Welcome to

Qutatesh BBYUU'S NOTES

System of Particles and Rotational Motion

- Shape and size of the system remains same.
- No change in the distance between any pair of particles.
- No velocity of separation or approach between any two particles.

Rigid Body
\xrightarrow{y}

No velocity of separation or approach between the particles.

- $\vec{v}_{A B}=\vec{v}_{A}-\vec{v}_{B}$
- $\vec{v}_{A B}=\left(v_{A} \cos \theta_{A}-v_{B} \cos \theta_{B}\right) \hat{\imath}+\left(v_{A} \sin \theta_{A}-v_{B} \sin \theta_{B}\right) \hat{\jmath}$
- $v_{\text {sep }}=\left(v_{A B}\right)_{\|}=0 \Rightarrow v_{A} \cos \theta_{A}=v_{B} \cos \theta_{B}$

The velocity of end A of a rigid rod placed between two smooth perpendicular surfaces moves with velocity $10 \mathrm{~m} / \mathrm{s}$ along the vertical when the angle $\theta=30^{\circ}$. Velocity of end B at that exact moment is

Solution : Velocity of separation between the particles at the ends of the rod must be zero since it is rigid.

$$
\begin{aligned}
& v_{\text {sep }}=0 \\
& \Rightarrow v_{A} \cos \theta=v_{B} \sin \theta \\
& \Rightarrow 10 \cos 30^{\circ}=v_{B} \sin 30^{\circ} \\
& \Rightarrow 10 \times \frac{\sqrt{3}}{2}=v_{B} \times \frac{1}{2}
\end{aligned}
$$

d

- A circular motion is generally defined for a particle.
- The term rotational motion is used in the case of an extended body.

Axis of Rotation

- AOR is the straight line passing through all the fixed points of a rotating rigid body around which all other points of the body move in circles.
- It does not have to pass through the body.
- It does not have to be fixed.
- It does not have to be perpendicular to the surface plane of a two-dimensional object.

Q Types of Rigid Body Motion

\square

Pure Translational Motion
Displacement of each particle within a particular time interval is same.

Combined Motion [Translation + Rotation]

- It is the rotational analogue of Force.
- Represented by Greek letter τ (Tau)
- Mathematically called as Moment of Force

- Torque of the force \vec{F} on the system about point 0 is given by
$\vec{\tau}=\vec{r} \times \vec{F}$
Where,

$$
\begin{aligned}
& \vec{r}= \text { Position vector of the point of application of } \\
& \text { force w.r.t. point } O
\end{aligned}
$$

Direction of Torque

- Torque is an axial vector.
- Direction is determined using the right-hand thumb rule.

$$
\vec{\tau}=\vec{r} \times \vec{F}
$$

If \vec{r} and \vec{F} are in a plane, then the direction of the $\vec{\tau}$ will be perpendicular to the plane.

Going into the plane : ©

Coming out of the plane : ©

$\tau=|\vec{r} \times \vec{F}|=r F \sin \theta=(r \sin \theta) F$
$\Rightarrow \tau=r_{\perp} F$
F-Applied Force
r_{\perp} - Force arm

- A particle of mass 2 kg is projected with speed $u=10 \mathrm{~m} / \mathrm{s}$ at angle $\theta=30^{\circ}$ with horizontal. Find the torque of the weight of the particle about the point of projection when the particle is at the highest point.

Solution : $\quad m=2 \mathrm{~kg}$
Torque about the point of projection,
$\tau=r_{\perp} F$
$\Rightarrow \tau=\left(\frac{R}{2}\right) m g$
$\Rightarrow \tau=\left(\frac{\left(\frac{u^{2} \sin 2 \theta}{g}\right)}{2}\right) m g \quad\left[\because R=\frac{u^{2} \sin 2 \theta}{g}\right]$
$\Rightarrow \tau=\left(\frac{10^{2} \sin 60^{\circ}}{2 g}\right) \times 2 g$

Consider clockwise direction as +ve.
Torque about point P,
$\tau=F x_{1}+F x_{2}$
$\Rightarrow \tau=F\left(x_{1}+x_{2}\right)$
$\Rightarrow \tau=F(2 d)$

$\tau=2 F d$

Note: Torque is independent of x_{1}, x_{2}

```
If the torque due to the couple in the given figure is 21 Nm , then the value of \(x\) is
```

Solution : Torque due to the couple, $\tau=F d$
$\Rightarrow 21=12 \times d$
$\Rightarrow d=1.75 \mathrm{~m}$

Now, $d+x=2 m$
$\Rightarrow x=12-d$
$\Rightarrow x=12-1.75$

$\Rightarrow x=0.25 \mathrm{~m}$

展 Point of Application of Force

- P is the point at which the resultant of external forces $\left(\vec{F}_{n e t}\right)$ can be assumed to be applied.
- $\vec{F}_{n e t}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}$
- $\vec{\tau}_{\text {net }}=\left(\vec{r}_{1} \times \vec{F}_{1}\right)+\left(\vec{r}_{2} \times \vec{F}_{2}\right)+\left(\vec{r}_{3} \times \vec{F}_{3}\right)=\vec{r}_{e f f} \times \vec{F}_{n e t}$
- Translational equilibrium
$\sum \vec{F}_{i}=\mathbf{0}$
- Rotational equilibrium
$\sum \vec{\tau}_{i}=\mathbf{0}$ (Torque can be calculated about any axis)

A system is in mechanical equilibrium if it is in translational as well as rotational equilibrium.

