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Rigid Body

• Shape and size of the system remains 
same.

• No change in the distance between  
any pair of particles.

• No velocity of separation or approach 
between any two particles.



𝑥

𝑦

𝐴𝐵

Ԧ𝑣𝐵

𝜃A

Ԧ𝑣𝐴

𝑣𝐴 cos𝜃𝐴
𝑣𝐵 cos𝜃𝐵

𝑣𝐵 sin 𝜃𝐵

𝑣𝐴 sin 𝜃𝐴

𝜃𝐵

𝑥

𝑦

𝐴𝐵

Ԧ𝑣𝐴𝐵

Ԧ𝑣𝐴𝐵 ∥

Ԧ𝑣𝐴𝐵 ⊥

• Ԧ𝑣𝐴𝐵 = Ԧ𝑣𝐴 − Ԧ𝑣𝐵

• Ԧ𝑣𝐴𝐵 = 𝑣𝐴 cos 𝜃𝐴 − 𝑣𝐵 cos 𝜃𝐵 Ƹ𝑖 + 𝑣𝐴 sin 𝜃𝐴 − 𝑣𝐵 sin 𝜃𝐵 Ƹ𝑗

• 𝑣𝑠𝑒𝑝 = 𝑣𝐴𝐵 ∥ = 0 ⇒

Rigid Body

No velocity of separation or approach between the particles.

𝑣𝐴 cos 𝜃𝐴 = 𝑣𝐵 cos 𝜃𝐵



The velocity of end 𝐴 of a rigid rod placed between two smooth 
perpendicular surfaces moves with velocity 10 𝑚/𝑠 along the vertical 
when the angle 𝜃 = 30°. Velocity of end 𝐵 at that exact moment is

⇒ 𝑣𝐵 = 10 3 𝑚/𝑠

𝑣𝑠𝑒𝑝 = 0

⇒ 𝑣𝐴 cos 𝜃 = 𝑣𝐵 sin 𝜃

⇒ 10 cos 30° = 𝑣𝐵 sin 30°

⇒ 10 ×
3

2
= 𝑣𝐵 ×

1

2

Velocity of separation between the particles 
at the ends of the rod must be zero since it 
is rigid.

10 3 𝑚/𝑠

10

3
𝑚/𝑠

5

3
𝑚/𝑠

5 3 𝑚/𝑠

Solution  :



Circular v/s Rotational Motion

• A circular motion is generally defined for a particle.

• The term rotational motion is used in the case of an 
extended body.

Axis of Rotation

• AOR is the straight line passing through all the fixed points of a 
rotating rigid body around which all other points of the body 
move in circles.

• It does not have to pass through the body.

• It does not have to be fixed.

• It does not have to be perpendicular to the surface plane of a 
two-dimensional object.



Pure Translational Motion

Displacement of each particle within a 
particular time interval is same.

Pure Rotational Motion
Angular displacement of each particle 
within a particular time interval is same.

Types of Rigid Body Motion

Combined Motion [Translation + Rotation]



𝑃

Ԧ𝐹

Ԧ𝑟

𝑂

• It is the rotational analogue of Force.

• Represented by Greek letter 𝜏 (Tau)

• Mathematically called as Moment of Force

• Torque of the force Ԧ𝐹 on the system about point 𝑂
is given by

Where,

Ԧ𝑟 = Position vector of the point of application of 
force w.r.t. point 𝑂

Torque

Ԧ𝜏 = Ԧ𝑟 × Ԧ𝐹



• Torque is an axial vector.

• Direction is determined using the right-hand thumb rule.

Direction of Torque

Ԧ𝜏 = Ԧ𝑟 × Ԧ𝐹

If Ԧ𝑟 and Ԧ𝐹 are in a plane, then the direction of the Ԧ𝜏 will be perpendicular to the plane.



⇒ 𝜏 = 𝑟𝐹⊥

𝑃
Ԧ𝐹

Ԧ𝑟

𝑂

𝜏 = Ԧ𝑟 × Ԧ𝐹 = 𝑟𝐹 sin 𝜃 = 𝑟 sin 𝜃 𝐹 𝜏 = Ԧ𝑟 × Ԧ𝐹 = 𝑟𝐹 sin 𝜃 = 𝑟 𝐹 sin 𝜃

𝐹 −Applied Force

𝑟⊥ − Force arm

𝐹⊥ − Perpendicular component of 
applied Force

𝑃 Ԧ𝐹

Ԧ𝑟
𝐹⊥ = 𝐹 sin 𝜃

𝑂

𝜃

𝐹 cos 𝜃

𝑟 sin 𝜃

𝑟 cos 𝜃

𝜃

𝜃

Magnitude of Torque

⇒ 𝜏 = 𝑟⊥𝐹



A particle of mass 2 𝑘𝑔 is projected with speed 𝑢 = 10 𝑚/𝑠 at angle
𝜃 = 30° with horizontal. Find the torque of the weight of the particle 
about the point of projection when the particle is at the highest point.

⇒ 𝜏 = 50 3 𝑁 𝑚

Torque about the point of projection,

𝜏 = 𝑟⊥𝐹

⇒ 𝜏 =
𝑅

2
𝑚𝑔

⇒ 𝜏 =

𝑢2 sin 2𝜃
𝑔

2
𝑚𝑔

⇒ 𝜏 =
102 sin 60°

2𝑔
× 2𝑔

𝑚 = 2 𝑘𝑔

100 𝑁 𝑚

50 𝑁 𝑚

100 3 𝑁 𝑚

50 3 𝑁 𝑚

Solution  :



𝐴
𝑥1

𝑃

𝐹

𝐹
2𝑑

𝐵

Torque about point 𝑃,

Consider clockwise direction as +𝑣𝑒.

𝜏 = 𝐹𝑥1 + 𝐹𝑥2

⇒ 𝜏 = 𝐹 𝑥1 + 𝑥2

⇒ 𝜏 = 𝐹(2𝑑)

Note: Torque is independent of 𝑥1, 𝑥2

𝑥2

Force Couple

𝜏 = 2𝐹𝑑



If the torque due to the couple in the given figure is 21 𝑁 𝑚, then the 
value of 𝑥 is

𝑥 = 25 𝑐𝑚

Torque due to the couple, 𝜏 = 𝐹𝑑

⇒ 21 = 12 × 𝑑

⇒ 𝑑 = 1.75 𝑚

Now, 𝑑 + 𝑥 = 2 𝑚

⇒ 𝑥 = 12 − 𝑑

⇒ 𝑥 = 12 − 1.75

⇒ 𝑥 = 0.25 𝑚

25 𝑐𝑚

12 𝑐𝑚

10 𝑐𝑚

9 𝑐𝑚

Solution  :



Point of Application of Force

Ԧ𝑟1
Ԧ𝑟2

Ԧ𝑟3

Ԧ𝐹1 Ԧ𝐹2

Ԧ𝐹3

𝑥

𝑦

Ԧ𝑟𝑒𝑓𝑓

Ԧ𝐹𝑛𝑒𝑡

𝑥

𝑦

• 𝑃 is the point at which the resultant of external forces ( Ԧ𝐹𝑛𝑒𝑡) can be 
assumed to be applied.

• Ԧ𝐹𝑛𝑒𝑡 = Ԧ𝐹1 + Ԧ𝐹2 + Ԧ𝐹3

• Ԧ𝜏𝑛𝑒𝑡 = Ԧ𝑟1 × Ԧ𝐹1 + Ԧ𝑟2 × Ԧ𝐹2 + Ԧ𝑟3 × Ԧ𝐹3 = Ԧ𝑟𝑒𝑓𝑓 × Ԧ𝐹𝑛𝑒𝑡

𝑎
𝑏

𝑐

𝑃



Ԧ𝜏𝑛𝑒𝑡 = 𝟎

Ԧ𝐹1
Ԧ𝐹2

Ԧ𝐹3

Ԧ𝐹1 + Ԧ𝐹2 + Ԧ𝐹3 = 𝟎

A system is in mechanical equilibrium if it is in 
translational as well as rotational equilibrium.

