Welcome to

Qutelita Bbyuus LIVE

Relations \& Functions II

$$
y=a x^{2}+b x+c
$$

Table of contents			
Session 03	55	Session 07	135
Logarithmic function	56	Even function	136
Modulus function	63	Odd function	138
Greatest Integer Function	67	Properties of Even/Odd function	142
		Composite function	149
Session 04	76	Session 08	158
Fractional Part function	77	Properties of Composite function	163
Signum function	84	Periodic functions	164
One-One function	88	Properties of Periodic functions	169
Many-one function	91		
		Session 09	177
Session 05	93	Inverse function	182
		Properties of Inverse function	188
Number of functions	104	Binary Operation	191
Number of one-one mappings	105	Properties of Binary Operation	192
Session 06	113	Session 10	198
Onto function (Surjective mapping)	114	Functional Equations	200
Into function	117	Transformation of graphs	207
Bijection function	120	Session 11	219
Principle of inclusion and exculsion	125	Transformation of graphs	225

Session 1

Introduction to Relations and

Types of Relations

Key Takeaways

Cartesian product of Sets:

Let A and B are two non-empty sets. The set of all ordered pairs (a, b) [where $a \in A$ and $b \in B$] is called Cartesian product of sets A and B.

- It is denoted by $A \times B$.
- If $n(A)=p, n(B)=q$, then the number of elements in cartesian product of sets is $n(A \times B)=p \times q$.

Example: $A=\{a, b, c\}, \quad B=\{1,2\}$
$\Rightarrow A \times B=\{(a, 1),(a, 2),(b, 1),(b, 2),(c, 1),(c, 2)\}$
$\Rightarrow n(A \times B)=6=n(A) \times n(B)$

Key Takeaways

Relation:

Let A and B be two sets, then a relation R from A to B is a subset of $A \times B$.

- $R \subseteq A \times B$
- Number of relations $=$ Number of subsets of $A \times B$
- If $n(A)=p, n(B)=q$, and $R: A \rightarrow B$, then number of relations $=2^{p q}$

$$
\begin{aligned}
& \text { Example: } n(A)=6, n(B)=4 \\
& \Rightarrow n(A \times B)=n(A) \times n(B)=6 \times 4=24
\end{aligned}
$$

Number of relations $=$ Number of subsets of $A \times B$

$$
=2^{24}
$$

Domain and range of relation:
Let R be a relation defined from set A to set B.
Let $R=\left\{\left(a_{1}, b_{1}\right),\left(a_{1}, b_{2}\right),\left(a_{2}, b_{3}\right)\right\}$

- The set of all the first components of ordered pairs belonging to R is called domain of R.
i.e., domain $\subseteq A$
- The set of all the second components of ordered pairs belonging to R is called range of R.
i.e., Range $\subseteq B$
- Set B is called the co-domain of R.

Let A and B are two sets and R be a relation from A to B, then the inverse of R is denoted by R^{-1} is a relation from B to A and is defined as:

$$
R^{-1}=\{(b, a),(a, b) \in R\}
$$

- Domain $\left(R^{-1}\right)=$ Range of R
- Range $\left(R^{-1}\right)=$ Domain of R

If $R=\left\{(x, y)\right.$: $\left.x, y \in \mathbb{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on set of integers \mathbb{Z}, then domain of R^{-1}.

If $R=\left\{(x, y)\right.$: $\left.x, y \in \mathbb{Z}, x^{2}+3 y^{2} \leq 8\right\}$ is a relation on set of integers \mathbb{Z}, then domain of R^{-1}.

Solution: $R=\left\{(x, y): x, y \in \mathbb{Z}, x^{2}+y^{2} \leq 8\right\}$
Domain of $R^{-1}=$ Range of $R($ values of $y)$
(A) $\{-2,-1,1,2\}$

$$
\begin{array}{ll}
x=0, y^{2} \leq 8 / 3 & \Rightarrow y \in\{-1,0,1\} \\
x=1, y^{2} \leq 7 / 3 & \Rightarrow y \in\{-1,0,1\} \\
x=2, y^{2} \leq 4 / 3 & \Rightarrow y \in\{-1,0,1\} \\
x=3, y^{2} \leq-1 / 3 & \Rightarrow y \in \phi \\
\therefore \text { Domain of } R^{-1}=\{-1,0,1\}
\end{array}
$$

A relation R on a set A is called a void or empty relation, if no element of set A is related to any element of A.

- $R=\phi$

Example: $A=\{$ students in boys' school\}
Relation $R=\{(a, b): b$ is sister of $a \& a, b \in A\}$

It is a relation in which each element of set A is related to every element of set A.

- $R=A \times A$

Example: $A=\{$ set of all the students of a school\}
Relation $R=\{(a, b)$: difference between the heights of $a \& b$ is less than 10 meters, where $a, b \in A\}$

Explanation: It is obvious that the difference between the heights of any two students of the school has to be less than 10 m .

Therefore $(a, b) \in R$ for all $a, b \in A$.
$\Rightarrow R=A \times A$
$\therefore R$ is the universal-relation on set A.

If $A=$ \{set of real numbers\}, then check whether the relation $R=\{(a, b):|a-b| \geq 0, a, b \in A\}$ is a universal relation or not?

Solution:
Given: $a \in \mathbb{R} \& b \in \mathbb{R}$
Since, the difference of two real number is a real number.
$a-b \rightarrow$ Real number
Absolute value of all real numbers ≥ 0
$|a-b| \geq 0$
A
1
5
2.5
\vdots
2
1.3
\vdots

Key Takeaways

Identity relation:

Relation on set A is identity relation, if each and every element of A is related to itself only.

Example: $A=\{$ set of integers $\}$

$$
\text { Relation } R=\{(a, b): a=b, a, b \in A\}=I_{A}
$$

Key Takeaways

Reflexive relation:
A relation R defined on a set A is said to be reflexive if every element of A is related to itself.

- Relation R is reflexive if $(a, a) \in R \forall a \in A$ or $I \subseteq R$, where I is identity relation on A.

A relation R defined on set of natural numbers, $R=\{(a, b): a$ divides $b\}$, then R is a \qquad

Solution: $\quad(a, b) \rightarrow a$ divides b
For being reflexive following condition must satisfy:
$(a, a) \Rightarrow a$ divides a, which is always true.
$\therefore R$ is a reflexive relation.

行
$R=\{(1,1),(1,2),(2,2),(3,3)\}$ is:

Solution:

B Only reflexive
(C) Both a and b
$\therefore R$ is a reflexive relation

(D) None

Key Takeaways

Symmetric relation:

A relation R on a set A is said to be a symmetric relation, iff $(a, b) \in R \Rightarrow(b, a) \in R$.
$a R b \Rightarrow b R a, \forall(a, b) \in R$

Example: Consider a set $A=\{1,2,3\}$, which one is symmetric relation

$$
\begin{array}{ll}
R_{1}=\{(1,1),(1,2),(2,1),(1,3),(3,1)\} & \text { Symmetric } \\
R_{2}=\{(1,1),(1,2),(2,1),(1,3)\} & \text { Not symmetric } \\
R_{3}=\{(1,1),(2,2),(3,1)\}=I_{A} & \text { Symmetric }
\end{array}
$$

- Number of Reflexive relation $=2^{n(n-1)}$
- Number of symmetric relation $=2^{\frac{n(n+1)}{2}}$

Key Takeaways

Transitive relation
A relation R on set A is said to be a transitive relation, iff $(a, b) \in R$ and $(b, c) \in R \Rightarrow(a, c) \in R, \forall(a, b, c \in A)$.

$$
a R b \text { and } b R c \Rightarrow a R c, a, b, c \in A
$$

Example: Consider a set $A=\{1,2,3\}$

$$
\begin{array}{ll}
R_{1}=\{\underbrace{(1,2)}, \underbrace{(2,3)}_{2 R 2},(\underbrace{(1,3)}_{1 R 3}\} & \text { Transitive } \\
R_{2}=\{(1,1),(1,3),(3,2)\} & \text { Not transitive } \\
R_{3}=\{(1,1),(2,2),(3,3)\}=I_{A} & \text { Transitive }
\end{array}
$$

Show that the relation R defined on the set of real number such that $R=\{(a, b): a>b\}$ is transitive.

Solution:
Let $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$
So $a>b$ and $b>c \Rightarrow a>c$

Thus $(a, c) \in \mathbb{R}$
$\therefore R$ is a transitive relation.

Equivalence Relation

- A relation R on a set A is said to be equivalence relation on A iff,
- If it is reflexive, i.e., $(a, a) \in R, \forall a \in A$
- If it is symmetric, i.e., $(a, b) \in R \Rightarrow(b, a) \in R, \forall a, b \in A$
- If it is transitive, i.e., $(a, b) \in R,(b, c) \in R \Rightarrow(a, c) \in R, \forall a, b, c \in A$
- Identity Relation is an Equivalence Relation.

Key Takeaways

Note:
If a relation is reflexive, symmetric and transitive, then it is equivalence relation.

Let T be the set of all triangles in a plane with R a relation given by $R=\left\{\left(T_{1}, T_{2}\right): T_{1}\right.$ is congruent to $\left.T_{2}\right\}$. Show that R is an equivalence relation.

Solution:
Since every triangle is congruent to itself, $\Rightarrow R$ is reflexive
$\left(T_{1}, T_{2}\right) \in R \Rightarrow T_{1}$ is congruent to T_{2}
$\Rightarrow T_{2}$ is congruent to $T_{1} \Rightarrow R$ is symmetric
Let $\left(T_{1}, T_{2}\right) \in R$ and $\left(T_{2}, T_{3}\right) \in R$
$\Rightarrow T_{1}$ is congruent to T_{2} and T_{2} is congruent to T_{3}
$\Rightarrow T_{1}$ is congruent to T_{3}
$\Rightarrow R$ is transitive
Hence, R is an Equivalence Relation.

Let \mathbb{R} be the set of real numbers.
Statement $1: A=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y-x$ is an integer $\}$ is an equivalence relation on \mathbb{R}.
Statement 2: $B=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=\alpha y$ for some rational number $\alpha\}$ is an equivalence relation.

Statement 1 is true, statement 2 is true and statement 2 is not correct explanation of statement 1.

Statement 1 is true, statement 2 is false

Let \mathbb{R} be the set of real numbers.
Statement $1: A=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y-x$ is an integer $\}$ is an equivalence relation on \mathbb{R}.
Statement 2: $B=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=\alpha y$ for some rational number $\alpha\}$ is an equivalence relation.

Solution: $A=\{(x, y) \in \mathbb{R} \mathrm{X} \mathbb{R}: y-x$ is an integer $\}$
$(x, y) \in A \Rightarrow y-x$ is an integer $\Rightarrow x-x$ is an integer $\Rightarrow(x, x) \in A$
$\Rightarrow A$ is reflexive
$(x, y) \in A \Rightarrow y-x$ is an integer $\Rightarrow x-y$ is an integer $\Rightarrow(x, x) \in A$
$\Rightarrow A$ is symmetric
$(x, y) \in A$ and $(y, z) \in A$
$\Rightarrow y-x$ is an integer and $y-z$ is an integer
$\Rightarrow x-z$ is an integer $\Rightarrow(x, z) \in A \Rightarrow A$ is transitive
$\therefore A$ is an equivalence relation.

Let \mathbb{R} be the set of real numbers.
Statement $1: A=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y-x$ is an integer $\}$ is an equivalence relation on \mathbb{R}.
Statement 2: $B=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=\alpha y$ for some rational number $\alpha\}$ is an equivalence relation.