A uniform rod of mass $2 M$ and length L is placed on two supports as shown in the figure. A block of mass 5M is suspended from one end of the rod. Another mass M is placed on top at the opposite end. The rod is just in equilibrium. Find out the normal reactions provided by the two

Solution : supports.
$W=2 M g \quad \& \quad T=5 M g$
For the rod to be in equilibrium,
$\sum \vec{F}_{n e t}=0$
$N_{S_{1}}+N_{S_{2}}=M g+W+T$
$N_{S_{1}}+N_{S_{2}}=8 \mathrm{Mg}$

Torque about S_{1}
$\sum\left(\vec{\tau}_{n e t}\right)_{s_{1}}=0$
$N_{S_{2}}\left(\frac{3 L}{4}\right)-W\left(\frac{L}{2}\right)-T(L)=0$
$N_{S_{2}}=8 \mathrm{Mg}$
$\Rightarrow N_{S_{1}}=0$
$N_{S_{1}}=0 \mathrm{~N}$
$N_{S_{2}}=8 M g$

- As the external force F increases, normal force N adjusts its point of application in order to keep the block from toppling.
- When F and therefore the friction f is high enough, normal force can no longer provide the counter-balancing torque and the block topples about point P.

A block with a square base measuring $a \times a$, and height h, is placed on an inclined plane. The coefficient of friction is μ. The angle of inclination θ of the plane is gradually increased. The block will

Condition for Sliding

$N=m g \cos \theta$
Condition for Toppling

About point $P \quad$ (To initiate toppling)
$m g \sin \theta=\left(f_{s}\right)_{\max } \quad$ (Body is just about to slide)
$\tau_{m g \sin \theta}>\tau_{m g} \cos \theta$
$m g \sin \theta=\mu N=\mu m g \cos \theta$
$m g \sin \theta \times \frac{h}{2}>m g \cos \theta \times \frac{a}{2}$

$\tan \theta=\mu$
$\tan \theta>\mu$
(To initiate sliding)

Moment of Inertia

- Rotational analogue of mass.
- Moment of inertia of a particle of mass m located at a perpendicular distance r from an axis in consideration is given by,

```
I=mr
```

- It is a scalar quantity.
- Unit of MOI is $\mathrm{kg} \mathrm{m}^{2}$.

- Moment of inertia of n particles having mass m_{1}, m_{2}, \ldots, m_{n} at distance $r_{1}, r_{2}, \ldots, r_{n}$ from an axis is given by,

Note: Moment of inertia is added only if they are defined with respect to the same axis of rotation.

- A massless equilateral triangle $E F G$ of side a has three particles of mass m situated at its vertices. If the moment of inertia of the system about the line $E X$ perpendicular to $E G$ in the plane of $E F G$ is $\frac{N}{20} m a^{2}$, then N is

Solution :
Moment of inertia of the system about $E X$,
$I=I_{1}+I_{2}+I_{3}$
$\Rightarrow I=m(0)^{2}+m\left(\frac{a}{2}\right)^{2}+m a^{2}$
$\Rightarrow I=\frac{5}{4} m a^{2}=\frac{25}{20} m a^{2}$

$N=25$

\square

Moment of Inertia of Continuous Bodies,

MI of the element about 00^{\prime},
$d I=r^{2} d m$
MI of the continuous body about O0',

$$
I=\int d I=\int r^{2} d m
$$

Moment of Inertia depends on

- Axis of rotation,
- Shape and size of the body, and
- Distribution of mass relative to axis of rotation

Calculate the moment of inertia of a uniform rod of length L and mass M about an axis passing through its centre and perpendicular to it.