• Translational equilibrium

 Ԧ𝐹𝑖 = 𝟎

• Rotational equilibrium

 Ԧ𝜏𝑖 = 𝟎 ( Torque can be calculated about any axis )

Mechanical Equilibrium



A uniform rod of mass 2𝑀 and length 𝐿 is placed on two supports as 
shown in the figure. A block of mass 5𝑀 is suspended from one end of 
the rod. Another mass 𝑀 is placed on top at the opposite end. The rod is 
just in equilibrium. Find out the normal reactions provided by the two 
supports.Solution  :



Toppling

• As the external force 𝐹 increases, normal force 𝑁 adjusts its 
point of application in order to keep the block from toppling.

• When 𝐹 and therefore the friction 𝑓 is high enough, normal 
force can no longer provide the counter-balancing torque and 
the block topples about point 𝑃.

𝐹 𝑁

𝑓

𝐹

𝑚𝑔

𝑁

𝑓

𝑚𝑔 𝑚𝑔

𝐹
𝑁

𝑓 𝑃𝑃𝑃



A block with a square base measuring 𝑎 × 𝑎, and height ℎ, is placed on 
an inclined plane. The coefficient of friction is 𝜇. The angle of inclination 
𝜃 of the plane is gradually increased. The block will

𝑁 = 𝑚𝑔 cos 𝜃

𝑚𝑔 sin 𝜃 = 𝑓𝑠 𝑚𝑎𝑥 (Body is just about to slide)

𝑚𝑔 sin 𝜃 = 𝜇𝑁 = 𝜇𝑚𝑔 cos 𝜃

tan 𝜃 = 𝜇

(To initiate sliding)tan 𝜃 > 𝜇

𝜏𝑚𝑔 sin 𝜃 > 𝜏𝑚𝑔 cos 𝜃

About point 𝑃 (To initiate toppling)

𝑚𝑔 sin 𝜃 ×
ℎ

2
> 𝑚𝑔 cos𝜃 ×

𝑎

2

(To initiate toppling)tan 𝜃 >
𝑎

ℎ

Condition for Sliding Condition for Toppling

topple before sliding if 𝜇 >
𝑎

ℎ

topple before sliding if 𝜇 <
𝑎

ℎ

slide before toppling if 𝜇 <
𝑎

ℎ

slide before toppling if 𝜇 >
𝑎

ℎ



Moment of Inertia

𝐼 = 𝑚𝑟2

 Rotational analogue of mass.

 Moment of inertia of a particle of mass 𝑚 located at a 
perpendicular distance 𝑟 from an axis in consideration 
is given by,

 It is a scalar quantity.

 Unit of MOI is 𝑘𝑔 𝑚2.

• Moment of inertia of 𝑛 particles having mass 𝑚1, 𝑚2,…, 
𝑚𝑛 at distance 𝑟1, 𝑟2,…, 𝑟𝑛 from an axis is given by,

Note: Moment of inertia is added only if they are defined with respect to 
the same axis of rotation.

𝐼 = 𝑚1𝑟1
2 +𝑚2𝑟2

2 + … +𝑚𝑛𝑟𝑛
2 =

𝑖=1

𝑛

𝑚𝑖𝑟𝑖
2



A massless equilateral triangle 𝐸𝐹𝐺 of side 𝑎 has three particles of mass 𝑚
situated at its vertices. If the moment of inertia of the system about the line 
𝐸𝑋 perpendicular to 𝐸𝐺 in the plane of 𝐸𝐹𝐺 is 𝑁

20
𝑚𝑎2, then 𝑁 is

⇒ 𝐼 = 𝑚 0 2 +𝑚
𝑎

2

2

+𝑚𝑎2

⇒ 𝐼 =
5

4
𝑚𝑎2 =

25

20
𝑚𝑎2

Moment of inertia of the system about 𝐸𝑋,

𝐼 = 𝐼1 + 𝐼2 + 𝐼3

⇒ 𝑁 = 25

20

5

4

25

Solution  :



Moment of Inertia of Continuous Bodies

MI of the element about 𝑂𝑂’,

𝑑𝐼 = 𝑟2𝑑𝑚

MI of the continuous body about 𝑂𝑂’,

𝐼 = න𝑑𝐼 = න𝑟2𝑑𝑚

𝐼 = න𝑟2𝑑𝑚

Moment of Inertia depends on

• Axis of rotation,

• Shape and size of the body, and

• Distribution of mass relative to axis of 
rotation



Calculate the moment of inertia of a uniform rod of length 𝐿 and mass 
𝑀 about an axis passing through its centre and perpendicular to it.

𝑑𝐼 = 𝑑𝑚 × 𝑥2

From the definition of MOI,

⇒ 𝑑𝐼 = 𝜆 𝑑𝑥 × 𝑥2

⇒ 𝑑𝐼 =
𝑀

𝐿
𝑑𝑥 × 𝑥2

∴ 𝐼 = න𝑑𝐼 =
𝑀

𝐿
න

− ൗ𝐿 2

ൗ𝐿 2

𝑥2 𝑑𝑥

⇒ 𝐼 =
𝑀

𝐿
×

𝑥3

3
− ൗ𝐿 2

ൗ𝐿 2

Let 𝜆 be the density of the rod.

⇒ 𝐼 =
𝑀𝐿2

12

𝑀𝐿2

2

𝑀𝐿2

12

𝑀𝐿2

4

𝑀𝐿2

3

Solution  :



Moment of Inertia of a Thin Uniform Rod

𝑑𝐼 = 𝑑𝑚 × 𝑥2

From the definition of MOI,

⇒ 𝑑𝐼 = 𝜆 𝑑𝑥 × 𝑥2

⇒ 𝑑𝐼 =
𝑀

𝐿
𝑑𝑥 × 𝑥2

∴ 𝐼 = න𝑑𝐼 =
𝑀

𝐿
න

0

𝐿

𝑥2 𝑑𝑥

⇒ 𝐼 =
𝑀

𝐿
×

𝑥3

3
0

𝐿

⇒ 𝐼 =
𝑀𝐿2

3

About an axis passing through the end of the rod 
perpendicular to it

About an axis passing through the end of the rod making an 
angle 𝜃 with it

𝑑𝐼 = 𝑟2 × 𝑑𝑚

⇒ 𝑑𝐼 = 𝑟 2 × 𝜆 𝑑𝑥

⇒ 𝑑𝐼 = 𝑥 sin 𝜃 2 ×
𝑀

𝐿
𝑑𝑥

𝐼 = න𝑑𝐼 =
𝑀

𝐿
sin2 𝜃න

0

𝐿

𝑥2 𝑑𝑥

𝐼 =
𝑀

𝐿
sin2 𝜃 ×

𝑥3

3
0

𝐿

𝐼 =
𝑀𝐿2

3
sin2 𝜃



Linear mass density of the two rods system, 𝐴𝐶 and 𝐶𝐵 is 𝑥. Moment of 
inertia of two rods about an axis passing through their centres as shown 
is

⇒ 𝐼 =
𝑥𝑙3

24 2

Mass of each rod, 𝑚 = 𝑥𝐿 =
𝑥𝑙

2

𝐿 =
𝑙/2

cos 45°
=

𝑙

2

Moment of inertia of the two rods,

⇒ 𝐼 = 2
𝑚𝐿2

12
sin2 45°

⇒ 𝐼 = 2

𝑥𝑙

2

𝑙

2

2

12
×
1

2

𝑥𝑙3

24 2

𝑥𝑙3

12 2

𝑥𝑙3

6 2

2𝑥𝑙3

3

Solution  :