Solution:

$$
\begin{aligned}
& B=\{(x, y) \in \mathbb{R} \mathrm{X} \mathbb{R}: x=\alpha y \text { for some rational number } \alpha\} \\
& (x, y) \in B \Rightarrow x=\alpha y \Rightarrow x=\alpha x \text { for } \alpha=1 \Rightarrow(x, x) \in B \Rightarrow B \text { is reflexive } \\
& (x, y) \in B \Rightarrow x=\alpha y \quad:(x, y) \in B \text { and }(y, z) \in B \\
& \text { Let } x=0, y=1 \quad \text { Thus } \alpha=0 \quad \Rightarrow x=\alpha y \text { and } y=\beta z \\
& \text { But } y \neq \beta x \text { for any rational } \beta \\
& \Rightarrow(y, x) \notin B \\
& \Rightarrow x=\alpha \beta z \\
& \Rightarrow(x, z) \in B \\
& \Rightarrow B \text { is transitive }
\end{aligned}
$$

$\therefore B$ is not an equivalence relation.

Let \mathbb{R} be the set of real numbers.
Statement $1: A=\{(x, y) \in \mathbb{R} \times \mathbb{R}: y-x$ is an integer $\}$ is an equivalence relation on \mathbb{R}.
Statement 2: $B=\{(x, y) \in \mathbb{R} \times \mathbb{R}: x=\alpha y$ for some rational number $\alpha\}$ is an equivalence relation.

Statement 1 is true, statement 2 is true and statement 2 is correct explanation of statement 1.

Statement 1 is true, statement 2 is true and statement 2 is not correct explanation of statement 1.

Statement 1 is true, statement 2 is false

The composition of two relations $R \& S(S o R)$ is a binary relation from A to C, if and only if there is $b \in B$ such that $a R b \& b S c$ where $a \in A \& c \in C$ Mathematically,

$$
S o R=\{(a, c) \mid \exists b \in B: a R b \wedge b S c\}
$$

Session 2

Introduction to Function and

 Types of Functions
Key Takeaways

Function

A function is a relation defined from set A to set B such that each and every element of set A is uniquely related to an element of set B.

- It is denoted by $f: A \rightarrow B$

Example:

The following relation is a function. Yes or No?

The following relation is a function. Yes or No?

Solution:

Answer is No.

For being function, every input should have unique output, here input c doesn't have any output.

Domain, Range and Co-domain of function:

Domain : Values of set A for which function is defined.
(Set of permissible inputs)
Range : All values that f takes (Range \subseteq Co - domain). (Set of output generated domain)

Co-domain : Set of all elements in set B.

Example:

Domain $=\{1,2,3,4\}$
Range $=\{1,4,9,16\}$
Co-domain $=\{1,4,9,16,25\}$

Key Takeaways

Vertical line test:

If any vertical line parallel to Y-axis intersect the curve on only one point, then it is a function. If it is intersecting more than one points, then it is not a function.

Key Takeaways

Vertical line test:

- $y^{2}=x$
- $y=x^{3}$

Key Takeaways

Real valued function:
A function which has either \mathbb{R} or one of its subsets as its range, is called a real valued function. Further, if its domain is also either \mathbb{R} or a subset of \mathbb{R}, is called a real function.
$R_{f} \subseteq \mathbb{R} \Rightarrow f$ is real valued function.

Check whether $y^{2}=e^{x^{2}+x}$ is function or not.

Solution:
For $x=1$
$y^{2}=e^{1+1}=e^{2}$
$y= \pm e$
We get two values of y for single value of x.
Hence, this is not a function.

Key Takeaways

Polynomial function:

- Domain : $x \in \mathbb{R}$

$$
\begin{aligned}
P(x)= & a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
& a_{0}, a_{1}, \cdots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{aligned}
$$

- If $n=0$, we get $P(x)=a_{0}$ (Constant Polynomial)

Key Takeaways

Polynomial function:

- Domain : $x \in \mathbb{R}$
- If $n=1$, we get $P(x)=a_{1} x+a_{0}$

$$
\begin{aligned}
P(x)= & a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
& a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{aligned}
$$

(Linear Polynomial)

Domain : \mathbb{R}

Range : \mathbb{R}

Identity function:

- $a_{1}=1, a_{0}=0$

$$
p(x)=x
$$

$$
\begin{aligned}
P(x)= & a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
& a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{aligned}
$$

Domain : \mathbb{R}
Range : \mathbb{R}

Key Takeaways

Polynomial function:

- Domain : $x \in \mathbb{R}$
- If $n=2$, we get

$$
\begin{gathered}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
\\
a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{gathered}
$$

$P(x)=a_{2} x^{2}+a_{1} x+a_{0}$
(Quadratic Polynomial)

Key Takeaways

Polynomial function:

- Domain : $x \in \mathbb{R}$
- If n is even, $P(x)$ is called an

$$
\begin{gathered}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{gathered}
$$

even degree polynomial whose range is always a subset of \mathbb{R}.

- $y=x^{2}$

Key Takeaways

Polynomial function:

- Domain : $x \in \mathbb{R}$
- If n is odd, $P(x)$ is called an odd

$$
\begin{gathered}
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{0} \\
\\
a_{0}, a_{1}, \ldots, a_{n} \in \mathbb{R}, n \in \mathbb{W}
\end{gathered}
$$ degree polynomial whose range is \mathbb{R}.

- $y=x^{3}$

Find domain and range of function. $f(x)=\sin ^{2} x+\cos ^{2} x$

Solution:

$$
\begin{gathered}
f(x)=\sin ^{2} x+\cos ^{2} x=1 \\
D_{f}: x \in \mathbb{R} \\
R_{f}: y \in\{1\}
\end{gathered}
$$

Find range of the function $f(x)=x^{2}+4 x+3$

Find range of the function $f(x)=x^{2}+4 x+3$

Solution:

Given function:

$$
f(x)=x^{2}+4 x+3
$$

$D_{f}: x \in \mathbb{R}$
$R_{f}: y \in\left[-\frac{D}{4 a}, \infty\right)$

(B) $(0, \infty)$

$a=1, b=4, c=3$
$-\frac{D}{4 a}=-\frac{(4)^{2}-4(1)(3)}{4 \times 1}=-\frac{4}{4}=-1$

Hence, range of the function would be $[-1, \infty)$

Key Takeaways

Rational Function:

- For $h(x)=\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are functions of x
- Domain: Check domain of $f(x)$ and $g(x), \& g(x) \neq 0$
- If $f(x) \& g(x)$ is both are polynomials, then $h(x)$ is rational polynomial function.

Find domain and range of $f(x)=\frac{x+1}{3 x-5}$.
Solution: Given: $f(x)=\frac{x+1}{3 x-5}$
Domain: $3 x-5 \neq 0 \Rightarrow x \neq \frac{5}{3} \Rightarrow x \in \mathbb{R}-\left\{\frac{5}{3}\right\}$
Range: Let $f(x)=y=\frac{x+1}{3 x-5} \rightarrow$ Convert and make ' x ' as a subject
$\Rightarrow 3 x y-5 y=x+1$
$\Rightarrow x(3 y-1)=5 y+1$
$\Rightarrow x=\frac{5 y+1}{3 y-1}$
Since, x must be real.
$\Rightarrow 3 y-1 \neq 0 \Rightarrow y \neq \frac{1}{3}$
Range : $y \in \mathbb{R}-\left\{\frac{1}{3}\right\}$

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x}{x^{2}+1}, x \in \mathbb{R}$. Then the range of f is:
(A) $\mathbb{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]$

$$
\mathbb{R}-[-1,1]
$$

(C) $(-1,1)-\{0\}$
(D) $\left\lvert\,-\frac{1}{2}\right.$ 벽

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a function defined by $f(x)=\frac{x}{x^{2}+1}, x \in \mathbb{R}$. Then the range of f is:

JEE MAIN JAN 2019
Solution:
Domain of $f(x)$ is \mathbb{R}
Let $y=\frac{x}{x^{2}+1} \Rightarrow y x^{2}+y=x$
$\Rightarrow \underbrace{y x^{2}-x+y}_{D \geq 0}=0 \quad(\because x \in \mathbb{R})$

(A) $\mathbb{R}-\left[-\frac{1}{2}, \frac{1}{2}\right]$
(B) $\mathbb{R}-[-1,1]$
$\Rightarrow 1-4 y^{2} \geq 0 \Rightarrow 4 y^{2}-1 \leq 0$
(C) $(-1,1)-\{0\}$
$\Rightarrow y \in\left[-\frac{1}{2}, \frac{1}{2}\right]$
\therefore Range of f is $\left[-\frac{1}{2}, \frac{1}{2}\right]$

Key Takeaways

Exponential function:
$y=a^{x}, a>0 \& a \neq 1$

- Domain : $x \in \mathbb{R}$
- Range : $y \in(0, \infty)$

Example: Find domain and range of $f(x)$, where $f(x)=e^{2 x}$
We know $e>1$
Domain: $x \in \mathbb{R} \quad$ Range: $(0, \infty)$

The range of $f(x)=e^{x}+1$ is

The range of $f(x)=e^{x}+1$ is

Solution: Range of $e^{x}:(0, \infty)$

So, range of $e^{x}+1$: $(1, \infty)$

Session 3

Some more types of Functions

Key Takeaways

Logarithmic function:

$$
y=\log _{a} x, a>0 \& a \neq 1
$$

- Domain : $x \in(0, \infty)$ or $\mathbb{R}^{+} \quad$ - Range : $y \in(-\infty, \infty)$ or \mathbb{R}

Key Takeaways

Logarithmic function:

$$
y=\log _{a} x, a>0 \& a \neq 1
$$

- Domain : $x \in(0, \infty)$ or \mathbb{R}^{+}

Increasing function $(a>1)$

- Range : $y \in(-\infty, \infty)$ or \mathbb{R}

$$
\text { Decreasing function }(0<a<1)
$$

Example: Find domain and range of $f(x)=\log (x-2)$.
Solution: $f(x)=\log _{10}(x-2)$;
Domain: $x-2>0 \Rightarrow x>2$
$D_{f}=(2, \infty) \quad$ Range: $y \in \mathbb{R}$

The domain of the definition of the function

$$
f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right) \text { is: }
$$

(C) $(-1,0) \cup(1,2) \cup(2, \infty)$
(D) $(-1,0) \cup(1,2) \cup(3, \infty)$

$$
f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right) \text { is : }
$$

Solution:

$$
\begin{aligned}
& f(x)=\frac{1}{4-x^{2}}+\log _{10}\left(x^{3}-x\right) \\
& 4-x^{2} \neq 0 \Rightarrow x \neq \pm 2 \cdots(i) \\
& \text { and } x^{3}-x>0 \Rightarrow x\left(x^{2}-1\right)>0 \\
& \Rightarrow x \in(-1,0) \cup(1, \infty) \cdots(i i)
\end{aligned}
$$

$$
\text { (B) }(-2,-1) \cup(-1,0) \cup(2, \infty)
$$

From equation (i) and (ii)

$$
x \in(-1,0) \cup(1,2) \cup(2, \infty)
$$

C) $(-1,0) \cup(1,2) \cup(2, \infty)$
(D) $(-1,0) \cup(1,2) \cup(3, \infty)$

Key Takeaways

Note:

- For $h(x)=f(x)^{g(x)}$, to be defined for $f(x)>0$, and normal condition for $g(x)$.