Solution :
Let λ be the density of the rod.
From the definition of MOI,

$$
\begin{aligned}
d I & =d m \times x^{2} \\
\Rightarrow d I & =\lambda d x \times x^{2}
\end{aligned}
$$

$$
x=-\frac{L}{2}
$$

$x=\frac{L}{2}$

$$
\Rightarrow d I=\frac{M}{L} d x \times x^{2}
$$

$$
\therefore I=\int d I=\frac{M}{L} \int_{-L / 2}^{L / 2} x^{2} d x
$$

$\mathrm{b} \frac{M L^{2}}{12}$

$$
\Rightarrow I=\frac{M}{L} \times\left(\frac{x^{3}}{3}\right)_{-L / 2}^{L / 2}
$$

C $\frac{M L^{2}}{3}$

Moment of Inertia of a Thin Uniform Rod

About an axis passing through the end of the rod perpendicular to it

From the definition of MOI,

$$
d I=d m \times x^{2}
$$

$$
\Rightarrow d I=\lambda d x \times x^{2}
$$

$$
\Rightarrow I=\frac{M}{L} \times\left(\frac{x^{3}}{3}\right)_{0}^{L}
$$

$$
\Rightarrow d I=\frac{M}{L} d x \times x^{2}
$$

$$
\therefore I=\int d I=\frac{M}{L} \int_{0}^{L} x^{2} d x
$$

About an axis passing through the end of the rod making an angle θ with it

$d I=r^{2} \times d m$

$$
I=\frac{M}{L} \sin ^{2} \theta \times\left(\frac{x^{3}}{3}\right)_{0}^{L}
$$

$$
\Rightarrow d I=(r)^{2} \times \lambda d x
$$

$$
\Rightarrow d I=(x \sin \theta)^{2} \times \frac{M}{L} d x
$$

$$
(\because r=x \sin \theta)
$$

$$
I=\int d I=\frac{M}{L} \sin ^{2} \theta \int_{0}^{L} x^{2} d x
$$

Linear mass density of the two rods system, $A C$ and $C B$ is x. Moment of inertia of two rods about an axis passing through their centres as shown is

Solution : $L=\frac{l / 2}{\cos 45^{\circ}}=\frac{l}{\sqrt{2}}$
Mass of each rod, $m=x L=\frac{x l}{\sqrt{2}}$
Moment of inertia of the two rods,
$\Rightarrow I=2\left[\frac{m L^{2}}{12} \sin ^{2} 45^{\circ}\right]$
$\Rightarrow I=2\left[\frac{\left(\frac{x l}{\sqrt{2}}\right)\left(\frac{l}{\sqrt{2}}\right)^{2}}{12} \times \frac{1}{2}\right]$

$d I=R^{2}(d m)=R^{2} \times \frac{M}{2 \pi} d \theta$

$$
I=\int d I=\int R^{2}(d m)
$$

$$
I=\frac{M R^{2}}{2 \pi} \int_{0}^{2 \pi} d \theta
$$

$$
I=\frac{M R^{2}}{2 \pi}(2 \pi)
$$

For a non-uniform ring,

$$
I=\int(d m) R^{2}=R^{2} \int(d m)
$$

But, $\int(d m)=M$
$\Rightarrow I=M R^{2}$

目 Moment of Inertia of a Thin Uniform Disc

r represents the distance of differential element of mass dm from the axis in consideration.

$$
\begin{aligned}
& d m=\sigma(d A)=\left(\frac{M}{\pi R^{2}}\right)(2 \pi r)(d r)=\frac{2 M}{R^{2}} r d r \\
& \therefore d I=r^{2}(d m)=\left(r^{2}\right) \frac{2 M}{R^{2}} r d r=\frac{2 M}{R^{2}} r^{3} d r
\end{aligned}
$$

$$
\Rightarrow \int_{0}^{I} d I=\int_{0}^{R} \frac{2 M}{R^{2}} r^{3} d r=\frac{2 M}{R^{2}} \int_{0}^{R} r^{3} d r
$$

$$
\Rightarrow I=\frac{2 M}{R^{2}}\left[\frac{R^{4}}{4}\right]
$$

$$
\begin{aligned}
& I_{\text {section }}=\frac{1}{n}\left[I_{\text {disc }}\right] \\
& \Rightarrow I_{\text {section }}=\frac{1}{n}\left[\frac{(n M) R^{2}}{2}\right] \quad\left(\because m_{\text {disc }}=n M\right) \\
& \Rightarrow I_{\text {section }}=\frac{M R^{2}}{2}
\end{aligned}
$$

原 MOI of a Thin Uniform Hollow Cylinder

R is the distance of a thin ring of mass $d m$ from the axis

Moment of inertia of the elemental ring,
$d I=R^{2} d m$
\therefore Moment of inertia of the cylinder,
$\int_{0}^{I} d I=\int_{0}^{M} R^{2} d m$
$\Rightarrow I=M R^{2}$

MOI of Some Standard Symmetric Bodies

If I_{1} is the moment of inertia of a thin rod about an axis perpendicular to its length and passing through its centre of mass and I_{2} is the moment of inertia of a ring about an axis perpendicular to its plane and passing through its centre formed by bending the same rod, then

Solution : Length of the thin rod $=$ Perimeter of the ring $\quad \Rightarrow L=2 \pi R$

Moment of inertia of the thin rod,

$$
I_{1}=\frac{M L^{2}}{12}=\frac{M\left(4 \pi^{2} R^{2}\right)}{12}=\frac{\pi^{2}}{3}\left(M R^{2}\right)
$$