Moment of Inertia of a Thin Uniform Ring

𝑑𝑚 = 𝜆𝑑𝑙 =
𝑀

2𝜋𝑅
𝑅𝑑𝜃 =

𝑀

2𝜋
𝑑𝜃

𝑅 represents the distance of 𝑑𝑚 from the axis in this 
case

𝑑𝐼 = 𝑅2 𝑑𝑚 = 𝑅2 ×
𝑀

2𝜋
𝑑𝜃

𝐼 = න𝑑𝐼 = න𝑅2(𝑑𝑚)

𝐼 =
𝑀𝑅2

2𝜋
න
0

2𝜋

𝑑𝜃

𝐼 =
𝑀𝑅2

2𝜋
(2𝜋)

𝐼 = 𝑀𝑅2



⇒ 𝐼 = 𝑀𝑅2

𝐼 =
1

𝑛
𝐼𝑟𝑖𝑛𝑔

⇒ 𝐼 =
1

𝑛
(𝑛𝑀)𝑅2

𝑀

1

𝑛

𝑡ℎ
part of a ring

𝑅

Moment of Inertia



Moment of Inertia of a Thin Non- Uniform Ring

𝑀

𝑑𝑚𝑅
𝑂 𝑑𝜃

For a non-uniform ring,

𝐼 = න(𝑑𝑚)𝑅2 = 𝑅2න(𝑑𝑚)

But, (𝑑𝑚) = 𝑀

𝑑𝑙

⇒ 𝐼 = 𝑀𝑅2



Moment of Inertia of a Thin Uniform Disc

𝑑𝑚 = 𝜎(𝑑𝐴) =
𝑀

𝜋𝑅2
2𝜋𝑟 𝑑𝑟 =

2𝑀

𝑅2
𝑟𝑑𝑟

𝑟 represents the distance of differential element of mass 
dm from the axis in consideration.

∴ 𝑑𝐼 = 𝑟2 𝑑𝑚 = 𝑟2
2𝑀

𝑅2
𝑟𝑑𝑟 =

2𝑀

𝑅2
𝑟3𝑑𝑟

⇒ න
0

𝐼

𝑑𝐼 = න
0

𝑅 2𝑀

𝑅2
𝑟3𝑑𝑟 =

2𝑀

𝑅2
න
0

𝑅

𝑟3𝑑𝑟

⇒ 𝐼 =
2𝑀

𝑅2
𝑅4

4

⇒ 𝐼 =
𝑀𝑅2

2



Moment of Inertia

𝐼𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
1

𝑛
𝐼𝑑𝑖𝑠𝑐

⇒ 𝐼𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
1

𝑛

(𝑛𝑀)𝑅2

2

⇒ 𝐼𝑠𝑒𝑐𝑡𝑖𝑜𝑛 =
𝑀𝑅2

2



MOI of a Thin Uniform Hollow Cylinder

𝑅 is the distance of a thin ring of mass 𝑑𝑚 from 
the axis

න

0

𝐼

𝑑𝐼 = න

0

𝑀

𝑅2𝑑𝑚

Moment of inertia of the elemental ring,

𝑑𝐼 = 𝑅2𝑑𝑚

∴Moment of inertia of the cylinder,

⇒ 𝐼 = 𝑀𝑅2



MOI of Some Standard Symmetric Bodies



If 𝐼1 is the moment of inertia of a thin rod about an axis perpendicular to its 
length and passing through its centre of mass and 𝐼2 is the moment of inertia 
of a ring about an axis perpendicular to its plane and passing through its centre 
formed by bending the same rod, then

Length of the thin rod = Perimeter of the ring ⇒ 𝐿 = 2𝜋𝑅

Moment of inertia of the thin rod,

𝐼1 =
𝑀𝐿2

12
=
𝑀 4𝜋2𝑅2

12
=
𝜋2

3
(𝑀𝑅2)

Moment of inertia of the ring,

𝐼2 = 𝑀𝑅2

∴ 𝐼1 =
𝜋2

3
(𝐼2)

⇒
𝐼1
𝐼2
=
𝜋2

3

a

b

c

d

𝐼1
𝐼2
=

3

𝜋2

𝐼1
𝐼2
=

2

𝜋2

𝐼1
𝐼2
=
𝜋2

3

𝐼1
𝐼2
=
𝜋2

2

Solution  :



Perpendicular Axes Theorem

𝑟𝑖

(𝑥𝑖 , 𝑦𝑖)𝑚𝑖
𝑥

𝑦

𝑧

Note: It’s only applicable for laminar / planar / 2D objects

“The moment of inertia of a planar body 
about an axis perpendicular to its plane is 
equal to the sum of its moments of 
inertia about two perpendicular axes 
concurrent with perpendicular axis and 
lying in the plane of the body”

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦



Calculate the moment of inertia of a thin uniform ring of mass 𝑀 and 
radius 𝑅 about the axis passing through its diameter.

𝐼𝑥 = 𝐼𝑦 = 𝐼

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦

⇒ 𝐼𝑧 = 𝐼 + 𝐼 = 2𝐼

⇒ 𝑀𝑅2 = 2𝐼

By symmetry,

𝐼 =
𝑀𝑅2

2

Using Perpendicular Axis Theorem,

Solution  :



Perpendicular Axes Theorem

𝑟𝑖

(𝑥𝑖 , 𝑦𝑖)𝑚𝑖
𝑥

𝑦

𝑧

Note: It’s only applicable for laminar / planar / 2D objects

The moment of inertia of a planar body 
about an axis perpendicular to its plane is 
equal to the sum of its moments of 
inertia about two perpendicular axes 
concurrent with perpendicular axis and 
lying in the plane of the body.

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦



𝑦

𝑥

𝑧

𝑙

𝐶𝑂𝑀

𝑏

Moment of Inertia about the 𝑥 axis, 

𝐼𝑥 =
𝑀𝑏2

12

Moment of Inertia about the 𝑦 axis, 

𝐼𝑦 =
𝑀𝑙2

12

By Perpendicular Axes Theorem, 

𝐼𝑧 = 𝐼𝑥 + 𝐼𝑦

𝐼𝑧 =
𝑀

12
𝑏2 + 𝑙2

Thin Uniform Rectangular Lamina



• Moment of Inertia of a body about an 
axis parallel to an axis through COM and 
separated by a perpendicular distance 
𝑑 is given by,

𝐼𝐴𝐴′ = 𝐼𝐶𝑂𝑀 +𝑀𝑑2

Where,

𝐼𝐶𝑂𝑀 = (𝐼𝑠𝑦𝑠)𝐶𝑂𝑀

𝐼𝐴𝐴′ = (𝐼𝑠𝑦𝑠)𝐴𝐴′

𝐴

𝑑

𝐴′

𝐼𝐶𝑂𝑀

𝐶𝑂𝑀

𝑀

Parallel Axes Theorem



𝑦

𝑥

𝑧

𝑙

𝐶𝑂𝑀

𝑏

𝑑
𝐴

𝐴′

𝐼𝐴𝐴′ =
𝑀

12
𝑏2 + 𝑙2 +𝑀𝑑2

Parallel Axes Theorem

𝑀



Find the moment of inertia of the two uniform joint rods having mass 
𝑚 each about point 𝑃 as shown in the figure, using parallel axes 
theorem.