Find domain of function $f(x)=\left(1+\frac{3}{x}\right)^{\frac{1}{x-2}}$

Solution:

$$
\begin{aligned}
& f(x)=\left(1+\frac{3}{x}\right)^{\frac{1}{x-2}} \\
& \left(1+\frac{3}{x}\right)>0 \text { and } x-2 \neq 0 \\
& \Rightarrow x \in(-\infty,-3) \cup(0, \infty) \text { and } x \neq 2 \\
& \Rightarrow x \in(-\infty,-3) \cup(0,2) \cup(2, \infty)
\end{aligned}
$$

Find domain and range of $f(x)$, where $f(x)=x^{4}+x^{2}+4$.

Solution: $\quad f(x)=x^{4}+x^{2}+4=y$
Since $f(x)$ is a polynomial, it's domain is \mathbb{R}.
For range, $y=x^{4}+x^{2}+4=\left(x^{2}\right)^{2}+2 \times \frac{1}{2} \times x^{2}+\frac{1}{4}-\frac{1}{4}+4$

$$
=\left(x^{2}+\frac{1}{2}\right)^{2}+\frac{15}{4}
$$

Since, $x^{2} \geq 0 \Rightarrow x^{2}+\frac{1}{2} \geq \frac{1}{2}$
$\therefore y \geq\left(\frac{1}{2}\right)^{2}+\frac{15}{4}$
$y \in[4, \infty)$
Alternate Method:
We know that, $x^{2}, x^{4} \geq 0$
$\Rightarrow y \geq 4$

Modulus function

- $y=|x|=\left\{\begin{array}{l}x, x \geq 0 \\ -x, x<0\end{array}\right.$

Domain : $x \in \mathbb{R}$
Range : $y \in[0, \infty)$

Find the domain and the range of $f(x)=\frac{\sqrt{x^{2}}}{|x|}$.
Solution: $\quad f(x)=\frac{\sqrt{x^{2}}}{|x|}=\frac{|x|}{|x|}=1$ Where $x \neq 0 \quad \because \sqrt{(f(x))^{2}}=|f(x)|$
Domain : $x \in \mathbb{R}-\{0\}$
Range : $f(x) \in\{1\}$

Find the range of the function $f(x)=1-|x-2|$.

Find the range of the function $f(x)=1-|x-2|$.

Key Takeaways

Greatest integer function(Step function)

- $y=[x]=$ Greatest Integer less than or equal to x

Domain : $x \in \mathbb{R} \quad$ Range : $y \in \mathbb{Z}$

If $[x] \leq-2$, then $x \in$

Key Takeaways

Greatest integer function

- $y=[x]=$ Greatest Integer less than or equal to x

Domain : $x \in \mathbb{R}$
Range : $y \in \mathbb{Z}$

Properties:

- $x-1<[x] \leq x$
- $[x+m]=[x]+m$; for $m \in \mathbb{I}$.
- $[x]+[-x]=\left\{\begin{array}{l}0, x \in \mathbb{I} \\ -1, x \notin \mathbb{I}\end{array}\right.$

Find the domain and range of the function:

$$
f(x)=[x+1]+1,(\text { where [.] denotes G.I.F) }
$$

Solution:

$$
\begin{aligned}
& f(x)=[x+1]+1 \Rightarrow f(x)=[x]+2 \\
& y=[x]
\end{aligned}
$$

$$
[x+m]=[x]+m ; \text { for } m \in \mathbb{I} .
$$

Find the domain and range of the function:
$f(x)=[x+1]+1$, (where [.] denotes G.I.F)

Solution: $\quad f(x)=[x+1]+1 \Rightarrow f(x)=[x]+2 \quad y=[x]+2$

Find the domain of $f(x)=\sqrt{1-[x]^{2}}$, where [.] denotes G.I.F.

$$
(1,2)
$$

$$
[-1,2)
$$

$$
[1,2]
$$

$(-1,0)$

Find the domain of $f(x)=\sqrt{1-[x]^{2}}$, where [.] denotes G.I.F.

Solution:

$$
f(x)=\sqrt{1-[x]^{2}}
$$

$$
1-[x]^{2} \geq 0
$$

$$
\Rightarrow[x]^{2}-1 \leq 0
$$

$$
\Rightarrow[x]^{2} \leq 1
$$

$$
\Rightarrow-1 \leq[x] \leq 1
$$

$$
\Rightarrow x \in[-1,2)
$$

Find the range of the function :

$$
f(x)=x^{[x]}, x \in[1,3] \quad \text { (where }[x] \text { denotes G.I.F.). }
$$

$$
\begin{array}{ll}
\text { Solution: } & f(x)=x^{[x]}, x \in[1,3] \quad \text { (where }[x] \text { denotes G.I.F.). } \\
& f(x)=x^{[x]}, x \in[1,3]
\end{array}
$$

Case 1: $x \in[1,2)$	Case 2: $x \in[2,3)$	Case 3: $x=3$
$f(x)=x(\because[x]=1)$	$f(x)=x^{2}(\because[x]=2)$	$f(x)=x^{3}(\because[x]=3)$
$f(x) \in[1,2) \cdots(i)$	$f(x) \in[4,9) \cdots(i i)$	$f(x) \in\{27\} \cdots($ iii $)$

$(i) \cup(i i) \cup(i i i)$

$$
f(x) \in[1,2) \cup[4,9) \cup\{27\}
$$

Session 4

Fractional part function, Signum function and One - one and Many-one function

Key Takeaways

Fractional Part Function

- $y=\{x\}=x-[x]$

Domain : $x \in \mathbb{R} \quad$ Range : $y \in[0,1)$

Solution:

$$
\begin{aligned}
y=\{x\} & =x-[x] \\
& =1.53-1=0.53
\end{aligned}
$$

Key Takeaways

Fractional Part Function

- $y=\{x\}=x-[x]$

Domain : $x \in \mathbb{R} \quad$ Range : $y \in[0,1)$
Properties:

- $\{x+n\}=\{x\}, n \in \mathbb{I}$
- $\{x\}+\{-x\}=\left\{\begin{array}{l}0, x \in \mathbb{I} \\ 1, x \notin \mathbb{I}\end{array}\right.$

Examples:

$$
\begin{aligned}
\{1.25\} & =1.25-[1.25] & \{-1.25\} & =-1.25-[-1.25] \\
& =-1.25-1 & & =-1.25-(-2) \\
& =0.25 & & =-1.25+2=0.75
\end{aligned}
$$

Find the domain and range of the function:
$f(x)=2\{x+1\}+3$, (where $\{$.$\} denotes fractional part function).$
Solution: $f(x)=2\{x+1\}+3 \Rightarrow f(x)=2\{x\}+3 \quad\{x+n\}=\{x\}, n \in \mathbb{I}$
$0 \leq\{x\}<1$
$0 \leq 2\{x\}<2$
$0+3 \leq 2\{x\}+3<2+3$
$3 \leq f(x)<5$
Domain : $x \in \mathbb{R}$
Range : $f(x) \in[3,5)$

Find the range of the function: $f(x)=\frac{\{x\}}{1+\{x\}}$, (where $\{$.$\} denotes$ fractional part function).

Solution: Let $y=f(x)=\frac{\{x\}}{1+\{x\}}$
On cross multiplying,

$$
\begin{aligned}
& y(1+\{x\})=\{x\} \Rightarrow y+y\{x\}=\{x\} \\
& \Rightarrow\{x\}=\frac{y}{1-y} \quad(\because\{x\} \in[0,1)) \Rightarrow 0 \leq \frac{y}{1-y}<1
\end{aligned}
$$

$$
\frac{y}{1-y} \geq 0 \Rightarrow \frac{y}{y-1} \leq 0
$$

Find the range of the function: $f(x)=\frac{\{x\}}{1+\{x\}}$, (where $\{$.$\} denotes$ fractional part function).

Solution:

$$
\begin{aligned}
& 0 \leq \frac{y}{1-y}<1 \\
& \Rightarrow \frac{y}{1-y}<1 \Rightarrow \frac{y}{1-y}-1<0 \\
& \Rightarrow \frac{2 y-1}{1-y}<0 \Rightarrow \frac{2 y-1}{y-1}>0 \\
& y \in\left(-\infty, \frac{1}{2}\right) \cup(1, \infty) \longrightarrow(I I)
\end{aligned}
$$

By $(I) \cap(I I)$ we get:

$$
y \in\left[0, \frac{1}{2}\right)
$$

Key Takeaways

Signum Function

- $y=\operatorname{sgn}(x)=\left\{\begin{array}{l}\frac{|x|}{x}, x \neq 0 \\ 0, x=0\end{array}=\left\{\begin{array}{c}1, x>0 \\ -1, x<0 \\ 0, x=0\end{array}\right.\right.$
- Domain : $x \in \mathbb{R} \quad$ Range : $y \in\{-1,0,1\}$
- $\operatorname{sgn}(\operatorname{sgn}(\operatorname{sgn} \cdots \cdots \cdots(\operatorname{sgn} x)=\operatorname{sgn}(x)$

Find the domain and range of the function : $f(x)=\operatorname{sgn}\left(\frac{x^{3}+x^{2}}{x+1}\right)$

Solution:

$$
\begin{aligned}
& f(x)=\operatorname{sgn}\left(\frac{x^{3}+x^{2}}{x+1}\right) \\
& \Rightarrow f(x)=\operatorname{sgn}\left(\frac{x^{2}(x+1)}{x+1}\right) \quad \text { Domain : } x \in \mathbb{R}-\{-1\} \\
& \Rightarrow f(x)=\operatorname{sgn}\left(x^{2}\right)
\end{aligned}
$$

Thus, $f(x) \in\{0,1\} \quad\left(\because x^{2} \geq 0\right)$
If $x^{2}>0 \Rightarrow f(x)=\operatorname{sgn}\left(x^{2}\right)=1$
If $x^{2}=0 \Rightarrow f(x)=\operatorname{sgn}\left(x^{2}\right)=0$

```
Range : }f(x)\in{0,1
```

One input - one output

Name	Kishor \%
Roll no.	BYJUSO1
Score	92%

Name	Arya
Roll no.	BYJUSO2
Score	93%

Name	Roohi
Roll no.	BYJUSO3
Score	95%

Name	Ayan
Roll no.	BYJUSO4
Score	92%

Name	Alia
Roll no.	BYJUSO5
Score	93%

```
Many inputs - one output
```

Name	Kishor \%
Roll no.	BYJUSO1
Score	92%

Name	Arya
Roll no.	BYJUSO2
Score	93%

Name	Roohi
Roll no.	BYJUSO3
Score	95%

Name	Ayan
Roll no.	BYJUSO4
Score	92%

Name	Alia
Roll no.	BYJUSO5
Score	93%

Key Takeaways

One - one function (Injective function/ Injective mapping) :
A function $f: A \rightarrow B$ is said to be a one-one function if different elements of set A have different f images in set B.

Key Takeaways

Methods to determine whether a function is ONE-ONE or NOT:
For $x_{1}, x_{2} \in A$ and $f\left(x_{1}\right), f\left(x_{2}\right) \in B$
$f\left(x_{1}\right)=f\left(x_{2}\right) \Leftrightarrow x_{1}=x_{2}$ or $x_{1} \neq x_{2} \Leftrightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)$

Example:

A function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that

$$
\begin{array}{l|l}
f(x)=3 x+5 & f(x)=x^{2}
\end{array}
$$

Suppose for some $x_{1}, x_{2} \in \mathbb{R}$

$$
f\left(x_{1}\right)=f\left(x_{2}\right)
$$

$\Rightarrow 3 x_{1}+5=3 x_{2}+5$
$\Rightarrow x_{1}=x_{2}$
$\therefore f(x)$ is one-one.