Moment of inertia of the ring,

$$
\frac{I_{1}}{I_{2}}=\frac{3}{\pi^{2}}
$$

$$
I_{2}=M R^{2}
$$

b

$\frac{I_{1}}{I_{2}}=\frac{2}{\pi^{2}}$

$$
\therefore I_{1}=\frac{\pi^{2}}{3}\left(I_{2}\right)
$$

C $\quad \frac{I_{1}}{I_{2}}=\frac{\pi^{2}}{2}$
$\mathrm{d} \quad \frac{I_{1}}{I_{2}}=\frac{\pi^{2}}{3}$
"The moment of inertia of a planar body about an axis perpendicular to its plane is equal to the sum of its moments of inertia about two perpendicular axes concurrent with perpendicular axis and lying in the plane of the body"

$$
I_{z}=I_{x}+I_{y}
$$

Note: It's only applicable for laminar / planar / 2D objects

Calculate the moment of inertia of a thin uniform ring of mass M and radius R about the axis passing through its diameter.

Solution : By symmetry, $\quad I_{x}=I_{y}=I$
Using Perpendicular Axis Theorem,

$$
\begin{aligned}
& I_{z}=I_{x}+I_{y} \\
& \Rightarrow I_{z}=I+I=2 I \\
& \Rightarrow M R^{2}=2 I
\end{aligned}
$$

\square
C $\frac{5 M R^{2}}{6}$

The moment of inertia of a planar body about an axis perpendicular to its plane is equal to the sum of its moments of inertia about two perpendicular axes concurrent with perpendicular axis and lying in the plane of the body.

$$
I_{z}=I_{x}+I_{y}
$$

Note: It's only applicable for laminar / planar / 2D objects

Thin Uniform Rectangular Lamina

Moment of Inertia about the x axis, $I_{x}=\frac{M b^{2}}{12}$

Moment of Inertia about the y axis, $I_{y}=\frac{M l^{2}}{12}$

By Perpendicular Axes Theorem,

$$
I_{z}=I_{x}+I_{y}
$$

$$
I_{z}=\frac{M}{12}\left(b^{2}+l^{2}\right)
$$

- Moment of Inertia of a body about an axis parallel to an axis through COM and separated by a perpendicular distance d is given by,
$I_{A A^{\prime}}=I_{C O M}+M d^{2}$
Where,

$$
\begin{aligned}
& I_{A A^{\prime}}=\left(I_{S y S}\right)_{A A \prime} \\
& I_{C O M}=\left(I_{S Y S}\right)_{C O M}
\end{aligned}
$$

Find the moment of inertia of the two uniform joint rods having mass m each about point P as shown in the figure, using parallel axes theorem.

Solution : Moment of inertia of the system about the given axis,

$$
\begin{aligned}
I_{P} & =\left(I_{1}\right)_{P}+\left(I_{2}\right)_{P} \\
& =\left(I_{c o m}+m d_{1}^{2}\right)+\left(I_{c o m}+m d_{2}^{2}\right) \\
& =\left[\frac{m l^{2}}{12}+m\left(\frac{l}{2}\right)^{2}\right]+\left[\frac{m l^{2}}{12}+m\left(\frac{\sqrt{5} l}{2}\right)^{2}\right] \\
& =\left[\frac{m l^{2}}{12}+\frac{m l^{2}}{4}\right]+\left[\frac{m l^{2}}{12}+\frac{5 m l^{2}}{4}\right] \\
& =\frac{m l^{2}}{3}+\frac{4 m l^{2}}{3}
\end{aligned}
$$

Four solid spheres each of diameter $\sqrt{5} \mathrm{~cm}$ and mass 0.5 kg are placed with their centres at the corners of a square of side 4 cm . If the moment of inertia of the system about the diagonal of the square is
$N \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}$, then N is

Solution :

$$
a=4 \mathrm{~cm}=4 \times 10^{-2} \mathrm{~m}
$$

$$
\begin{aligned}
r= & \frac{d}{2}=\frac{\sqrt{5}}{2} \mathrm{~cm}=\frac{\sqrt{5}}{2} \times 10^{-2} \mathrm{~m} \\
I_{\text {sys }} & =I_{1}+I_{2}+I_{3}+I_{4} \\
& =\left(I_{1}+I_{3}\right)+\left(I_{2}+I_{4}\right)
\end{aligned}
$$

$$
=2\left[\frac{2}{5} m r^{2}+m\left(\frac{a}{\sqrt{2}}\right)^{2}\right]+2\left(\frac{2}{5} m r^{2}\right)
$$

$$
=9 \times 10^{-4} \mathrm{~kg} \mathrm{~m}^{2}
$$

Radius of Gyration

Distance (K) from the Axis of Rotation, where the whole mass of the rigid body can be assumed to be concentrated as a point mass such that the MOI of the point mass is the same as that of the rigid body (I).