Moment of inertia of the system about the given axis,

𝐼𝑃 = (𝐼1)𝑃+(𝐼2)𝑃

= (𝐼𝑐𝑜𝑚 +𝑚𝑑1
2) + (𝐼𝑐𝑜𝑚 +𝑚𝑑2

2)

=
𝑚𝑙2

12
+ 𝑚

𝑙

2

2

+
𝑚𝑙2

12
+ 𝑚

5𝑙

2

2

=
𝑚𝑙2

3
+
4𝑚𝑙2

3

𝐼𝑃 =
5𝑚𝑙2

3

=
𝑚𝑙2

12
+
𝑚𝑙2

4
+

𝑚𝑙2

12
+
5𝑚𝑙2

4

Solution  :



Four solid spheres each of diameter 5 𝑐𝑚 and mass 0.5 𝑘𝑔 are placed 
with their centres at the corners of a square of side 4 𝑐𝑚. If the moment 
of inertia of the system about the diagonal of the square is 
𝑁 × 10−4 𝑘𝑔 𝑚2, then 𝑁 is

JEE 2011

𝐼𝑠𝑦𝑠 = 𝐼1 + 𝐼2 + 𝐼3 + 𝐼4

= 2
2

5
𝑚𝑟2 +𝑚

𝑎

2

2

+ 2
2

5
𝑚𝑟2

𝑎 = 4 𝑐𝑚 = 4 × 10−2 𝑚

𝑟 =
𝑑

2
=

5

2
𝑐𝑚 =

5

2
× 10−2 𝑚

= 𝐼1 + 𝐼3 + 𝐼2 + 𝐼4

= 9 × 10−4 𝑘𝑔 𝑚2

𝑁 = 9

Solution  :



Distance (𝐾) from the Axis of Rotation, where the whole mass of the rigid body can 
be assumed to be concentrated as a point mass such that the MOI of the point mass 
is the same as that of the rigid body (𝐼).

𝐼

𝑀

𝐾 𝑀

𝐼

𝐼 = 𝑀𝐾2

𝐾 =
𝐼

𝑀

≡

Radius of Gyration



A thin disc of mass 𝑀 and radius 𝑅 has mass per unit area 𝜎 𝑟 = 𝑘𝑟2, where 𝑟 is 
the distance from its centre. Its radius of gyration about an axis through its 
centre of mass and perpendicular to its plane is

𝑀 =
𝜋𝑘𝑅4

2

𝑀 = න

0

𝑅

𝜎 𝑟 𝑑𝐴

𝑀 = න

0

𝑅

𝑘𝑟2 × 2𝜋𝑟𝑑𝑟

𝑀 = 2𝜋𝑘න

0

𝑅

𝑟3𝑑𝑟

𝑀 = 2𝜋𝑘
𝑟4

4
0

𝑅

Mass of the disc is given by, MOI of the disc about an axis passing through COM and 
perpendicular to its plane is given by,

𝐼𝐶 = න

0

𝑅

𝑟2𝑑𝑚

𝐼𝐶 = න

0

𝑅

𝑟2 × 𝑘𝑟2 × 2𝜋𝑟𝑑𝑟

𝐼𝐶 = 2𝜋𝑘න

0

𝑅

𝑟5𝑑𝑟

𝐼𝐶 =
𝜋𝑘𝑅6

3

⇒ 𝐼𝐶 =
2𝑅2

3
×
𝜋𝑘𝑅4

2

⇒ 𝐼𝐶 =
2𝑀𝑅2

3

Now, 𝐼𝐶 = 𝑀𝐾2

⇒ 𝐾 =
2

3
𝑅

Solution  :



Pure Rotational Motion

Where,
𝐼ℎ𝑖𝑛𝑔𝑒 = moment of inertia about hinge
𝛼 = angular acceleration of the body

A rigid body in motion, such that its axis of rotation remains 
fixed with respect to the frame of reference performs pure 
rotational motion, e. g., a hinged rod.

Ԧ𝜏ℎ𝑖𝑛𝑔𝑒 = 𝐼ℎ𝑖𝑛𝑔𝑒 Ԧ𝛼 (Newton’s 2nd law for Rotation)



A solid sphere of mass 2 𝑘𝑔 and radius 1 𝑚 is free to rotate about an axis 
passing through its centre. Find a constant tangential force 𝐹 to be 
applied at the surface of the sphere to make it achieve an angular 
speed of 10 𝑟𝑎𝑑/𝑠 in 2 𝑠. Also find the number of rotations made by the 
sphere in that time interval.

Number of revolutions

𝜔 = 𝜔0 + 𝛼𝑡 = 0 + 2𝛼 = 10 𝑟𝑎𝑑 𝑠−1

𝐹 =
(2)(2)(1)(5)

5

𝛼 = 5 𝑟𝑎𝑑/𝑠2

𝛼 =
𝜏

𝐼
=
𝐹 × 𝑅

2
5
𝑀𝑅2

=
5𝐹

2𝑀𝑅

⇒
5𝐹

2𝑀𝑅
= 5

𝜃 =
1

2
𝛼𝑡2 =

1

2
5 22 = 10 𝑟𝑎𝑑

𝑛 =
𝜃

2𝜋
=
10

2𝜋

The angle rotated is,

Number of rotations,

𝐹 = 4 𝑁
𝑛 =

5

𝜋

Given 𝑀 = 2 𝑘𝑔, 𝑅 = 1 𝑚,𝜔 = 10 𝑟𝑎𝑑/𝑠 𝑎𝑛𝑑 𝑡 = 2 𝑠

Value of 𝑭

a. 4 𝑁,
5

𝜋

Solution  :



Rotational Kinetic Energy

(𝐾𝐸)𝑟𝑜𝑡 =
1

2
𝑚𝑖𝑣𝑖

2

Rotational kinetic energy for a body rotating 
about a fixed axis is calculated as-

=
1

2
𝑚𝑖(𝜔𝑟𝑖)

2

=
1

2
𝜔2𝑚𝑖𝑟𝑖

2

(𝐾𝐸)𝑟𝑜𝑡=
1

2
𝜔2𝐼𝐻𝑖𝑛𝑔𝑒

Rotational kinetic energy =
1

2
𝐼𝐻𝑖𝑛𝑔𝑒𝜔

2

𝑣3
Hinge

Fixed axis of 
rotation

𝜔

𝑣2𝑣1



 ( Ԧ𝐹𝑒𝑥𝑡)𝑟 = 𝑚𝜔2𝑟𝐶𝑀 =
𝑚𝑣𝐶𝑀

2

𝑟𝐶𝑀

 ( Ԧ𝐹𝑒𝑥𝑡)𝑡 = 𝑚
𝑑𝑣𝐶𝑀
𝑑𝑡

= 𝑚𝛼𝑟𝐶𝑀

( Ԧ𝐹𝑒𝑥𝑡)𝑠𝑦𝑠 = 𝑚 Ԧ𝑎𝐶𝑀

Ԧ𝜏ℎ𝑖𝑛𝑔𝑒 = 𝐼ℎ𝑖𝑛𝑔𝑒 Ԧ𝛼

Total KE = Rotational KE =
1

2
𝐼𝐻𝑖𝑛𝑔𝑒𝜔

2

For a body performing pure rotational motion-
𝑎𝑡 =

𝑑𝑣𝐶𝑀
𝑑𝑡

𝑎𝑟

Ԧ𝑎𝐶𝑀

COM
𝑟𝐶𝑀

Tangential

Radial Fixed axis of 
rotation

𝜔

Pure Rotational Motion



𝑑𝑊 = Ԧ𝜏 ∙ 𝑑 Ԧ𝜃

If a torque Ԧ𝜏 rotates a body through infinitesimal 
displacement 𝑑 Ԧ𝜃, then the infinitesimal work done is

𝑑𝑊 = 𝜏𝑑𝜃

⇒ 𝑊 = න𝑑𝑊 = න

𝜃1

𝜃2

𝜏 𝑑𝜃

If a constant torque 𝜏 acts on the body, then

𝑑𝜃
𝜏

Work done by a Torque

If Ԧ𝜏 and 𝑑 Ԧ𝜃 are in the same direction, then

𝑊 = 𝜏 𝜃2 − 𝜃1

⇒ 𝑊 = 𝜏∆𝜃



A circular disc and a hollow sphere of same mass are rotated about 
their COM axes as shown. The radius of disc is three times the radius of 
hollow sphere and disc rotates with half the angular velocity of the 
hollow sphere. What will be the ratio of their kinetic energies?