Suppose for some $x_{1}, x_{2} \in \mathbb{R}$

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \Rightarrow x_{1}^{2}=x_{2}^{2} \\
& \Rightarrow x_{1}^{2}-x_{2}^{2}=0 \\
& \Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}\right)=0 \\
& \Rightarrow x_{1}=x_{2} \text { or } x_{1}=-x_{2} \\
& \therefore f(x) \text { is not one-one. }
\end{aligned}
$$

Check whether the given function $f(x)$ is one-one or many one: $f(x)=x^{2}+x+2$

Solution: Suppose for some $x_{1}, x_{2} \in \mathbb{R}$

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \Rightarrow x_{1}^{2}+x_{1}+2=x_{2}^{2}+x_{2}+2 \\
& \Rightarrow x_{1}^{2}-x_{2}^{2}+x_{1}-x_{2}=0 \\
& \Rightarrow\left(x_{1}+x_{2}\right)\left(x_{1}-x_{2}\right)+x_{1}-x_{2}=0 \\
& \Rightarrow\left(x_{1}-x_{2}\right)\left(x_{1}+x_{2}+1\right)=0 \\
& \Rightarrow x_{1}=x_{2} \text { or } x_{1}+x_{2}=-1
\end{aligned}
$$

We get two conclusions here
Which indicates that many such $x_{1} \& x_{2}$ are possible
$\therefore f(x)$ is many-one function

Key Takeaways

Many one function :

A function $f: A \rightarrow B$ is said to be a many-one function if there exist at least two or more elements of set A that have same f image in B.

Both are example of many one function

Key Takeaways

Methods to determine whether a function is ONE-ONE or MANY ONE :
A function $f: A \rightarrow B$ is many one iff there exists atleast two elements
$x_{1}, x_{2} \in A$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$
$\left(f\left(x_{1}\right), f\left(x_{2}\right) \in B\right.$ but $\left.x_{1} \neq x_{2}\right)$

Session 5

Methods to Find Whether a Function is One-One or not, Number of Functions and Number of One-One mappings

Key Takeaways

Methods to determine whether a function is ONE-ONE or MANY ONE :
Horizontal line test : If we draw straight lines parallel to x-axis, and they cut the graph of the function at exactly one point, then the function is ONE-ONE.

Key Takeaways

Methods to determine whether a function is ONE-ONE or MANY ONE :
Horizontal line test : If there exists a straight lines parallel to x-axis, which cuts the graph of the function at atleast two points, then the function is MANY-ONE.

Choose the correct option:

A (a), (b) \& (e) are one-one mapping
(B) (a) \& (e) are many-one mapping
(a) \& (c) are one-one mapping
(D)

None

Solution:

a. $y=\log _{2} x$

b. $y=\sin x$

c. $y=e^{x}$

d. $y=\{x\}$

Solution: Exponents and logarithmic functions are one-one.

b. $y=\sin x$

Mān̄̄̄-Ō̄̄̄̄-

c. $y=e^{x}$

One-One

Choose the correct option:

a. $y=\log _{2} x$
b. $y=\sin x$
c. $y=e^{x}$
d. $y=\{x\}$
e. $y=\operatorname{sig}\{x\}$
(A) (a), (b) \& (e) are one-one mapping
(B) (a) \& (e) are many-one mapping
(a) \& (c) are one-one mapping

None

Identify the following functions as One-one or Many-one: $f(x)=\sqrt{1-e^{\left(\frac{1}{x}-1\right)}}$

Solution: Suppose for some $x_{1}, x_{2} \in \mathbb{R}$

$$
\begin{aligned}
& f\left(x_{1}\right)=f\left(x_{2}\right) \\
& \Rightarrow \sqrt{1-e^{\left(\frac{1}{x_{1}}-1\right)}}=\sqrt{1-e^{\left(\frac{1}{x_{2}}-1\right)}}
\end{aligned}
$$

On squaring both sides:
$\Rightarrow 1-e^{\left(\frac{1}{x_{1}}-1\right)}=1-e^{\left(\frac{1}{x_{2}}-1\right)}$

$$
y=e^{x}
$$

$$
\Rightarrow e^{\left(\frac{1}{x_{1}}-1\right)}=e^{\left(\frac{1}{x_{2}}-1\right)}
$$

$\Rightarrow e^{\frac{1}{x_{1}}}=e^{\frac{1}{x_{2}}}$
$\Rightarrow x_{1}=x_{2}$
Hence, One-one

Key Takeaways

Methods to determine whether a function is ONE-ONE or MANY ONE :
Any function which is either increasing or decreasing in given domain is one-one, otherwise many Many-one.

Determine whether a function $f(x)=\sin x+5 x$ is ONE-ONE or MANY-ONE

Solution:

$$
\begin{aligned}
& f(x)=\sin x+5 x \\
& f^{\prime}(x)=\cos x-5<0 \\
& \Rightarrow \text { Always decreasing } \rightarrow \text { one-one }
\end{aligned}
$$

Determine whether a function $f(x)=x^{3}+x^{2}+x+1$ is ONE-ONE or MANY-ONE

Solution:

$$
\begin{aligned}
& f(x)=x^{3}+x^{2}+x+1 \\
& f^{\prime}(x)=3 x^{2}+2 x+1 \\
& D=2^{2}-4(3 \times 1)=-8<0
\end{aligned}
$$

Hence $f^{\prime}(x)>0$ always
$\Rightarrow f(x)$ is always increasing \rightarrow one-one

Key Takeaways

Number of functions:

Let a function $f: A \rightarrow B$
$n(A)=4, n(B)=5$
Thus, total number of function from A to B
$\Rightarrow 5 \cdot 5 \cdots 5$ (4 times) $=5^{4}$

If $n(A)=m, n(B)=n(m<n)$
Thus, total number of functions from A to B $=n \cdot n \cdot n \cdots n(m$ times $)=n^{m}$

Key Takeaways

Number of ONE-ONE Mappings:

Let a function $f: A \rightarrow B$

$$
n(A)=4, n(B)=5
$$

Thus total number of function from A to B

$$
\Rightarrow 5(5-1)(5-2) \cdots(5-4+1)={ }^{5} P_{4}
$$

Thus, number of mappings

$$
\Rightarrow n(n-1)(n-2) \overbrace{{ }^{n} P_{m} \text {, if } n \geq m}^{\cdots(n-m+1)}=n_{0, \text { if } n<m}^{m}
$$

Number of Many-ONE Function
$=$ (Total Number of Functions) - (Number of One-One Functions)

If $A=\{1,2,3,4\}$, then the number of functions on set A, which are not ONE-ONE is:

If $A=\{1,2,3,4\}$, then the number of functions on set A, which are not ONE-ONE is:

Solution:
Number of many one functions
$=$ Total number of functions-Number of ONE-ONE functions
$=4^{4}-{ }^{4} \mathrm{P}_{4} \cdot 4^{4}$
$=256-24$
$=232$

Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Then the number of elements in the set $C=\{f: A \rightarrow B \mid 2 \in f(A)$ and f is not one-one $\}$ is \qquad .
JEE Main Sept 2020
Solution:
Only one Image

Only two Image and 2 has to be there

When all element (a, b, c) are related to only one image

$$
{ }^{3} C_{1}\left\{2^{3}-2\right\}
$$

To select one more image From $\{1,3,4\}$

Let $A=\{a, b, c\}$ and $B=\{1,2,3,4\}$. Then the number of elements in the set $C=\{f: A \rightarrow B \mid 2 \in f(A)$ and f is not one-one $\}$ is \qquad .

Solution: Only one Image- 1
Only two Image and 2 has to be there- ${ }^{3} C_{1}\left\{2^{3}-2\right\}=18$
The number of elements in set $C=1+18=19$

Determine whether the following function is ONE-ONE or MANY-ONE:
$f(x)=\ln x$

Any function which is either increasing or decreasing in the whole domain is one-one, otherwise many-one.

Identify the following function as One-One or Many-One: $f(x)=2 \tan x ;\left(\frac{\pi}{2}, \frac{3 \pi}{2}\right) \rightarrow R$

Session 6

Onto \& Into Functions

Key Takeaways

Onto function (surjective mapping)
If the function $f: A \rightarrow B$ is such that each element in B (co-domain) must have at least one pre-image in A, then we say that f is a function of A 'onto' B.

- Or, if range of $f=\mathrm{Co}$ - domain of f.
- $f: A \rightarrow B$ is surjective iff $\forall b \in B$, there exists some $a \in A$ such that $f(a)=b$.
- If not given, co-domain of function is taken as R

Key Takeaways

Onto function (surjective mapping)
If the function $f: A \rightarrow B$ is such that each element in B (co-domain) must have at least one pre-image in A, then we say that f is a function of A 'onto' B.

Example: $f(x)=\sin x: R \rightarrow[-1,1]$

Onto Function
Range :[-1, 1]

Check $f: R \rightarrow[-1,2]$ given by $f=\cos x$ is onto function or not.

Solution:

$$
f(x)=\cos x: R \rightarrow[-1,2]
$$

Range of $f(x)=\cos x$ is $[-1,1]$
But given co-domain is $[-1,2]$
Here, Range \subset Co-domain
$\Rightarrow[-1,1] \subset[-1,2]$
Hence $f(x)$ is not onto Function

Key Takeaways

Into function

- If the function $f: A \rightarrow B$ is such that there exists at least one element in B (co-domain) which is not the image of any element in domain (A), then f is 'into'.
- For an into function range of $f \neq \mathrm{Co}$ - domain of f and Range of $f \subset \mathrm{Co}$ - domain of f.

- If a function is onto, it cannot be into and vice - versa.

Key Takeaways

Into function

Example: $f(x)=x^{2}+x-2, x \in \mathbb{R}$
Solution:
Range of $f(x)=\left[-\frac{9}{4}, \infty\right)$
Thus, range \neq co-domain

```
\therefore INTO Function
```

Check whether the following functions are into function or not
(i) $f(x)=[x]$, where [] denotes greatest integer function
(ii) $g: \mathbb{R} \rightarrow[0,1)$ given by $g(x)=\{x\}$ where $\}$ represents fractional part function

Solution:

Range \subseteq Co-domain
$\Rightarrow f(x)$ is into function
(ii) Here, Range of $g(x)=[0,1)$

Range $=$ Co-domain $g(x)$ is onto function

If $f: A \rightarrow B$ is both an injective and a surjective function, then f is said to be bijection or one to one and onto function from A to B.

- If A, B are finite sets and $f: A \rightarrow B$ is a bijective function, then $n(A)=n(B)$
- If A, B are finite sets and $n(A)=n(B)$ then number of bijective functions defined from A to B is $n(A)$!

Note:
A function can be of one of these four types :

- One-one, onto (injective and surjective) also called as Bijective functions.
- One - one, into (injective but not surjective)
- Many - one, onto (surjective but not injective)
- Many - one, into (neither surjective nor injective)

If the function $f: \mathbb{R}-\{-1,1\} \rightarrow A$, defined by $f(x)=\frac{x^{2}}{1-x^{2}}$, is surjective, then A is equal to :

Solution:

$$
\begin{aligned}
& f(x)=y=\frac{x^{2}}{1-x^{2}} \\
\Rightarrow & y-y x^{2}=x^{2} \\
\Rightarrow & x^{2}=\frac{y}{1+y}\left(\because x^{2} \geq 0\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \frac{y}{1+y} \geq 0 \\
& \Rightarrow y \in(-\infty,-1) \cup[0, \infty) \\
& \therefore A=\mathbb{R}-[-1,0)
\end{aligned}
$$

If $f: \mathbb{R} \rightarrow[a, b], f(x)=2 \sin x-2 \sqrt{3} \cos x+1$ is onto function, then the value of $b-a$ is

Solution:

$$
f(x)=2 \sin x-2 \sqrt{3} \cos x+1
$$

$\left(\because a \cos \theta+b \sin \theta \in\left[-\sqrt{a^{2}+b^{2}}, \sqrt{a^{2}+b^{2}}\right]\right)$
$\Rightarrow f(x) \in[-3,5]$

Thus, $B=[-3,5]$

$$
b-a=8
$$

$f(x)=\sin \left(\frac{\pi x}{2}\right):[-1,1] \rightarrow[-1,1]$ is

F0 $f(x)=\sin \left(\frac{\pi x}{2}\right):[-1,1] \rightarrow[-1,1]$ is \qquad .