- A thin disc of mass M and radius R has mass per unit area $\sigma(r)=k r^{2}$, where r is the distance from its centre. Its radius of gyration about an axis through its centre of mass and perpendicular to its plane is

Solution : Mass of the disc is given by,

$$
\begin{aligned}
& M=\int_{0}^{R} \sigma(r) d A \\
& M=\int_{0}^{R} k r^{2} \times 2 \pi r d r \\
& M=2 \pi k \int_{0}^{R} r^{3} d r \\
& M=2 \pi k\left[\frac{r^{4}}{4}\right]_{0}^{R}
\end{aligned}
$$

MOI of the disc about an axis passing through COM and perpendicular to its plane is given by,
$I_{C}=\int_{0}^{R} r^{2} d m$
$I_{C}=\int_{0}^{R} r^{2} \times k r^{2} \times 2 \pi r d r$
$I_{C}=2 \pi k \int_{0}^{R} r^{5} d r$
$I_{C}=\frac{\pi k R^{6}}{3}$

$$
\begin{aligned}
& \Rightarrow I_{C}=\frac{2 R^{2}}{3} \times \frac{\pi k R^{4}}{2} \\
& \Rightarrow I_{C}=\frac{2 M R^{2}}{3} \\
& \text { NoW, } I_{C}=M K^{2}
\end{aligned}
$$

P Pure Rotational Motion

A rigid body in motion, such that its axis of rotation remains fixed with respect to the frame of reference performs pure rotational motion, e. g., a hinged rod.
$\vec{\tau}_{\text {ninge }}=I_{\text {hinge }} \vec{\alpha} \quad$ (Newton's $2^{\text {nd }}$ law for Rotation)

Where,
$I_{\text {hinge }}=$ moment of inertia about hinge
$\alpha=$ angular acceleration of the body

A solid sphere of mass 2 kg and radius 1 m is free to rotate about an axis passing through its centre. Find a constant tangential force F to be applied at the surface of the sphere to make it achieve an angular speed of $10 \mathrm{rad} / \mathrm{s}$ in 2 s . Also find the number of rotations made by the sphere in that time interval.
Solution :
Given $M=2 \mathrm{~kg}, R=1 \mathrm{~m}, \omega=10 \mathrm{rad} / \mathrm{s}$ and $t=2 \mathrm{~s}$

Number of revolutions

The angle rotated is,

$$
\theta=\frac{1}{2} \alpha t^{2}=\frac{1}{2}(5) 2^{2}=10 \mathrm{rad}
$$

Number of rotations,

$$
n=\frac{\theta}{2 \pi}=\frac{10}{2 \pi}
$$

a.
$4 N, \frac{5}{\pi}$

d \square

Rotational kinetic energy for a body rotating about a fixed axis is calculated as-

$$
\begin{aligned}
(K E)_{\text {rot }} & =\sum \frac{1}{2} m_{i} v_{i}^{2} \\
& =\frac{1}{2} \sum m_{i}\left(\omega r_{i}\right)^{2} \\
& =\frac{1}{2} \omega^{2} \sum m_{i} r_{i}^{2} \\
(K E)_{\text {rot }} & =\frac{1}{2} \omega^{2} I_{\text {Hinge }}
\end{aligned}
$$

Rotational kinetic energy $=\frac{1}{2} I_{\text {Hinge }} \omega^{2}$

For a body performing pure rotational motion-
$\vec{\tau}_{\text {hinge }}=I_{\text {hinge }} \vec{\alpha}$
Total $\mathrm{KE}=$ Rotational $\mathrm{KE}=\frac{1}{2} I_{\text {Hinge }} \omega^{2}$

Work done by a Torque

If a torque $\vec{\tau}$ rotates a body through infinitesimal displacement $d \vec{\theta}$, then the infinitesimal work done is

$$
d W=\vec{\tau} \cdot d \vec{\theta}
$$

If $\vec{\tau}$ and $d \vec{\theta}$ are in the same direction, then

$$
d W=\tau d \theta
$$

$\Rightarrow W=\int d W=\int_{\theta_{1}}^{\theta_{2}} \tau d \theta$
If a constant torque τ acts on the body, then

$$
\begin{aligned}
W & =\tau\left(\theta_{2}-\theta_{1}\right) \\
\Rightarrow W & =\tau \Delta \theta
\end{aligned}
$$

-1] A circular disc and a hollow sphere of same mass are rotated about their COM axes as shown. The radius of disc is three times the radius of hollow sphere and disc rotates with half the angular velocity of the hollow sphere. What will be the ratio of their kinetic energies?