Mass of the disc 𝑚𝑑 = 𝑀 (Assume)

Mass of the hollow sphere 𝑚𝑠 = 𝑀

Radius of the disc 𝑟𝑑 = 3𝑅

Angular velocity of the disc 𝜔𝑑 = 𝜔 (Assume)

Angular velocity of the hollow sphere 𝜔𝑠 = 2𝜔

Radius of the hollow sphere 𝑟𝑠 = 𝑅 (Assume)

Rotational kinetic energy of the disc,

𝐾𝐸 𝑑 =
1

2
𝐼𝑑𝜔𝑑

2

=
1

2
×

𝑀× 3𝑅 2

2
× 𝜔2 =

9

4
𝑀𝑅2𝜔2

Rotational kinetic energy of the hollow sphere,

𝐾𝐸 𝑠 =
1

2
𝐼𝑠𝜔𝑠

2 =
1

2
×

2

3
𝑀𝑅2 × 2𝜔 2 =

4

3
𝑀𝑅2𝜔2

Ratio of 𝐾𝐸 𝑑 to 𝐾𝐸 𝑠,

𝐾𝐸 𝑑

𝐾𝐸 𝑠
=

9
4
𝑀𝑅2𝜔2

4
3𝑀𝑅

2𝜔2
=
27

16 𝐾𝐸 𝑑

𝐾𝐸 𝑠
=
27

16

Solution  :



A mass 𝑚 is supported by a massless string wound around a uniform 
hollow cylinder of mass 𝑚 and radius 𝑅. If the string does not slip on the 
cylinder, with what acceleration will the mass fall on release?

JEE Main 2014
For the mass 𝑚,

𝑚𝑔 − 𝑇 = 𝑚𝑎

Since the string does not slip on the hollow cylinder,

𝑎 = 𝑅𝛼 … 1

⇒ 𝑚𝑔 − 𝑇 = 𝑚𝑅𝛼 … 2

Torque about the centre of the hollow cylinder,

𝑅𝑇 = 𝐼𝛼 = 𝑚𝑅2𝛼

⇒ 𝑇 = 𝑚𝑅𝛼 … 3

𝑚𝑔 = 2𝑚𝑅𝛼

𝑔 = 2𝑎

Upon solving the equations, we get,

𝑎 = 𝑅𝛼 … 1

𝑇 = 𝑚𝑅𝛼 … 3

𝑚𝑔 − 𝑇 = 𝑚𝑅𝛼 … 2

𝑎 =
𝑔

2

Solution  :



Centre of Gravity

• The centre of gravity (𝐺) of a body is the point at which the total 
gravitational torque on the body is zero.

𝑚1𝑔
𝑚2𝑔

𝐺

𝑚𝑛𝑔

𝑟𝑛

𝑟1
𝑟2

• The COG and COM of a rigid body coincide when the gravitational field is 
uniform across the body.

• Ԧ𝜏𝑔= σ Ԧ𝜏𝑖 = σ Ԧ𝑟𝑖 ×𝑚𝑖 Ԧ𝑔 = 𝟎

Angular Momentum

• Always perpendicular to the plane of Ԧ𝑟 and Ԧ𝑝. 

𝐿𝑂 = Ԧ𝑟 × Ԧ𝑝

Angular momentum is the rotational analogue 
of linear momentum. It is also called moment
of linear momentum.

• Axial vector

• SI unit: 𝑘𝑔 𝑚2/𝑠

= 𝑚(Ԧ𝑟 × Ԧ𝑣)

∵ Ԧ𝑝 = 𝑚 Ԧ𝑣



A particle of mass 20 𝑔 is released with an initial velocity 5 𝑚/𝑠 along the 
curve from the point 𝐴 as shown. The point 𝐴 is at height ℎ from point 𝐵. 
The particle slides along the frictionless surface. When the particle 
reaches point 𝐵, its angular momentum about 𝑂 will be
(Take, 𝑔 = 10 𝑚/𝑠2)

Since friction is absent, the 
mechanical energy of the particle 
remains constant.

1

2
𝑚𝑣𝐴

2 =
1

2
𝑚𝑣𝐵

2 −𝑚𝑔ℎ

𝑣𝐵
2 = 𝑣𝐴

2 + 2𝑔ℎ

= 52 + 2 10 10

𝑣𝐵 = 15 𝑚/𝑠

Angular momentum of the particle 
about point 𝑂,

𝐿𝑂 = 𝑚𝑣𝐵 𝑎 + ℎ

= 20 × 10−3 × 15 × 10 + 10

𝐿𝑂 = 6 𝑘𝑔 𝑚2/𝑠

Solution  :



Angular Momentum of a System of Particles

𝑟2
𝑟𝑛

𝑟1

𝑣1

𝑣2

𝑣𝑛𝑃𝑛

𝑃1

𝑃2

𝑦

𝑥

𝑧

𝑂

The total angular momentum of a 
system of particles follows the 
principle of superposition.

𝐿𝑠𝑦𝑠𝑡𝑒𝑚,𝑂 = 𝐿1,𝑂 + 𝐿2,𝑂 + 𝐿3,𝑂……𝐿𝑛,𝑂

=

𝑖=1

𝑛

𝐿𝑖,𝑂

=

𝑖=1

𝑛

( Ԧ𝑟𝑖 × Ԧ𝑝𝑖)𝑂

𝐿𝑠𝑦𝑠𝑡𝑒𝑚,𝑂 =

𝑖=1

𝑛

𝑚𝑖(Ԧ𝑟𝑖 × Ԧ𝑣𝑖)𝑂



Angular Momentum of a Rigid Body

𝑂

𝑚1

𝑚2

𝑚𝑛

𝑟𝑛

𝑟1
𝑟2

𝜔

𝐼𝑎𝑥𝑖𝑠𝐿𝑠𝑦𝑠,𝑂 =

𝑖=1

𝑛

𝑚𝑖(Ԧ𝑟𝑖 × Ԧ𝑣𝑖)

=  (𝑟⊥)(𝑝) 𝑖

=(𝑟⊥𝑚𝑣)𝑖

= 𝜔(𝑚𝑟⊥
2)𝑖

𝐿𝑠𝑦𝑠 = 𝐼𝑂𝜔

(𝐿𝑠𝑦𝑠)𝑎𝑥𝑖𝑠 = 𝐼𝑎𝑥𝑖𝑠 𝜔

∵ 𝑣 = 𝑟⊥𝜔



Translational vs Rotational Dynamics

Translational Rotational

Applied force causes change in linear 
momentum of the centre of mass. 

The application of torque causes change 
in angular momentum of a rigid body at 
that instant of time. 

( Ԧ𝐹𝑠𝑦𝑠)𝑒𝑥𝑡 =
𝑑 Ԧ𝑝𝑠𝑦𝑠

𝑑𝑡
(Ԧ𝜏𝑒𝑥𝑡)𝑎𝑥𝑖𝑠 =

𝑑𝐿𝑎𝑥𝑖𝑠
𝑑𝑡

=
𝑑(𝑚 Ԧ𝑣)𝑠𝑦𝑠

𝑑𝑡
=
𝑑 𝐼𝑎𝑥𝑖𝑠𝜔

𝑑𝑡

(𝐹𝑠𝑦𝑠)𝑒𝑥𝑡 = 𝑚 Ԧ𝑎𝑠𝑦𝑠 (Ԧ𝜏𝑒𝑥𝑡)𝑎𝑥𝑖𝑠 = 𝐼𝑎𝑥𝑖𝑠 Ԧ𝛼

Force is the rate of change of 
linear momentum.

Torque is the rate of change of 
angular momentum.



Conservation of Angular Momentum

When the net torque acting on a system is zero about a given axis, then the total 
angular momentum of the system about that axis  remains constant.

If  Ԧ𝜏𝑒𝑥𝑡 𝑎𝑥𝑖𝑠 = 𝟎


𝑑

𝑑𝑡
(𝐿𝑎𝑥𝑖𝑠) = 𝟎

𝐿𝑎𝑥𝑖𝑠 = constant

Law of conservation of angular momentum is conditional and depends on axis.