Solution:

Range $=$ Co-domain \Rightarrow Onto
\therefore One-one, onto

A One-one, onto Function
(B) Many-one, onto Function
(C) One-one, into Function

Many-one, into Function

Principle of inclusion and exclusion

include

$n(B)$
exclude

$n(A \cap B)$

$$
n(A \cup B)=n(A)+n(B)-n(A \cap B)
$$

Principle of inclusion and exclusion
$n(A \cup B \cup C)$

$$
=\underbrace{n(A)+n(B)+n(C)}_{\text {include }}-\underbrace{n(A \cap B)-n(A \cap C)-n(B \cap C)}_{\text {exclude }}+\underbrace{n(A \cap B \cap C)}_{\text {include }}
$$

Principle of inclusion and exclusion

Key Takeaways

Principle of inclusion and exclusion
$n\left(A_{i}\right)=$ Total functions when y_{i} excluded
$n\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right)$
$=$ Total functions where atleast one of element excluded
$=\sum n\left(A_{i}\right)-\sum n\left(A_{i} \cap A_{j}\right)+\sum n\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots$

$$
\cdots+(-1)^{n} n\left(A_{1} \cap A_{2} \cap A_{3} \cap \cdots \cap A_{n}\right)
$$

$={ }^{n} C_{1}(n-1)^{m}-{ }^{n} C_{2}(n-2)^{m}+{ }^{n} C_{3}(n-3)^{m}-\cdots$

Key Takeaways

Principle of inclusion and exclusion

$n\left(A_{i}\right)=$ Total functions when y_{i} excluded
$n\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right)=$ Total functions where atleast one of element excluded

$$
\begin{aligned}
& =\sum n\left(A_{i}\right)-\sum n\left(A_{i} \cap A_{j}\right)+\sum n\left(A_{i} \cap A_{j} \cap A_{k}\right)-\cdots \\
& \cdots+(-1)^{n} n\left(A_{1} \cap A_{2} \cap A_{3} \cap \cdots \cap A_{n}\right) \\
& ={ }^{n} C_{1}(n-1)^{m}-{ }^{n} C_{2}(n-2)^{m}+{ }^{n} C_{3}(n-3)^{m}-\cdots
\end{aligned}
$$

Number of $\quad=$ Total functions $-n\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right)$
onto functions

$$
=n^{m}-\left({ }^{n} C_{1}(n-1)^{m}-{ }^{n} C_{2}(n-2)^{m}+\cdots\right)
$$

In how many ways can 5 distinct balls be distributed into 3 distinct boxes such that
(i) any number of balls can go in any number of boxes
(ii) Each box has atleast one ball in it.

In how many ways can 5 distinct balls be distributed into 3 distinct boxes such that
(i) any number of balls can go in any number of boxes
(ii) Each box has atleast one ball in it.

$\begin{aligned} & \text { Number of } \\ & \text { onto functions }\end{aligned}=3^{5}-{ }^{3} C_{1} 2^{5}+{ }^{3} C_{2} 1^{5}$

$$
=150
$$

Principle of inclusion and exclusion
$\begin{aligned} & \text { Number of } \\ & \text { onto functions }\end{aligned}=$ Total functions $-n\left(A_{1} \cup A_{2} \cup A_{3} \cup \cdots A_{n}\right)$
onto functions

$$
=n^{m}-\left({ }^{n} C_{1}(n-1)^{m}-{ }^{n} C_{2}(n-2)^{m}+\cdots\right)
$$

$\begin{aligned} & \text { Number of } \\ & \text { onto } \\ & \text { functions }\end{aligned}=\left\{\begin{array}{l}n^{m}-\left({ }^{n} C_{1}(n-1)^{m}-{ }^{n} C_{2}(n-2)^{m}+\cdots\right),(m>n) \\ n!,(m=n) \\ 0,(m<n)\end{array}\right.$
(Total number of functions)
Number of
$=-$
(Number of onto functions)

Number of Into functions that can be defined from A to B if $n(A)=5$ and $n(B)=3$ is

Number of Into functions that can be defined from A to B if $n(A)=5$ and $n(B)=3$ is

Solution:
$n(A), n(B)$
Number of functions from A to $B=3^{5}=243$
Number of onto functions from A to $B=3^{5}=243$
$=3^{5}-{ }^{5} C_{1} 2^{5}+{ }^{5} C_{2} 1^{5}=150$
\therefore Total number of into functions
$=243-150=93$

Session 7

Even-Odd Functions and
 Composite Functions

Key Takeaways

Even Function

- If $f(-x)=f(x) \forall x$ in domain of ' f ', then f is said to be an even function.

Example: $f(x)=\cos x$

$$
f(-x)=\cos (-x)=\cos x=f(x)
$$

Example: $\quad f(x)=|x|$

$$
f(-x)=|-x|=|-1 \times x|=|-1| \times|x|=|x|=f(x)
$$

Example: $f(x)=x^{2}+3$

$$
f(-x)=(-x)^{2}+3=x^{2}+3=f(x)
$$

Key Takeaways

Even Function

- If $f(-x)=f(x) \forall x$ in domain of ' f ', then f is said to be an even function.
- The graph of every even function is symmetric about the y-axis.

Example:

Example:

Key Takeaways

Odd Function

- If $f(-x)=-f(x) \forall x$ in domain of ' f ', then f is said to be an odd function.

Example: $f(x)=x$

$$
f(-x)=-x=-f(x)
$$

Example: $f(x)=\sin x$

$$
f(-x)=\sin (-x)=-\sin x=-f(x)
$$

Example: $f(x)=\tan x$

$$
f(-x)=\tan (-x)=-\tan x=-f(x)
$$

Key Takeaways

Odd Function

- If $f(-x)=-f(x) \forall x$ in domain of ' f^{\prime}, then f is said to be an odd function.
- The graph of an odd function is symmetric about the origin.

Example:

- If an odd function is defined at $x=0$, then $f(0)=0$.

Identify whether the function $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$, is even or not?

Solution: $f(x)=\frac{x}{e^{x}-1}+\frac{x}{2}+1$

$$
\begin{aligned}
f(-x)=\frac{-x}{e^{-x}-1}-\frac{x}{2}+1 & =\frac{-x e^{x}}{1-e^{x}}-\frac{x}{2}+1 \\
& =\frac{x e^{x}}{e^{x}-1}-\frac{x}{2}+1=\frac{x\left(e^{x}-1\right)+x}{e^{x}-1}-\frac{x}{2}+1 \\
& =x+\frac{x}{e^{x}-1}-\frac{x}{2}+1 \\
& =\frac{x}{e^{x}-1}+\frac{x}{2}+1
\end{aligned}
$$

Find whether the following function is even / odd or none : $f(x)=\ln \left(\frac{1+x}{1-x}\right),|x|<1$

Solution:

$$
\begin{aligned}
& f(x)=\ln \left(\frac{1+x}{1-x}\right),|x|<1 \\
& f(x)=\ln \left(\frac{1+x}{1-x}\right) \\
& f(-x)=\ln \left(\frac{1-x}{1+x}\right)=-\ln \left(\frac{1+x}{1-x}\right) \\
& \Rightarrow f(-x)=-f(x)
\end{aligned}
$$

Hence the function is odd

Key Takeaways

Properties of Even/Odd Function

- Some functions may neither be even nor odd.

Example: $f(x)=3 x+2$

- The only function which is defined on the entire number line and is even as well as odd is $f(x)=0$.

Key Takeaways

Properties of Even/Odd Function

- All functions (whose domain is symmetric about origin) can be expressed as sum of an even and an odd function

$$
f(x)=\underbrace{\frac{f(x)+f(-x)}{2}}_{\text {even }}+\underbrace{\frac{f(x)-f(-x)}{2}}_{\text {odd }}
$$

Example: Let a function $f(x)=x+e^{x}$, express it as sum of an even and an odd function

$$
\begin{aligned}
f(x) & =x+e^{x} \\
\therefore f(x) & =\frac{\left(x+e^{x}\right)+\left(-x+e^{-x}\right)}{2}+\frac{\left(x+e^{x}\right)-\left(-x+e^{-x}\right)}{2}
\end{aligned}
$$

Let $f(x)=a^{x}(a>0)$ be written as $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)$ is an even function and $f_{2}(x)$ is an odd function. Then $f_{1}(x+y)+f_{1}(x-y)$ equals:

Let $f(x)=a^{x}(a>0)$ be written as $f(x)=f_{1}(x)+f_{2}(x)$, where $f_{1}(x)$ is an even function and $f_{2}(x)$ is an odd function. Then $f_{1}(x+y)+f_{1}(x-y)$ equals:

JEE MAIN 2019
Solution:

$$
\begin{aligned}
& f(x)=a^{x} \quad f(x)=f_{1}(x)+f_{2}(x) \\
& f_{1}(x+y)+f_{1}(x-y)=\frac{a^{x+y}+a^{-(x+y)}}{2}+\frac{a^{x-y}+a^{-(x-y)}}{2} \\
&=\frac{a^{x}\left(a^{y}+a^{-y}\right)+a^{-x}\left(a^{y}+a^{-y}\right)}{2} \\
&=\frac{\left(a^{y}+a^{-y}\right)\left(a^{x}+a^{-x}\right)}{2} \\
&=\frac{2 f_{1}(y) \cdot 2 f_{1}(x)}{2} \\
&=2 f_{1}(x) \cdot f_{1}(y)
\end{aligned}
$$

$$
\therefore f_{1}(x+y)+f_{1}(x-y)=2 f_{1}(x) f_{1}(y)
$$

Key Takeaways

Properties of Even/Odd Function

- $\begin{gathered}f(x)=x^{2}, g(x)=|x| \\ \substack{\downarrow \\ \text { Even }} \underset{\text { Even }}{\downarrow}\end{gathered}$

f	g	$f \pm g$	$f . g$	$f / g(g \neq 0)$
Even	Even	Even	Even	Even

$$
\begin{aligned}
h(x) & =f(x)+g(x)=x^{2}+|x| \\
h(-x) & =(-x)^{2}+|-x| \\
& =(x)^{2}+|x|=h(x) \rightarrow \text { Even } \\
h(x) & =f(x) \times g(x)=x^{2} \times|x| \\
h(-x) & =(-x)^{2} \times|-x| \\
& =(x)^{2} \times|x|=h(x) \rightarrow \text { Even }
\end{aligned}
$$