Solution :

Mass of the disc $m_{d}=M$ (Assume)

Mass of the hollow sphere $m_{s}=M$

Radius of the hollow sphere $r_{s}=R$ (Assume)
Radius of the disc $r_{d}=3 R$
Angular velocity of the disc $\omega_{d}=\omega$ (Assume)
Angular velocity of the hollow sphere $\omega_{s}=2 \omega$

Rotational kinetic energy of the disc,

$$
(K E)_{d}=\frac{1}{2} I_{d} \omega_{d}^{2}
$$

$$
=\frac{1}{2} \times\left[\frac{M \times(3 R)^{2}}{2}\right] \times \omega^{2}=\frac{9}{4} M R^{2} \omega^{2}
$$

Rotational kinetic energy of the hollow sphere,
$(K E)_{s}=\frac{1}{2} I_{s} \omega_{S}^{2}=\frac{1}{2} \times\left[\frac{2}{3} M R^{2}\right] \times(2 \omega)^{2}=\frac{4}{3} M R^{2} \omega^{2}$

Ratio of $(K E)_{d}$ to $(K E)_{s}$,

$$
\frac{(K E)_{d}}{(K E)_{s}}=\frac{\frac{9}{4} M R^{2} \omega^{2}}{\frac{4}{3} M R^{2} \omega^{2}}=\frac{27}{16}
$$

$\stackrel{\rightharpoonup}{1}$
4

d $\quad \frac{9}{16}$

Centre of Gravity

- The centre of gravity (G) of a body is the point at which the total gravitational torque on the body is zero.
- $\vec{\tau}_{g}=\sum \vec{\tau}_{i}=\sum \vec{r}_{i} \times m_{i} \vec{g}=\mathbf{0}$
- The COG and COM of a rigid body coincide when the gravitational field is uniform across the body.

Q Angular Momentum

Angular momentum is the rotational analogue of linear momentum. It is also called moment of linear momentum.

$$
\vec{L}_{O}=\vec{r} \times \vec{p} \quad \because \vec{p}=m \vec{v}
$$

$$
=m(\vec{r} \times \vec{v})
$$

- Axial vector
- Always perpendicular to the plane of \vec{r} and \vec{p}.
- SI unit: $\mathrm{kg} \mathrm{m}^{2} / \mathrm{s}$
$=m(\vec{r} \times \vec{v})$

A particle of mass 20 g is released with an initial velocity $5 \mathrm{~m} / \mathrm{s}$ along the curve from the point A as shown. The point A is at height h from point B. The particle slides along the frictionless surface. When the particle reaches point B, its angular momentum about O will be

Solution : (Take, $g=10 \mathrm{~m} / \mathrm{s}^{2}$)

Since friction is absent, the mechanical energy of the particle remains constant.

$$
\begin{aligned}
& \frac{1}{2} m v_{A}^{2}=\frac{1}{2} m v_{B}^{2}-m g h \\
& v_{B}^{2}=v_{A}^{2}+2 g h \\
& \quad=5^{2}+2(10)(10) \\
& v_{B}=15 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Angular momentum of the particle about point O,

$$
L_{O}=m v_{B}(a+h)
$$

$$
=20 \times 10^{-3} \times 15 \times(10+10)
$$

$$
L_{O}=6 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}
$$

艮 Angular Momentum of a System of Particles

The total angular momentum of a system of particles follows the principle of superposition.

$$
\vec{L}_{\text {system,o }}=\vec{L}_{1,0}+\vec{L}_{2,0}+\vec{L}_{3,0} \ldots \ldots \vec{L}_{n, 0}
$$

$$
\begin{aligned}
& =\sum_{i=1}^{n} \vec{L}_{i, 0} \\
& =\sum_{i=1}^{n}\left(\vec{r}_{i} \times \vec{p}_{i}\right)_{o}
\end{aligned}
$$

$\vec{L}_{\text {system }, 0}=\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \times \vec{v}_{i}\right)_{0}$

$$
\begin{aligned}
& \vec{L}_{s y s, O}=\sum_{i=1}^{n} m_{i}\left(\vec{r}_{i} \times \vec{v}_{i}\right) \\
&=\sum\left[\left(r_{\perp}\right)(p)\right]_{i} \\
&=\sum\left(r_{\perp} m v\right)_{i} \quad\left(\because v=r_{\perp} \omega\right) \\
&=\omega \sum\left(m r_{\perp}\right)_{i} \\
& L_{\text {sys }}=I_{0} \omega \\
&\left(\vec{L}_{\text {sys }}\right)_{\text {axis }}=I_{\text {axis }} \vec{\omega}
\end{aligned}
$$

Translational vs Rotational Dynamics

Translational

Applied force causes change in linear momentum of the centre of mass.
$\sum\left(\vec{F}_{s y s}\right)_{e x t}=\frac{d \vec{p}_{s y s}}{d t}$
$=\frac{d(m \vec{v})_{s y s}}{d t}$
$\sum\left(F_{\text {sys }}\right)_{e x t}=m \vec{a}_{s y s}$

Force is the rate of change of linear momentum.