A boy of mass 𝑀 stands at the edge of a platform of radius 𝑅 that can 
be freely rotated about its axis. The moment of inertia of the platform is 
𝐼. The system is at rest when a friend throws a ball of mass 𝑚 and the 
boy catches it. If the speed of the ball was 𝑣 and was moving 
horizontally along the tangent to the edge of the platform when it was 
caught by the boy, find the angular speed of the platform after the 
event.

(Ԧ𝜏)𝑒𝑥𝑡 = 0

𝐿𝑖 = 𝐿𝑓 (about the axle)

𝑚𝑣𝑅 + 0 = 𝐼 + 𝑀 +𝑚 𝑅2 𝜔

On “Platform + Boy + Ball” about axle,

𝜔 =
𝑚𝑣𝑅

𝐼 + 𝑀 +𝑚 𝑅2

Solution  :



A thin smooth rod of length 𝐿 and mass 𝑀 is rotating freely with 
angular speed 𝜔0 about an axis perpendicular to the rod and passing 
through its centre. Two beads of mass 𝑚 and negligible size are at the 
centre of the rod initially. The beads are free to slide along the rod. The 
angular speed of the system, when the beads reach the opposite ends 
of the rod, will be

Applying the conservation of angular momentum,

𝐼𝑖𝜔𝑖 = 𝐼𝑓𝜔𝑓

𝑀𝐿2

12
𝜔0 =

𝑀𝐿2

12
+𝑚

𝐿

2

2

+𝑚
𝐿

2

2

𝜔

𝑀𝐿2𝜔0 = 𝑀𝐿2 + 6𝑚𝐿2 𝜔

𝜔 =
𝑀𝜔0

𝑀 + 6𝑚

Solution  :



A cubical block of side 𝑎 is moving with velocity 𝑣 on a horizontal 
smooth plane as shown in the figure. It hits a ridge at point 𝑂. The 
angular speed of the block after it hits 𝑂 is

Say, 𝑀 is the mass of the block

Net torque about 𝑂 is zero. Thus, angular momentum about 𝑂 is conserved.

𝐿𝑖 = 𝐿𝑓

⇒ 𝑀𝑣
𝑎

2
= 𝐼0𝜔 = 𝐼𝐶𝑀 +𝑀𝑟2 𝜔

𝑀𝑣
𝑎

2
= 𝐼𝐶𝑀 +𝑀𝑟2 𝜔

𝑀𝑣𝑎

2
=

𝑀𝑎2

6
+ 𝑀

𝑎2

2
𝜔 ⇒

𝑀𝑣𝑎

2
=
2𝑀𝑎2

3
𝜔

𝜔 =
3𝒗

4𝑎

Solution  :



Angular Impulse

When a rigid body is acted upon by an external torque for a short interval 
of time, it experiences a sudden change in the angular momentum 
known as angular impulse. 

Like every other rotational parameter, angular impulse Ԧ𝐽 is also defined 
about an axis.

Ԧ𝐽 = න
𝑡1

𝑡2

Ԧ𝜏 𝑑𝑡 = න
𝐿1

𝐿2

𝑑𝐿 ∵ Ԧ𝜏 =
𝑑𝐿

𝑑𝑡



A  rod of mass 2 𝑘𝑔 and length 5 𝑚 is placed on a frictionless horizontal 
plane hinged about one of its ends. At the other end, a force 
𝐹 = 20 𝑁 is applied for 0.1 𝑠 as shown. Find the angular speed just after 
the force is applied.

𝐽 = ∆𝐿 = 𝜏𝑒𝑥𝑡∆𝑡

𝜏𝑒𝑥𝑡 = 𝐹 cos 600 × 𝑙 = 20
1

2
5 = 50 𝑁𝑚

∆𝐿 = 𝐼∆𝜔 = 𝜏𝑒𝑥𝑡∆𝑡

⇒ ∆𝜔 = 𝜔 =
𝜏𝑒𝑥𝑡∆𝑡

𝐼
=
3𝜏𝑒𝑥𝑡∆𝑡

𝑚𝑙2

𝜔 =
3 50 0.1

2 5 2
⇒

∵ 𝐼 =
𝑚𝑙2

3

𝜔 = 0.3 𝑟𝑎𝑑/𝑠

Only force perpendicular to the length of rod will contribute to 
change in angular momentum.

Solution  :



Combined motion is divided into its pure rotational and pure translational counterparts for ease.

Analysis of Combined Motion

Ԧ𝑣𝐴 = Ԧ𝑣𝐵 +𝜔 × Ԧ𝑟

Pure rotationPure translation

Ԧ𝑎𝐴 = Ԧ𝑎𝐵 + Ԧ𝛼 × Ԧ𝑟

Velocity of point 𝐴 on the rigid body w.r.t. origin 𝑂 in the figure is given by,



Combined Motion

𝜔

𝑣 + 𝜔𝑟

𝑣

𝜔𝑟

𝑣𝜔𝑟

𝑣
𝜔𝑟

𝑟

The velocities and accelerations of various points of a 
circular rigid body in combined motion are as shown.

𝛼

𝑎𝑐𝑚 + 𝛼𝑟

𝑎𝑐𝑚

𝛼𝑟

𝑎𝑐𝑚𝛼𝑟

𝑎𝑐𝑚
𝛼𝑟

𝑟



𝜔

𝑣0
𝐶𝑂𝑀

𝑥

𝑦

The KE of a rigid body in combined motion is 
obtained by summing the KEs of its rotational 
and translational counterparts.

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐾𝐸𝑟𝑜𝑡 + 𝐾𝐸𝑡𝑟𝑎𝑛𝑠

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝐼𝐶𝑂𝑀𝜔

2 +
1

2
𝑚𝑣𝐶𝑂𝑀

2

Solid Sphere

𝑅

Total Kinetic Energy

𝐾𝐸𝑠𝑝ℎ𝑒𝑟𝑒 =
1

2
×
2

5
𝑚𝑅2𝜔2 +

1

2
𝑚𝑣0

2

𝐾𝐸𝑠𝑝ℎ𝑒𝑟𝑒 =
𝑚

10
2𝑅2𝜔2 + 5𝑣0

2

• For a solid sphere of radius 𝑅 rolling with 
angular velocity 𝜔 and linear speed of 𝑣0 as 
shown



A cylinder of mass 2 𝑘𝑔 and radius 2 𝑚 is given a kinetic energy of 150 𝐽
and it rolls on a plane as shown. Angular speed of the cylinder is 5 𝑟𝑎𝑑/𝑠. 
Find the linear speed of the cylinder.

Total Kinetic energy of the solid cylinder is given by,

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝐼𝐶𝑂𝑀𝜔

2 +
1

2
𝑚𝑣𝐶𝑂𝑀

2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
.
𝑚𝑅2

2
.𝜔2 +

1

2
𝑚𝑣𝐶𝑂𝑀

2

1

2
𝑚𝑣𝐶𝑂𝑀

2 = 𝐾𝐸𝑡𝑜𝑡𝑎𝑙 −
𝑚𝑅2𝜔2

4

𝑣𝐶𝑂𝑀
2 =

2𝐾𝐸𝑡𝑜𝑡𝑎𝑙
𝑚

−
𝑅2𝜔2

2
=
2 × 150

2
−

2 2 5 2

2

𝑣𝐶𝑂𝑀
2 = 150 − 50 = 100 ⇒ 𝒗𝑪𝑶𝑴 = 𝟏𝟎𝒎𝒔−𝟏

Solution  :



𝜔
𝑣0

𝑥

𝑦

The total angular momentum of a rigid 
body about an axis is obtained by adding 
the angular momenta of (i) the body w.r.t.
COM and (ii) COM w.r.t. the desired axis.