Key Takeaways

Properties of Even/Odd Function

$\begin{array}{cc}\text { - } f(x)=x, g(x)= & \sin x \\ \downarrow & \downarrow \\ \text { odd } & \text { odd }\end{array}$

f	g	$f \pm g$	$f \cdot g$	$f / g(g \neq 0)$
Even	Even	Even	Even	Even
Odd	Odd	Odd	Even	Even

$$
\begin{aligned}
h(x) & =f(x)+g(x)=x+\sin x \\
h(-x) & =-x-\sin x \\
& =-h(x) \rightarrow \text { odd } \\
p(x) & =f(x) \times g(x)=x \times \sin x \\
p(-x) & =(-x) \times(-\sin x) \\
& =p(x) \rightarrow \text { even }
\end{aligned}
$$

Key Takeaways

Properties of Even/Odd Function

- $f(x)=x^{2}, g(x)=x$

$$
h(x)=f(x)+g(x)=x^{2}+x
$$

f	g	$f \pm g$	$f \cdot g$	$f / g(g \neq 0)$
Even	Even	Even	Even	Even
Odd	Odd	Odd	Even	Even
Even	Odd	NENO	Odd	Odd

$$
\left.\begin{array}{rl}
h(-x) & =(-x)^{2}-x \\
& =x^{2}-x
\end{array} \quad \neq h(x) \quad \begin{array}{l}
\\
\\
\neq-h(x)
\end{array}\right\} \begin{aligned}
& \text { Neither even } \\
& \text { nor odd }
\end{aligned}
$$

$$
\begin{aligned}
& p(x)=f(x) \times g(x)=x^{2} \times x \\
& p(-x)=(-x)^{2} \times(-x) \\
& \\
& =-p(x) \rightarrow \text { odd }
\end{aligned}
$$

Composite Functions

$$
f: X \rightarrow Y_{1} \quad g: Y_{2} \rightarrow Z
$$

- Here $g(f(a))=\beta \quad g(f(c))=g(1)=$ not defined

$$
g(f(b))=\delta \quad g(f(d))=g(5)=\text { not defined }
$$

Composite Functions $\quad f: X \rightarrow Y_{1} \quad g: Y_{2} \rightarrow Z \quad R_{f} \subseteq D_{g}$

So, $g(f(x))$ is defined for only those values of x for which range of f is a subset of domain of g.
$\therefore f: X \rightarrow Y_{1}$ and $g: Y_{2} \rightarrow Z$ be two functions and D is set of x such that if $x \in X$, then $f(x) \in Y_{2}$

Composite Functions

If $D \neq \emptyset$, then the function h defined by $h(x)=g(f(x))$ is called composite function of g and f and is denoted by $g \circ f$. It is also called as function of a function.

Composite Functions

$$
D_{g o f}:\{a, b\} \quad R_{g o f}:\{\beta, \delta\}
$$

Note : Domain of g of is D which is subset of X (the domain of f).
Range of g of is a subset of range of g. If $D=X$, then $f(x) \subseteq \mathrm{Y}_{2}$
Pictorially, $g o f(x)$ can be viewed as -

(i) Two functions f and g defined from $\mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x+1$, $g(x)=x+2$, then find a) $g(f(x)) \quad$ b) $f(g(x))$
(ii) Two functions f and g defined from $\mathbb{R} \rightarrow \mathbb{R}$ such that $f(x)=x^{2}$, $g(x)=x+1$, then show that $f(g(x)) \neq g(f(x))$

Solution: (i) $g(f(x))=(f(x))+2=(x+1)+2=(x+3)$

$$
\begin{aligned}
& f(g(x))=(g(x))+1=(x+2)+1=(x+3) \\
& \Rightarrow g \circ f(x)=f o g(x) \\
& \text { (ii) } g(f(x))=(f(x))+1=x^{2}+1 \\
& f(g(x))=(g(x))^{2}=(x+1)^{2}=x^{2}+2 x+1 \\
& \Rightarrow g \circ f(x) \neq f o g(x)
\end{aligned}
$$

Note :
The composition of functions are not commutative in general i.e., two functions f and g are such that if $f o g$ and $g o f$ are both defined, then in general $f o g \neq g o f$.

If $f(x)=\log _{e}\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^{2}}\right)$ is equal to:

If $f(x)=\log _{e}\left(\frac{1-x}{1+x}\right),|x|<1$, then $f\left(\frac{2 x}{1+x^{2}}\right)$ is equal to:

Solution:

$$
\begin{aligned}
& f(x)=\log _{e}\left(\frac{1-x}{1+x}\right) \quad \text { Let } g(x)=\frac{2 x}{1+x^{2}} \\
& \text { Then } f(g(x))=\log _{e}\left(\frac{1-g(x)}{1+g(x)}\right) \\
& \qquad=\log _{e}\left(\frac{1-\frac{2 x}{1+x^{2}}}{1+\frac{2 x}{1+x^{2}}}=\log _{e}\left(\frac{(1-x)^{2}}{(1+x)^{2}}\right.\right. \\
& \therefore f(g(x))=2 \log _{e}\left(\frac{1-x}{1+x}\right)=2 f(x)
\end{aligned}
$$

Key Takeaways

Composite Functions

The composition of functions are associative i.e. if three functions f, g, h are such that $f o(g o h)$ and $(f o g)$ oh are defined, then $f o(g o h)=(f o g) o h$

Example: Let $f(x)=x, g(x)=\sin x, h(x)=e^{x}$, domain of f, g, h is \mathbb{R}

$$
\begin{aligned}
& f o(g o h)(x)=f o\left(g\left(\mathrm{e}^{x}\right)\right)=f\left(\sin e^{x}\right)=\sin e^{x} \\
& (f \circ g) o h(x)=\left(\sin (h(x))=\sin e^{x}\right. \\
& \therefore f o(g o h)=(f o g) o h
\end{aligned}
$$

Session 8

Composite Functions and Periodic Functions

(8) Hello, Rahul

Trending

Best Sellers
New Releases
Movers and Shakers

Digital Devices

Echo \& Alexa
Let $x=$ Price of laptop
$f(x)=0.70 x ; g(x)=x-5000$

Option 1:
$h(x)=\boldsymbol{f}(\boldsymbol{g}(\boldsymbol{x}))$

₹5000 OFF

your first purchase

View Details

SAVE 30\% OFF your first purchase

$\$$

View Details

Option 2 :
$k(x)=\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{x}))$

$$
\text { If } f(x)=\left\{\begin{array}{c}
1-x, x \leq 0 \\
x^{2}, x>0
\end{array} \quad g(x)=\left\{\begin{array}{c}
-x, x<1 \\
1-x, x \geq 1
\end{array} \text {, then find } f \circ g(x)\right.\right.
$$

Solution:

$$
\begin{aligned}
& f o g(x)=\left\{\begin{array}{l}
1-g(x), g(x) \leq 0 \\
(g(x))^{2}, g(x)>0
\end{array}\right. \\
& \text { fog }(x)=\left\{\begin{array}{l}
1-(-x), x \in[0,1) \\
1-(1-x), x \geq 1 \\
(-x)^{2}, x<0
\end{array}\right.
\end{aligned}
$$

$$
\therefore f o g(x)=\left\{\begin{array}{c}
(x)^{2}, x \in(-\infty, 0) \\
1+x, x \in[0,1) \\
x, x \in[1, \infty)
\end{array}\right.
$$

Key Takeaways

Properties of Composite Function

- If f and g are one - one , then gof if defined will be one - one.
- If f and g are bijections and $g o f$ is defined , then $g o f$ will be a bijection iff range of f is equal to domain of g.

Key Takeaways

Periodic Functions:

- Mathematically, a function $f(x)$ is said to be periodic function if \exists a positive real number T, such that

$$
f(x+T)=f(x), \forall x \in \text { domain of }^{\prime} f^{\prime} ; T>0
$$

- Here T is called period of function f and smallest value of T is called fundamental period.

Note :
Domain of periodic function should not be restricted (bounded).

Key Takeaways

Periodic Functions:

- Example: $f(x)=\sin x$

Periodic Functions
Note :
If a function is dis-continuous, it's discontinuity should repeat after a particular interval for the function to be periodic.

Find the period of function.
i) $f(x)=\tan x$
ii) $f(x)=\{x\}$ where $\{$.$\} denotes fractional part function.$

Solution:

i) $f(x+T)=f(x)$
ii) $f(x)=\{x\}$

Find the period of function.
i) $f(x)=\tan x$
ii) $f(x)=\{x\}$ where $\{$.$\} denotes fractional part function.$

Solution:
i) $f(x+T)=f(x) \quad \tan (x+\pi)=\tan x$
ii) $f(x)=\{x\}$

Period is 1

Period is π

Key Takeaways

Properties of Periodic Functions:

- If a function $f(x)$ has a period T, then $\frac{1}{f(x)},(f(x))^{n}(n \in \mathbb{N}),|f(x)|, \sqrt{f(x)}$ also has a period T (T may or may not be fundamental period.)

$$
\text { Example : } y=\operatorname{cosec} x
$$

Key Takeaways

Example : $y=|\sin x|$
Fundamental period $=\pi$

Key Takeaways

Example : $y=\cos ^{2} x$
Fundamental period $=\pi$

Key Takeaways

Properties of Periodic Functions:

- If a function $f(x)$ has a period T, then $f(a x+b)$ has the period $\frac{T}{|a|}$.
- For $y=\sin x$, fundamental period $=2 \pi$
- For $y=\sin 2 x$, fundamental period $=\pi$

- Every constant function defined for unbounded domain is always periodic with no fundamental period.

Example :

- $f(x)=\sin ^{2} x+\cos ^{2} x$, domain is \mathbb{R}
$\Rightarrow f(x)=1$
Periodic with no fundamental period.

Find the period of function. i) $f(x)=x \cdot \frac{1}{x} \quad$ ii) $f(x)=\cos x \cdot \sec x$

Solution: i) $f(x)=x \cdot \frac{1}{x}$ (domain $\left.x \in \mathbb{R}-\{0\}\right)$

Not periodic
ii) $f(x)=\cos x \cdot \sec x\left(\right.$ domain $\left.x \in \mathbb{R}-\left\{(2 n+1)\left(\frac{\pi}{2}\right), n \in \mathbb{Z}\right\}\right)$

Fundamental period of $y=\left\{\frac{x}{3}\right\}$, where $\{\cdot\}$ denotes fractional part function is

Fundamental period of $y=\left\{\frac{x}{3}\right\}$, where $\{\cdot\}$ denotes fractional part function is

Solution:
If a function $f(x)$ has a period T, then $f(a x+b)$ has the period $\frac{T}{|a|}$.

For $\{x\}$, fundamental period $=1$
For $\left\{\frac{x}{3}\right\}$, fundamental period $=3$
(A)
2
(B) $\frac{1}{2}$
3
(D) $\frac{1}{3}$

Session 9

Inverse Functions \& Binary operations

Key Takeaways

Properties of Periodic Functions:

- If $f(x)$ has a period T_{1} and $g(x)$ has a period T_{2}, then
$f(x) \pm g(x), f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is L.C.M of T_{1} and T_{2} (provided L.C.M exists).
L.C.M of $\left(\frac{a}{b}, \frac{c}{d}\right)=\frac{\text { L.C.M }(a, c)}{\text { H.C.F }(b, d)}$

However, L.C.M need not be fundamental period.

- If L.C.M does not exists, then $f(x) \pm g(x), f(x) \cdot g(x)$ or $\frac{f(x)}{g(x)}$ is non-periodic or aperiodic.