Rotational

The application of torque causes change in angular momentum of a rigid body at that instant of time.
$\sum\left(\vec{\tau}_{\text {ext }}\right)_{\text {axis }}=\frac{d \vec{L}_{\text {axis }}}{d t}$

$$
=\frac{d\left[I_{a x i s} \vec{\omega}\right]}{d t}
$$

$\sum\left(\vec{\tau}_{\text {ext }}\right)_{\text {axis }}=I_{\text {axis }} \vec{\alpha}$

Torque is the rate of change of angular momentum.

展 Conservation of Angular Momentum

When the net torque acting on a system is zero about a given axis, then the total angular momentum of the system about that axis remains constant.

$$
\begin{aligned}
& \text { If } \sum\left(\vec{\tau}_{\text {ext }}\right)_{\text {axis }}=\mathbf{0} \\
& \sum \frac{d}{d t}\left(\vec{L}_{\text {axis }}\right)=\mathbf{0} \\
& \vec{L}_{\text {axis }}=\mathrm{constant}
\end{aligned}
$$

Law of conservation of angular momentum is conditional and depends on axis.

A boy of mass M stands at the edge of a platform of radius R that can be freely rotated about its axis. The moment of inertia of the platform is I. The system is at rest when a friend throws a ball of mass m and the boy catches it. If the speed of the ball was v and was moving horizontally along the tangent to the edge of the platform when it was caught by the boy, find the angular speed of the platform after the event.

$$
\text { Solution : } \quad \sum(\vec{\tau})_{\text {ext }}=\overrightarrow{0}
$$

$$
\begin{aligned}
& \text { On "Platform }+ \text { Boy + Ball" about axle, } \\
& \vec{L}_{i}=\vec{L}_{f} \quad \text { (about the axle) } \\
& m v R X+[0]=\left(I+(M+m) R^{2}\right) \omega \times
\end{aligned}
$$

A thin smooth rod of length L and mass M is rotating freely with angular speed ω_{0} about an axis perpendicular to the rod and passing through its centre. Two beads of mass m and negligible size are at the centre of the rod initially. The beads are free to slide along the rod. The angular speed of the system, when the beads reach the opposite ends of the rod, will be

Solution : Applying the conservation of angular momentum

$\mathrm{C} \frac{M \omega_{0}}{M+2 m}$
d $\frac{M \omega_{0}}{M+6 m}$
 smooth plane as shown in the figure. It hits a ridge at point 0 . The angular speed of the block after it hits O is

Solution :

Say, M is the mass of the block

Net torque about O is zero. Thus, angular momentum about O is conserved.

$$
\begin{aligned}
& L_{i}=L_{f} \\
& \Rightarrow M v \frac{a}{2}=I_{0} \omega=\left(I_{C M}+M r^{2}\right) \omega \\
& M v \frac{a}{2}=\left(I_{C M}+M r^{2}\right) \omega
\end{aligned}
$$

$$
\frac{M v a}{2}=\left(\frac{M a^{2}}{6}+M \frac{a^{2}}{2}\right) \omega \Rightarrow \frac{M v a}{2}=\frac{2 M a^{2}}{3} \omega
$$

Angular Impulse

When a rigid body is acted upon by an external torque for a short interval of time, it experiences a sudden change in the angular momentum known as angular impulse.

$$
\vec{J}=\int_{t_{1}}^{t_{2}} \vec{\tau} d t=\int_{L_{1}}^{L_{2}} d \vec{L} \quad\left(\because \vec{\tau}=\frac{d \vec{L}}{d t}\right)
$$

Like every other rotational parameter, angular impulse \vec{J} is also defined about an axis.

A rod of mass 2 kg and length 5 m is placed on a frictionless horizontal plane hinged about one of its ends. At the other end, a force $F=20 \mathrm{~N}$ is applied for 0.1 s as shown. Find the angular speed just after the force is applied.

Solution : Only force perpendicular to the length of rod will contribute to change in angular momentum.

$$
\begin{aligned}
& J=\Delta L=\tau_{\text {ext }} \Delta t \\
& \tau_{\text {ext }}=F \cos 60^{\circ} \times l=(20)\left(\frac{1}{2}\right)(5)=50 \mathrm{Nm} \\
& m=2 \mathrm{~kg} \\
&
\end{aligned}
$$

$\Delta L=I \Delta \omega=\tau_{\text {ext }} \Delta t$

$5 \mathrm{rad} / \mathrm{s}$
$\Rightarrow \Delta \omega=\omega=\frac{\tau_{\text {ext }} \Delta t}{I}=\frac{3 \tau_{\text {ext }} \Delta t}{m l^{2}} \quad\left(\because I=\frac{m l^{2}}{3}\right)$
\square $0.3 \mathrm{rad} / \mathrm{s}$
$\omega=\frac{3(50)(0.1)}{(2)(5)^{2}} \Rightarrow$ \square

展 Analysis of Combined Motion

Combined motion is divided into its pure rotational and pure translational counterparts for ease.