𝐿𝑂 = 𝐿𝑠𝑦𝑠,𝐶𝑀 + 𝐿𝐶𝑀, 𝑂

𝐿𝑂 = 𝐼𝐶𝑀𝜔 + Ԧ𝑟𝐶𝑀 ×𝑚 Ԧ𝑣𝐶𝑀 𝑂

𝑂

𝐶𝑂𝑀
𝑟0

𝜃

𝑟0 sin 𝜃

Solid Sphere

Total Angular Momentum

𝐿𝑠𝑝ℎ𝑒𝑟𝑒 =
2

5
𝑚𝑅2𝜔 +𝑚𝑣0𝑟0 sin 𝜃

• For a solid sphere of radius 𝑅 rolling with 
angular velocity 𝜔 and linear speed of 𝑣0 as 
shown



A solid cylinder of mass 5 𝑘𝑔 and radius 2 𝑚 is rolling on the ground 
with translational speed of 30 𝑚/𝑠 and angular speed of 10 𝑟𝑎𝑑/𝑠 at the 
instant considered. What will be the magnitude of its angular 
momentum w.r.t. an observer sitting in the apartment at the height of
6 𝑚.

Perpendicular distance of observer from 
the line of motion of COM, 𝑟′ = 4𝑚

Mass of the solid cylinder, 𝑚 = 5 𝑘𝑔

Radius of the solid cylinder, 𝑟 = 2 𝑚

Angular velocity, 𝜔 = 10 𝑟𝑎𝑑/𝑠

𝐿𝑂 = 𝐼𝐶𝑀𝜔 +𝑚𝑣𝐶𝑀𝑟𝐶𝑀 sin 𝜃

𝐿0 = −
1

2
𝑚𝑟2𝜔 +𝑚𝑣𝐶𝑀𝑟

′

𝐿0 = −
1

2
× 5 × 22 × 10 + 5 × 30 × 4

𝐿0 = 𝟓𝟎𝟎 𝑘𝑔 𝑚2/𝑠

𝐿𝑂 = 𝐼𝐶𝑀𝜔 + Ԧ𝑟𝐶𝑀 ×𝑚 Ԧ𝑣𝐶𝑀 𝑂

From the definition of total angular 
momentum, 

Solution  :



Dynamics of Rigid Body Motion

The best choice of axis is the one passing through the 

COM (parallel to the angular acceleration)

Free Rotation

The best choice of axis is the one passing through the 

fixed axis (hinge).

Pure Rotation



Pure Rolling

• Particles of the wheel follow a path/loci called cycloid.

• The displacement of the COM in one full rotation is 2𝜋𝑟, 
where 𝑟 is the radius of the wheel.

• The instantaneous velocity of the point in contact with 
the road is zero. (No relative motion/pure rolling)

In the case of pure rolling, 𝑣𝑃 = 𝑣𝑄

If the ground is at rest, 𝑣𝑄 = 0

𝑣𝐶𝑀 = 𝜔𝑅⇒ 𝑣𝑃 = 𝑣𝐶𝑀 − 𝜔𝑅 = 0

• Despite the instantaneous contact 
point being stationary, the wheel 
continues rolling without slipping due 
to its ongoing rotational motion.

• The centripetal acceleration is same at 
all points on the periphery equal to 𝜔2𝑅.

When the ground is at rest, 

𝑣𝐶𝑀 = 𝜔𝑟

𝑣𝐶𝑀 < 𝜔𝑟

𝑣𝐶𝑀 > 𝜔𝑟

Pure Rolling

Forward Slipping

Backward Slipping



Instantaneous Axis of Rotation concept 
helps us to treat the case of combined 
motion as a case of pure rotational motion.

Instantaneous Axis of Rotation

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝑚𝑣2 +

1

2
𝐼𝐶𝑀𝜔

2

=
1

2
𝑚𝑣2 +

1

2

1

2
𝑚𝑟2𝜔2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
3

4
𝑚𝑣2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝐼𝐼𝐴𝑂𝑅𝜔

2 =
1

2
𝐼𝐶𝑀 +𝑚𝑟2 𝜔2

=
1

2

1

2
𝑚𝑟2 +𝑚𝑟2 𝜔2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
3

4
𝑚𝑣2



Velocities of various points

𝑣
𝜔

𝑣 + 𝜔𝑟

𝜔𝑟

𝑣𝜔𝑟

𝑣
𝜔𝑟

𝑟

The velocities of various points of a circular rigid body in 
combined motion are as shown.

𝜔

2𝑣

𝑣 = 0

𝑟

2𝑣

2𝑣

Pure rolling 𝑣 = 𝜔𝑟



A sphere is rolling without slipping on a fixed horizontal plane surface. 
In the figure, 𝐴 is point of contact, 𝐵 is the center of sphere and 𝐶 is the 
topmost point. Then,

𝑉𝐴 = 0 𝑉𝐵 = V0 𝑉𝐶 = 2V0

𝑉𝐶 − 𝑉𝐴 = 2V0

𝑉𝐵 − 𝑉𝐶 = V0 − 2V0 = −V0

𝑉𝐵 − 𝑉𝐴 = V0

Say, V0 is the velocity of the sphere. Then,

𝑉𝐶 − 𝑉𝐴 = 2V0 ≠ 2 𝑉𝐵 − 𝑉𝐶

𝑉𝐶 − 𝑉𝐵 = V0 = 𝑉𝐵 − 𝑉𝐴

𝑉𝐶 − 𝑉𝐴 = 2𝑉0 = 2 𝑉𝐵 − 𝑉𝐶

𝑉𝐶 − 𝑉𝐴 = 2𝑉0 ≠ 4 𝑉𝐵

𝑂𝑝𝑡𝑖𝑜𝑛 𝑎. 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑂𝑝𝑡𝑖𝑜𝑛 𝑏. 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑂𝑝𝑡𝑖𝑜𝑛 𝑐. 𝑖𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑂𝑝𝑡𝑖𝑜𝑛 𝑑. 𝑖𝑠 𝑖𝑛𝑐𝑜𝑟𝑟𝑒𝑐𝑡

Solution  :



𝑚, 𝐼𝐶𝑀

𝜔

𝑣

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = 𝐾𝐸𝑟𝑜𝑡 + 𝐾𝐸𝑡𝑟𝑎𝑛𝑠

=
1

2
𝐼𝐶𝑀𝜔

2 +
1

2
𝑚𝑣2

=
1

2
𝐼𝐶𝑀𝜔

2 +
1

2
𝑚 𝜔𝑟 2

=
1

2
𝐼𝐶𝑀 +𝑚𝑟2 𝜔2

Kinetic Energy (Pure Rolling)

𝐾𝐸𝑟𝑜𝑡
𝐾𝐸𝑡𝑟𝑎𝑛𝑠

=
𝐼𝐶𝑀
𝑚𝑟2



A circular disc of mass 2 𝑘𝑔 and radius 10 𝑐𝑚 rolls without slipping with 
a speed 2 𝑚/𝑠. The total kinetic energy of disc is 

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
𝐼𝐶𝑀 +𝑚𝑟2 𝜔2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2

1

2
𝑚𝑟2 +𝑚𝑟2

𝑣

𝑟

2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
1

2
.
3

2
𝑚𝑟2

𝑣2

𝑟2
=
3

4
𝑚𝑣2

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 =
3

4
2 2 2 = 6 𝐽

𝐾𝐸𝑡𝑜𝑡𝑎𝑙 = 6 𝐽

Solution  :



Accelerated Pure Rolling

𝐶

𝛼

𝑎

𝜔

𝑎𝐶𝑀 =
𝑑𝑣𝐶𝑀
𝑑𝑡

=
𝑑 𝑟𝜔

𝑑𝑡

For the centre of mass of rigid body in pure rolling motion,

= 𝑟
𝑑𝜔

𝑑𝑡

𝑎𝐶𝑀 = 𝑟𝛼



Acceleration of various points

The acceleration of various points of a circular rigid body 
in combined motion are as shown. (Ground frame)