Solution:
i) $f(a x+b)$ has the period $\frac{T}{|a|}$
ii) Period of $f(x) \pm g(x)$ is L.C.M of $\left(T_{1}, T_{2}\right)$

$$
\sin \frac{3 x}{2} \rightarrow T_{1}=\frac{2 \pi}{\frac{3}{2}}=\frac{4 \pi}{3}
$$

L.C.M of $(\pi, \pi)=\pi$
$\frac{\pi}{2}$ may also be period.
$\cos \frac{9 x}{4} \rightarrow T_{2}=\frac{2 \pi}{\frac{9}{4}}=\frac{8 \pi}{9}$
L.C.M of $\frac{4 \pi}{3}, \frac{8 \pi}{9} \Rightarrow$ L.C.M of $\left(\frac{4}{3}, \frac{8}{9}\right) \pi$
$f\left(x+\frac{\pi}{2}\right)=\left|\sin \left(x+\frac{\pi}{2}\right)\right|+\left|\cos \left(x+\frac{\pi}{2}\right)\right|$
$=|\cos x|+|-\sin x|$
$\left(\frac{\text { L.C.M }(4,8)}{\text { H.C.F }(3,9)}\right) \pi=\frac{8}{3} \pi$
$=f(x)$

Period is $\frac{\pi}{2}$.

Key Takeaways

Properties of Periodic Functions:

- If g is a function such that $g o f$ is defined on the domain of f and f is periodic with T, then gof is also periodic with T as one of its period.

Example:

- $h(x)=\{\cos x\}$, where $\{$.$\} is fractional part function$

Let $f(x)=\cos x, g(x)=\{x\}$ then $h(x)=g(f(x))$, period 2π

- $h(x)=\cos \{x\}$, where $\{\cdot\}$ is fractional part function.

Let $f(x)=\cos x, g(x)=\{x\}$ then $h(x)=f(g(x))$, period 1

Key Takeaways

Properties of Periodic Functions:

- If g is a function such that $g o f$ is defined on the domain of f and f is periodic with T, then $g o f$ is also periodic with T as one of its period.

Note :

- If g is a function such that $g o f$ is defined on the domain of f
and f is aperiodic, then gof may or may not be periodic.
Example :
$h(x)=\cos (x+\sin x)$
$h(x)=h(x+2 \pi)$
\Rightarrow period of $h(x)$ is 2π

Key Takeaways

Inverse Function

Let $y=f(x): A \rightarrow B$ be a one - one and onto function, i.e. a bijection , then there will always exist a bijective function $x=g(y): B \rightarrow A$ such that if (α, β) is an element of f, (β, α) will be an element of g and the functions $f(x)$ and $g(x)$ are said to be inverse of each other.

- $g=f^{-1}: B \rightarrow A=\{(f(x), x) \mid(x, f(x)) \in f\}$

Inverse Function

- Why function must be bijective for it to be invertible?

- Inverse of a bijection is unique and also a bijection.

Key Takeaways

Inverse Function

- To find inverse :
(i) For $y=f(x)$, express x in terms of y

Example: $y=e^{x}$

$$
x=\ln y
$$

(ii) In $x=g(y)$, replace y by x in g to get inverse.

$$
y=\ln x=f^{-1}(x)
$$

$$
f(x)=\frac{2 x+3}{4}: \mathbb{R} \rightarrow \mathbb{R}, \text { then find it's inverse. }
$$

Solution: Let $f(x)=y=\frac{2 x+3}{4}$

$$
\Rightarrow x=\frac{4 y-3}{2}=g(y)
$$

$$
\therefore g(x)=f^{-1}(x)=\frac{4 x-3}{2}: \mathbb{R} \rightarrow \mathbb{R}
$$

To find inverse :
For $y=f(x)$, express x in terms of y
In $x=g(y)$, replace y by x in g to get inverse.

Function and its inverse are symmetric about $y=x$
(i) Inverse Function

Example: $f(x)=e^{x}, g(x)=\ln x$

If $f(x)=x^{2}+x+1:[0, \infty) \rightarrow[1, \infty)$, find its inverse.

Solution:
Since $f(x)$ is bijective.

$$
\text { Let } y=x^{2}+x+1 \Rightarrow x^{2}+x+1-y=0
$$

Solving for x,
$\Rightarrow x=\frac{-1 \pm \sqrt{1-4(1-y)}}{2}=\frac{-1 \pm \sqrt{4 y-3}}{2}$

But since inverse of a function is unique,

$$
\begin{aligned}
& \Rightarrow x=\frac{-1+\sqrt{4 y-3}}{2}=g(y) \\
& \therefore f^{-1}(x)=\frac{-1+\sqrt{4 x-3}}{2}:[1, \infty) \rightarrow[0, \infty)
\end{aligned}
$$

Key Takeaways

Properties of Inverse Function

- The graphs of f and g are the mirror images of each other about the line $y=x$.
- If functions f and f^{-1} intersect, then at least one point of intersection lie on the line $y=x$.

$$
\mathrm{f}(\mathrm{x})=x^{3} \Rightarrow f^{-1}(x)=\sqrt[3]{x}
$$

Key Takeaways

Properties of Inverse Function

- If f and g are inverse of each other, then $f o g=g o f=x$.

However, fog and gof can be equal even if fand g are not inverse of each other, but in that case $f o g=g o f \neq x$

Key Takeaways

Properties of Inverse Function

However, $f o g$ and $g o f$ can be equal even if f and g are not inverse of each other, but in that case $f o g=g o f \neq x$

Example: $f(x)=x+2, g(x)=x+1$
Then, $f o g(x)=(x+1)+2=x+3$
And, $g \circ f(x)=(x+2)+1=x+3, \Rightarrow f \circ g=g \circ f \neq x$
but f and g are non inverse of each other.

- If f and g are two bijections, $f: A \rightarrow B, g: B \rightarrow C$, then inverse of gof exists and

$$
(g \circ f)^{-1}=f^{-1} \circ g^{-1}
$$

Definition:
A binary operation $*$ on a set A is a function $*: A \times A \rightarrow A$.
Denoted as * $(a, b) \rightarrow a * b$

Example: Show that addition is a binary operation on R, but division is not a binary operation.

Solution: $+: R \times R \rightarrow R$ is given by $+(a, b) \rightarrow a+b$, is a function on R
$\div: R \times R \rightarrow R$ is given by $\div(a, b) \rightarrow \frac{a}{b}$, is not a function on R and not a binary operation as for $b=0, \frac{a}{0}$ is not defined.
(i) Commutative:

A binary operation $*$ on a set X is called commutative if $a * b=b * a$ for every $a, b \in X$.
Example: Addition is commutative on R, but subtraction is not.
Solution: $a+b=b+a \rightarrow$ commutative
but $a-b \neq b-a \rightarrow$ not commutative
(ii) Associative:

A binary operation * is said to be associative $(a * b) * c=a *(b * c), \forall a, b, c \in A$.

Example: $(8+5)+3=8+(5+3)$ associative
$(8-5)-3 \neq 8-(5-3)$ not associative

(iii) Identity:

Given a binary operation $*: A \times A \rightarrow A$, an element $e \in A$, if it exists, is called identity for the operation if $a * e=a=e * a, \forall a \in A$

Note: i. $\quad 0$ is identity for addition on R
ii. $\quad 1$ is identity for multiplication on R
(iv) Inverse:

Given a binary operation $*: A \times A \rightarrow A$, with identity element e in A, an element $a \in A$, is said to be invertible w.r.t *, if there exists an element b in A such that $a * b=e=b * a$ and b is called inverse of a and is denoted by a^{-1}.

Note: $\quad i . \quad-a$ is inverse of a for addition operation on R.

$$
a+(-a)=0=(-a)+a
$$

ii. $\quad \frac{1}{a}$ is inverse of $a(a \neq 0)$ for multiplication operation on $R-\{0\}$.

$$
a \times \frac{1}{a}=1=\frac{1}{a} \times a
$$

Let * be a binary operation on $Q-\{-1\}$, defined by $a * b=a+b+a b$ for all $a, b \in Q-\{-1\}$, then:
(i) Show that * is both commutative and associative on $Q-\{-1\}$
(ii) Find the identity element in $Q-\{-1\}$
(iii) Show that every element of $Q-\{-1\}$ is invertible.

Also, find inverse of an arbitrary element.
Solution: Given $a * b=a+b+a b$.
First, we must check commutativity of *
Let $a, b \in Q-\{-1\}$
Then $a * b=a+b+a b$

$$
\begin{aligned}
& =b+a+b a \\
& =b * a
\end{aligned}
$$

Therefore, $a * b=b * a, \forall a, b \in Q-\{-1\}$
Now, we have to prove associativity of *
Let $a, b, c \in Q-\{-1\}$, then
$a *(b * c)=a *(b+c+b c)=a+(b+c+b c)+a(b+c+b c)$
$=a+b+c+a b+b c+a c+a b c$

Let * be a binary operation on $Q-\{-1\}$, defined by $a * b=a+b+a b$ for all $a, b \in Q-\{-1\}$, then:
(i) Show that * is both commutative and associative on $Q-\{-1\}$
(ii) Find the identity element in $Q-\{-1\}$
(iii) Show that every element of $Q-\{-1\}$ is invertible.

Also, find inverse of an arbitrary element.
Solution: $(a * b) * c=(a+b+a b) * c$

$$
\begin{aligned}
& =a+b+a b+c+(a+b+a b) c \\
& =a+b+c+a b+b c+a c+a b c
\end{aligned}
$$

Therefore, $a *(b * c)=(a * b) * c, \forall a, b, c \in Q-\{-1\}$
Thus, $*$ is associative on $Q-\{-1\}$.
(ii) Let e be the identity element in $Q-\{-1\}$ with respect to * such that

$$
\begin{aligned}
& a * e=a=e * a, \quad \forall a \in Q-\{-1\} \\
& a * e=a \text { and } e * a=a, \forall a \in Q-\{-1\} \\
& a+e+a e=a \text { and } e+a+e a=a, \forall a \in Q-\{-1\} \\
& e+a e=0 \text { and } e+e a=0, \forall a \in Q-\{-1\} \\
& e(1+a)=0 \text { and } e(1+a)=0, \forall a \in Q-\{-1\}
\end{aligned}
$$

Let * be a binary operation on $Q-\{-1\}$, defined by $a * b=a+b+a b$ for all $a, b \in Q-\{-1\}$, then:
(i) Show that * is both commutative and associative on $Q-\{-1\}$
(ii) Find the identity element in $Q-\{-1\}$
(iii) Show that every element of $Q-\{-1\}$ is invertible.

Also, find inverse of an arbitrary element.
Solution:
$e=0, \forall a \in Q-\{-1\}$ [because $a \neq-1$]
Thus, 0 is the identity element in $Q-\{-1\}$ with respect to *.
(iii) Let $a \in Q-\{-1\}$ and $b \in Q-\{-1\}$
be the inverse of a. Then,

$$
\begin{aligned}
& a * b=e=b * a \\
& a * b=e \text { and } b * a=e \\
& a+b+a b=0 \text { and } b+a+b a=0 \\
& b(1+a)=-a, \forall a \in Q-\{-1\} \\
& \left.b=-\frac{a}{1+a} \forall a \in Q-\{-1\} \quad \text { [because } a \neq-1\right] \\
& b=-\frac{a}{1+a} \text { is the inverse of } a \in Q-\{-1\}
\end{aligned}
$$

Session 10

Functional Equations and Transformation of Graphs

Find the solution of equation $x^{2}-3 x=\frac{3-\sqrt{9+4 x}}{2}, x \in(-\infty, 1]$.

