}{4+2\cdot 4^{x}}$$
$$= \frac{4^{x}}{4^{x}+2} + \frac{2}{4^{x}+2}$$

$$f(x) + f(1-x) = 1$$

$$\Rightarrow f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \dots + f\left(\frac{20}{40}\right) + \dots + f\left(\frac{39}{40}\right) = 19 + f\left(\frac{20}{40}\right)$$

$$\Rightarrow f\left(\frac{1}{40}\right) + f\left(\frac{2}{40}\right) + f\left(\frac{3}{40}\right) + \dots + f\left(\frac{39}{40}\right) - f\left(\frac{1}{2}\right) = 19 + f\left(\frac{20}{40}\right) - f\left(\frac{1}{2}\right)$$

Transformation of graphs (horizontal shifts):

• Let y = f(x)y = f(x + k), k > 0 (graph goes to left by 'k' units)

Plot the following curve:

(i)
$$y = (x + 1)^2$$

(ii)
$$y = (x - 2)^2$$

Solution:

(i) For y = f(x + k), k > 0 graph shift k units toward left from y = f(x) graph

Plot the following curve:

(i)
$$y = (x + 1)^2$$

(ii)
$$y = (x - 2)^2$$

Solution: (ii) $y = (x - 2)^2 = (x + (-2))^2$

Here graph shift 2 units toward right

For y = f(x - k), k > 0 graph shift k units towards right horizontally from y = f(x) graph.

Solution:

Transformation of graphs (Vertical shifts):

• Let y = f(x)

$$y = f(x) + k, k > 0$$
 (graph goes to up by 'k' units)

Plot the following curves:

(i)
$$y = x^2 + 1$$

$$(ii) y = x^2 - 2$$

Solution: (i) For y = f(x) + k, k > 0 graph shift k units toward down from y = f(x) graph

Plot the following curves:

(i)
$$y = x^2 + 1$$

$$(ii) y = x^2 - 2$$

Solution: (ii) $y = x^2 - 2$

Here graph shift 2 units upward

k units downwards.

Transformation of graphs (horizontal stretch):

• Let
$$y = f(x)$$

$$y = f(kx)$$
, $k > 1$ (points on x-axis divided by 'k'units)

Example:

Transformation of graphs (Vertical stretch):

• Let
$$y = f(x)$$

$$y = k \cdot f(x), k > 1$$
 (Point on y-axis is multiplied by 'k' units)

Solution:

Period of $\sin 2x = \text{Period of } 2\sin 2x = \pi$

Session 11

Playing with Graphs

Plot the following curves for $x \in R$: (i) y = 1 + [x] (ii) y = x + [x]

[] denotes G.I.F.

Solution: (i)
$$y = 1 + [x]$$

1. Make the plot of the graph [x]

[] denotes G.I.F.

Solution: (i)
$$y = 1 + [x]$$

2. Now, up the graph by 1.

Plot the following curves for $x \in R$: (i) y = 1 + [x] (ii) y = x + [x] [] denotes G.I.F.

Solution: (ii) y = x + [x]

	$x \in [0,1)$	y = x + 0
	$x \in [1,2)$	y = x + 1
	$x \in [2,3)$	y = x + 2
	$x \in [-1,0)$	y = x - 1
1		,

Plot graph of the following functions. (i) $y = \frac{1}{x+4}$ (ii) $y = \frac{1}{x+4} + 3$

Solution:
$$i) y = \frac{1}{x+4}$$

Shift
$$y = \frac{1}{x}$$
 at $x = -4$

Plot graph of the following functions. (i) $y = \frac{1}{x+4}$ (ii) $y = \frac{1}{x+4} + 3$

Solution:

$$ii) y = \frac{1}{x+4} + 3$$

Shift $y = \frac{1}{x}$ at $x = -4$

B

Transformation of graphs

• Let
$$y = f(x)$$

$$y = f(-x)$$
, (mirrored about y -axis)

Plot the curve $\{-x\}$, Where $\{\}$ denotes fractional part function

Solution: $y = \{-x\}$

B

Transformation of graphs:

• Let
$$y = f(x)$$

$$y = -f(x)$$
, (mirrored about x -axis)

Values of y, multiplied by -1

y = -f(-x) transformation from y = f(x):

$$y = -f(-x)$$
 transformation from $y = f(x)$:

$$y = -f(-x),$$

Transformation of graphs:

• Let
$$y = f(x)$$

$$y = f(|x|)$$
 (image of f for +ve x, about y -axis)

Transformation of graphs:

• Let
$$y = f(x)$$

$$y = |f(x)|$$
 (-ve y -axis portion flipped about x -axis)

Transformation of graphs:

• Let
$$y = f(x)$$

y = |f(|x|)| (+ve x axis portion of f(|x|) flipped about y -axis)

|y| = f(x) transformation from y = f(x):

$$y = f(x)$$

$$|y| = f(x)$$

Solution:

(i)
$$y = \sin |x|$$

Solution: (ii)
$$y = |(x-2)^{\frac{1}{3}}|$$

Shift
$$y = x^{\frac{1}{3}}$$
 at $x = 2$

Plot graphs of the function (i) $y = \sin|x|$ (ii) $y = \left|(x-2)^{\frac{1}{3}}\right|$ (iii) $|y| = \ln x$

Solution: Now, draw graph for $y = |(x-2)^{\frac{1}{3}}|$ at x = 2

Solution:

$$(iii) |y| = \ln x$$

Number of solutions of two curves y = f(x) & y = g(x) is number of intersection points for 2 curves y = f(x) & g(x)

Solution:

Plot the curve of $y = [\sin x]$:

Thank