𝑎

𝛼,𝜔

𝑎 + 𝛼𝑟

𝛼𝑟

𝑎𝛼𝑟

𝑎 + 𝜔2𝑟
𝛼𝑟

𝑟
𝜔2𝑟

𝜔2𝑟

𝜔2𝑟

𝑎 = 𝛼𝑟 Pure rolling



A solid sphere of mass 10 𝑘𝑔 is placed on a rough surface having coefficient of friction 𝜇 =
0.1. A constant force 𝐹 = 7 𝑁 is applied along a line passing through the centre of the 
sphere as shown such that it rolls without slipping. The value of frictional force on the 
sphere is

𝑓𝑚𝑎𝑥 = 𝜇𝑚𝑔 = 10 𝑁

𝐹 − 𝑓 = 𝑚𝑎

𝑓𝑅 = 𝐼𝛼

𝐹 − 𝑓 = 𝑚𝛼𝑅 … 1

𝛼 =
𝑓𝑅

𝐼
… 2

𝐹 − 𝑓 =
𝑓𝑚𝑅2

𝐼
𝑓 =

𝐹

1 +
𝑚𝑅2

𝐼

∵ Assuming pure rolling

Maximum value of kinetic friction, 

Equation for the translational motion,

Equation for the rotational motion,

𝑓 =
7

1 +
5
2

= 2 𝑁 < 𝑓𝑚𝑎𝑥

𝑓 = 2 𝑁

∵ 𝐼 =
2

5
𝑀𝑅2

Solution  :



Pure Rolling on an Inclined Plane

For a body rolling w/o slipping on
a rough wedge,

𝑢 = 0 ; 𝜔0 = 0

Linear and angular acceleration of
the body are constant.

𝑣 = 𝑢 + 𝑎𝑡 = 𝑎𝑡

𝜔 = 𝜔0 + 𝛼𝑡 = 𝛼𝑡

At all instances of pure rolling,

𝑣 = 𝜔𝑅

𝑎𝑡 = 𝛼𝑡𝑅

𝑎 = 𝛼𝑅

 No force other than friction 
induces torque in the body about 
the COM.

 In order to begin (and maintain) 
pure rolling, frictional force will act 
in the upward direction of the 
incline.



A rigid body of mass 𝑚, radius 𝑅, and moment of inertia 𝐼 starts pure 
rolling on a wedge of height ℎ as shown. Find out the time taken by the 
body to reach the bottom of the inclined plane. 𝐾 is the radius of 
gyration of the body about the axis passing through its COM. (𝐼 = 𝑀𝐾2)

𝑚𝑔 sin 𝜃 − 𝑓 = 𝑚𝑎

𝑓𝑅 = 𝐼𝛼

𝑓 =
𝐼𝑎

𝑅2

𝑚𝑔 sin 𝜃 −
𝐼𝑎

𝑅2
= 𝑚𝑎

∵ 𝑎 = 𝛼𝑅

𝑎 =
𝑔 sin 𝜃

1 +
𝐼

𝑚𝑅2

Force equation for the 
rolling body,

Torque equation for the 
rolling body,

Time taken in reaching the bottom

𝑑 = 𝑢𝑡 +
1

2
𝑎𝑡2

ℎ

sin 𝜃
= 0 +

1

2
×

𝑔 sin 𝜃

1 +
𝐼

𝑚𝑅2

× 𝑡2

𝑡2 =
2ℎ 1 +

𝐼
𝑚𝑅2

𝑔 sin2 𝜃

𝑡 =
1

sin 𝜃

2ℎ

𝑔
1 +

𝐾2

𝑅2
( ∵ 𝐼 = 𝑚𝐾2 )

Solution  :



A solid ball of radius 𝑟 rolls down a parabolic path 𝐴𝐵𝐶 from a height 
ℎ >> 𝑟 without slipping as shown in figure. Portion 𝐴𝐵 of the path is 
rough while 𝐵𝐶 is smooth. How high will the ball climb in 𝐵𝐶?

Solution  :



A string is wound around a hollow cylinder of mass 5 𝑘𝑔 and radius 0.5 𝑚. If the 
string is now pulled with a horizontal force of 40 𝑁 and the cylinder is rolling 
without slipping on a frictionless horizontal surface (see figure), then the 
angular acceleration of the cylinder will be (Neglect the mass and thickness of 
the string) 

Given,  𝑚 = 5 𝑘𝑔, 𝑟 = 0.5 𝑚

𝜏 = 𝑟𝐹 ∵ 𝑟 ⊥ 𝐹

As the cylinder is rolling without slipping, horizontal 
force 𝐹 produces torque about the centre as shown.

𝐼𝛼 = 0.5 × 40

𝑚𝑟2𝛼 = 20

𝛼 =
20

5 × 0.52

𝛼 = 16 𝑟𝑎𝑑 𝑠−2

Solution  :



Pure Rolling on an Inclined Plane

𝜃

𝛼

𝑚𝑔 cos 𝜃
𝑚𝑔

𝜃

• No force other than friction induces torque 
in the body about the COM.

• In order to begin (and maintain) pure 
rolling, frictional force will act in the 
upward direction of the incline.

𝑁



A hollow spherical shell starting from 𝑂 rolls down a hill. At point 𝐴, the 
ball becomes air borne leaving at an angle of 30∘ with the horizontal. 
The ball strikes the ground at 𝐵. What is the value of the distance 𝐴𝐵?

𝐾𝐸𝑇 + 𝐾𝐸𝑅 𝑖 + 𝑈𝑖 = 𝐾𝐸𝑇 + 𝐾𝐸𝑅 𝑓 + 𝑈𝑓

0 + 0 +𝑚𝑔ℎ1 =
1

2
𝑚𝑣2 +

1

2
𝐼𝜔2 +𝑚𝑔ℎ2

𝑔 ℎ1 − ℎ2 =
1

2
𝑣2 +

1

2
×
2

3
𝑅2

𝑣

𝑅

2

𝑔(2 − 0.2) =
𝑣2

2
+
𝑣2

3

⇒ 𝑣2 =
6 × 1.8 × 10

5
= 21.6

Since 𝑊𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0, by applying conservation 
of mechanical energy,

Horizontal range 𝐴𝐵:

𝐴𝐵 =
𝑣2 sin 2𝜃

𝑔

=
21.6 × sin 2 × 30∘

𝑔

𝐴𝐵 = 1.87 𝑚

Solution  :



𝑣0
𝑚

𝜔 <
𝑣0
𝑟

𝑓𝑘

𝑚

𝛼

𝑎

𝑓𝑘

𝑣
𝑚

𝜔 =
𝑣

𝑟

The sphere is set into 
combined motion (rolling 

and slipping)

It starts pure rolling and 
friction diminishes.

𝑓𝑠 = 0

𝑣𝑃 > 0

Frictional force provides 
linear deceleration and 

angular acceleration
(to initiate pure rolling)

Forward Slipping

𝑃



A solid cylinder having radius 0.4 𝑚, initially rotating with 𝜔0 = 54 𝑟𝑎𝑑/𝑠 is 
placed on a rough inclined plane with 𝜃 = 37° having friction coefficient 
𝜇 = 0.5. The time taken by the cylinder to start pure rolling is (𝑔 =
10 𝑚/𝑠2)

𝑎 = 𝜇𝑔 cos 𝜃 + 𝑔 sin 𝜃

Linear acceleration of the cylinder,

= 0.5 × 10 cos 37° + 10 sin 37°

𝑎 = 10 𝑚/𝑠2

𝛼 =
𝑓𝑘𝑅

𝐼
=
𝜇𝑚𝑔𝑅 cos𝜃

1
2
𝑚𝑅2

=
2 × 0.5 × 10 ×

4
5

0.4

Angular acceleration of the cylinder,

𝛼 = 20 𝑟𝑎𝑑/𝑠2

𝑣 = 𝑅𝜔

Pure rolling will start when,

𝑎𝑡 = 𝑅 𝜔0 − 𝛼𝑡

10𝑡 = 0.4 54 − 20𝑡

25𝑡 = 54 − 20𝑡

𝑡 = 1.2 𝑠

Solution  :