Solution:

$$
\text { Let } f(x)=y=x^{2}-3 x \quad \text { Let } f(x)=y=x^{2}-3 x
$$

$\Rightarrow x^{2}-3 x-y=0$
$\Rightarrow x=\frac{3-\sqrt{9+4 y}}{2}$ Then , $f^{-1}(x)=\frac{3-\sqrt{9+4 x}}{2}$
Since , $f(x)=f^{-1}(x)=x$

So, $x^{2}-3 x=x$
$\Rightarrow x=0,4$
But , acc. to given domain

$$
x=0
$$

Key Takeaways

Functional Equations

If x, y are independent real variable, then

- $f(x+y)=f(x)+f(y) \Rightarrow f(x)=k x, k \in \mathbb{R}$.
$f(x+y)=f(x) \cdot f(y) \Rightarrow f(x)=a^{k x}, k \in \mathbb{R}$.
- $f(x y)=f(x)+f(y) \Rightarrow f(x)=k \log _{a} x, k \in \mathbb{R}, a>0, a \neq 1$.
- $f(x y)=f(x) \cdot f(y) \Rightarrow f(x)=x^{n}, n \in \mathbb{R}$.
- If $f(x)$ is a polynomial of degree ' n ', such that

$$
f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \Rightarrow f(x)=1 \pm x^{n}
$$

If $f(x)$ is a polynomial function such that $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$, such that $f(3)=-26$. Then $f(4)=$?

If $f(x)$ is a polynomial function such that $f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right)$, such that $f(3)=-26$. Then $f(4)=?$

Solution:

$$
f(x) \cdot f\left(\frac{1}{x}\right)=f(x)+f\left(\frac{1}{x}\right) \Rightarrow f(x)=1 \pm x^{n}
$$

$$
\Rightarrow f(3)=-26 \Rightarrow 1 \pm 3^{n}=-26
$$

$$
\Rightarrow-3^{n}=-27 \Rightarrow n=3
$$

$$
\therefore f(x)=1-x^{3}
$$

$$
f(4)=-63
$$

If a function $f(x)$ satisfies the relation $f(x+y)=f(x)+f(y)$, where $x, y \in \mathbb{R}$ and $f(1)=4$. Then find the value of $\sum_{r=1}^{10} f(r)=$?

If a function $f(x)$ satisfies the relation $f(x+y)=f(x)+f(y)$, where $x, y \in \mathbb{R}$ and $f(1)=4$. Then find the value of $\sum_{r=1}^{10} f(r)=$?

Solution:

$$
\begin{aligned}
& f(x+y)=f(x)+f(y) \Rightarrow f(x)=k x \\
& \Rightarrow f(1)=4=k \\
& \therefore \sum_{r=1}^{10} f(r)=\sum_{r=1}^{10} 4 r=4 \sum_{r=1}^{10} r \\
& =220
\end{aligned}
$$

For $x \in \mathbb{R}-\{0\}$, the function $f(x)$ satisfies $f(x)+2 f(1-x)=\frac{1}{x}$. Find the value of $f(2)$.

Solution: $f(x)+2 f(1-x)=\frac{1}{x}$

$$
\text { Put } x=2 \Rightarrow f(2)+2 f(-1)=\frac{1}{2} \cdots(i)
$$

$$
\text { Put } x=-1 \Rightarrow f(-1)+2 f(2)=-1 \cdots(i i)
$$

By (i) and (ii)

$$
\begin{gathered}
2 f(-1)+4 f(2)=-2 \\
f(2)+2 f(-1)=\frac{1}{2}
\end{gathered}
$$

$$
3 f(2)=-\frac{5}{2} \Rightarrow f(2)=-\frac{5}{6}
$$

$$
f(2)=-\frac{5}{6}
$$

Let the function $f:[0,1] \rightarrow R$ be defined by $f(x)=\frac{4^{x}}{4^{x}+2}$
Then the value of $f\left(\frac{1}{40}\right)+f\left(\frac{2}{40}\right)+f\left(\frac{3}{40}\right)+\cdots+f\left(\frac{39}{40}\right)-f\left(\frac{1}{2}\right)$ is \qquad .

Solution: $f(x)+f(1-x)=\frac{4^{x}}{4^{x}+2}+\frac{4^{1-x}}{4^{1-x}+2}$

$$
\begin{aligned}
& =\frac{4^{x}}{4^{x}+2}+\frac{\frac{4}{4^{x}}}{\frac{4^{x}+2}{4^{x}}}=\frac{4^{x}}{4^{x}+2}+\frac{4}{4+2 \cdot 4^{x}} \\
& =\frac{4^{x}}{4^{x}+2}+\frac{2}{4^{x}+2}
\end{aligned}
$$

$\therefore f(x)+f(1-x)=1$

$$
\begin{aligned}
& \Rightarrow f\left(\frac{1}{40}\right)+f\left(\frac{2}{40}\right)+f\left(\frac{3}{40}\right)+\cdots+f\left(\frac{20}{40}\right)+\cdots+f\left(\frac{39}{40}\right)=19+f\left(\frac{20}{40}\right) \\
& \Rightarrow f\left(\frac{1}{40}\right)+f\left(\frac{2}{40}\right)+f\left(\frac{3}{40}\right)+\cdots+f\left(\frac{39}{40}\right)-f\left(\frac{1}{2}\right)=19+f\left(\frac{20}{40}\right)-f\left(\frac{1}{2}\right)
\end{aligned}
$$

$$
=19
$$

Key Takeaways

Transformation of graphs (horizontal shifts):

- Let $y=f(x)$

$$
y=f(x+k), k>0 \text { (graph goes to left by ' } k \text { ' units) }
$$

Plot the following curve:
(i) $y=(x+1)^{2}$
(ii) $y=(x-2)^{2}$

Solution: (i) For $y=f(x+k), k>0$ graph shift k units toward left from $y=f(x)$ graph

Plot the following curve:
(i) $y=(x+1)^{2}$
(ii) $y=(x-2)^{2}$

Solution: (ii) $y=(x-2)^{2}=(x+(-2))^{2}$
Here graph shift 2 units toward right

For $y=f(x-k), k>0$ graph shift k units
towards right horizontally from $y=f(x)$ graph.

Plot the curve of function $y=\cos \left(x-\frac{\pi}{2}\right)$ using transformations

Solution:

Key Takeaways

Transformation of graphs (Vertical shifts):

- Let $y=f(x)$

$$
y=f(x)+k, k>0 \text { (graph goes to up by 'k' units) }
$$

Plot the following curves:
(i) $y=x^{2}+1$
(ii) $y=x^{2}-2$

Solution: (i) For $y=f(x)+k, k>0$ graph shift k units toward down from $y=f(x)$ graph

Plot the following curves:
(i) $y=x^{2}+1$
(ii) $y=x^{2}-2$

Solution: (ii) $y=x^{2}-2$
Here graph shift 2 units upward

For $y=f(x)-k, k>0$ graph of $y=f(x)$ will shift k units downwards.

Key Takeaways

Transformation of graphs (horizontal stretch):

- Let $y=f(x)$

$$
y=f(k x), k>1 \text { (points on } x \text {-axis divided by ' } k^{\prime} \text { 'units) }
$$

Example:

Two loops in 0 to 2π

Key Takeaways

Transformation of graphs (Vertical stretch):

- Let $y=f(x)$

$$
y=k \cdot f(x), k>1 \quad \text { (Point on } y \text {-axis is multiplied by ' } k \text { ' units) }
$$

Plot graph of the following functions: $y=2 \sin 2 x$

Solution:

Period of $\sin 2 x=$ Period of $2 \sin 2 x=\pi$

Session 11

Playing with Graphs

Plot the following curves for $x \in R:(i) y=1+[x]$ (ii) $y=x+[x]$ [] denotes G.I.F.

Solution: (i) $y=1+[x]$

1. Make the plot of the graph $[x]$

Plot the following curves for $x \in R:(i) y=1+[x]$ (ii) $y=x+[x]$ [] denotes G.I.F.

Solution: (i) $y=1+[x]$
2. Now, up the graph by 1.

F2 Plot the following curves for $x \in R$: (i) $y=1+[x]$ (ii) $y=x+[x]$ [] denotes G.I.F.

Solution: (ii) $y=x+[x]$

$x \in[0,1)$	$y=x+0$
$x \in[1,2)$	$y=x+1$
$x \in[2,3)$	$y=x+2$
$x \in[-1,0)$	$y=x-1$

Plot graph of the following functions. (i) $y=\frac{1}{x+4}$ (ii) $y=\frac{1}{x+4}+3$

Solution:
i) $y=\frac{1}{x+4}$

Shift $y=\frac{1}{x}$ at $x=-4$

Solution: \quad ii) $y=\frac{1}{x+4}+3$
Shift $y=\frac{1}{x}$ at $x=-4$

Key Takeaways

Transformation of graphs

- Let $y=f(x)$

$$
y=f(-x), \text { (mirrored about } y-\text { axis) }
$$

Plot the curve $\{-x\}$,
Where $\}$ denotes fractional part function
Solution: $y=\{-x\}$

Key Takeaways

Transformation of graphs:

- Let $y=f(x)$

$$
y=-f(x), \text { (mirrored about } x \text {-axis) }
$$

$$
\text { Values of } y \text {, multiplied by }-1
$$

Key Takeaways

$$
y=-f(-x) \text { transformation from } y=f(x) \text { : }
$$

- Let $y=f(x)$

Key Takeaways

$$
y=-f(-x) \text { transformation from } y=f(x) \text { : }
$$

$$
y=-f(-x),
$$

Key Takeaways

Transformation of graphs:

- Let $y=f(x)$

$$
y=f(|x|) \text { (image of } f \text { for }+ \text { ve } x \text {, about } y \text {-axis) }
$$

$y=f(|x|)$ is an even function

Key Takeaways

Transformation of graphs:

- Let $y=f(x)$

$$
y=|f(x)| \quad \begin{aligned}
& \text { (-ve } y \text {-axis portion } \\
& \text { flipped about } x \text {-axis })
\end{aligned}
$$

Key Takeaways

Transformation of graphs:

- Let $y=f(x)$

$$
y=|f(|x|)| \begin{aligned}
& \text { (+ve } x \text { axis portion of } f(|x|) \\
& \text { flipped about y -axis) }
\end{aligned}
$$

Key Takeaways

$$
|y|=f(x) \text { transformation from } y=f(x) \text { : }
$$

$$
y=f(x)
$$

$$
|y|=f(x)
$$

Plot graphs of the function (i) $y=\sin |x|$ (ii) $y=\left|(x-2)^{\frac{1}{3}}\right|$ (iii) $|y|=\ln x$

Solution:

$$
\text { (i) } y=\sin |x|
$$

Plot graphs of the function (i) $y=\sin |x|$ (ii) $y=\left|(x-2)^{\frac{1}{3}}\right|$ (iii) $|y|=\ln x$

Solution: (ii) $y=\left|(x-2)^{\frac{1}{3}}\right|$
Shift $y=x^{\frac{1}{3}}$ at $x=2$

Plot graphs of the function (i) $y=\sin |x|$ (ii) $y=\left|(x-2)^{\frac{1}{3}}\right|$ (iii) $|y|=\ln x$

Solution: Now, draw graph for $y=\left|(x-2)^{\frac{1}{3}}\right|$ at $x=2$

Plot graphs of the function (i) $y=\sin |x|$ (ii) $y=\left|(x-2)^{\frac{1}{3}}\right|$ (iii) $|y|=\ln x$

Solution:

$$
\text { (iii) }|y|=\ln x
$$

Key Takeaways

Number of solutions of two curves $y=f(x) \& y=g(x)$ is number of intersection points for 2 curves $y=f(x) \& g(x)$

Find the number of solutions for $|\ln x|=2^{-x}$

Solution:

Plot the curve of $y=[\sin x]$:

Solution:

Thank You