Combined rotation and translation

Pure rotation about the COM

Pure translation of the COM

Velocity of point A on the rigid body w.r.t. origin 0 in the figure is given by,

$$
\vec{v}_{A}=\vec{v}_{B}+\vec{\omega} \times \vec{r}
$$

The velocities and accelerations of various points of a circular rigid body in combined motion are as shown.

展
 Total Kinetic Energy

The KE of a rigid body in combined motion is obtained by summing the KEs of its rotational and translational counterparts.
$K E_{\text {total }}=K E_{\text {rot }}+K E_{\text {trans }}$

$K E_{\text {total }}=\frac{1}{2} I_{\text {СОМ }} \omega^{2}+\frac{1}{2} m v_{\text {COM }}^{2}$

- For a solid sphere of radius R rolling with angular velocity ω and linear speed of v_{0} as
 shown

$$
\begin{aligned}
K E_{\text {sphere }} & =\frac{1}{2} \times \frac{2}{5} m R^{2} \omega^{2}+\frac{1}{2} m v_{0}^{2} \\
K E_{\text {sphere }} & =\frac{m}{10}\left(2 R^{2} \omega^{2}+5 v_{0}^{2}\right)
\end{aligned}
$$

A cylinder of mass 2 kg and radius 2 m is given a kinetic energy of 150 J and it rolls on a plane as shown. Angular speed of the cylinder is $5 \mathrm{rad} / \mathrm{s}$. Find the linear speed of the cylinder.

Solution : Total Kinetic energy of the solid cylinder is given by,

$$
\begin{aligned}
& K E_{\text {total }}=\frac{1}{2} I_{C O M} \omega^{2}+\frac{1}{2} m v_{C O M}^{2} \\
& K E_{\text {total }}=\frac{1}{2} \cdot \frac{m R^{2}}{2} \cdot \omega^{2}+\frac{1}{2} m v_{C O M}^{2} \\
& \frac{1}{2} m v_{C O M}^{2}=K E_{\text {total }}-\frac{m R^{2} \omega^{2}}{4}
\end{aligned}
$$

$\omega=5 \mathrm{rad} / \mathrm{s}$

$$
R=2 m
$$

$$
v_{\text {COM }}
$$

$$
m=2 \mathrm{~kg}
$$

$$
C
$$

$$
v_{C O M}^{2}=\frac{2 K E_{t o t a l}}{m}-\frac{R^{2} \omega^{2}}{2}=\frac{2 \times 150}{2}-\frac{(2)^{2}(5)^{2}}{2}
$$

$$
K E_{\text {total }}=150 \mathrm{~J}
$$

$$
\mathrm{b} \quad 100 \mathrm{~ms}^{-1}
$$

$$
v_{C O M}^{2}=150-50=100 \Rightarrow
$$

The total angular momentum of a rigid body about an axis is obtained by adding the angular momenta of (i) the body w.r.t. COM and (ii) COM w.r.t. the desired axis.
$\vec{L}_{O}=\vec{L}_{S y s, C M}+\vec{L}_{C M, O}$

$$
\vec{L}_{O}=I_{C M} \vec{\omega}+\left(\vec{r}_{C M} \times m \vec{v}_{C M}\right)_{O}
$$

- For a solid sphere of radius R rolling with
 angular velocity ω and linear speed of v_{0} as shown
$\vec{L}_{\text {sphere }}=\frac{2}{5} m R^{2} \omega \times+m v_{0} r_{0} \sin \theta$

A solid cylinder of mass 5 kg and radius 2 m is rolling on the ground with translational speed of $30 \mathrm{~m} / \mathrm{s}$ and angular speed of $10 \mathrm{rad} / \mathrm{s}$ at the instant considered. What will be the magnitude of its angular momentum w.r.t. an observer sitting in the apartment at the height of 6 m .
Solution :

Mass of the solid cylinder, $m=5 \mathrm{~kg}$
Radius of the solid cylinder, $r=2 m$
Angular velocity, $\omega=10 \mathrm{rad} / \mathrm{s} \quad \mathbf{x}$
Perpendicular distance of observer from
 the line of motion of COM, $r^{\prime}=4 \mathrm{~m}$

From the definition of total angular

momentum,

$\vec{L}_{O}=I_{C M} \vec{\omega}+\left(\vec{r}_{C M} \times m \vec{v}_{C M}\right)_{O}$

$$
L_{0}=-\left(\frac{1}{2} \times 5 \times 2^{2} \times 10\right)+(5 \times 30 \times 4)
$$

a
$600 \mathrm{~kg} \mathrm{~m}^{2} / \mathrm{s}$
$\vec{L}_{O}=I_{C M} \omega \times\left(\begin{array}{l} \\ C M\end{array} r_{C M} \sin \theta\right.$
$L_{0}=-\frac{1}{2} m r^{2} \omega+m v_{C M} r^{\prime}$

Pure Rotation

The best choice of axis is the one passing through the fixed axis (hinge).

Free Rotation

The best choice of axis is the one passing through the COM (parallel to the angular acceleration)
$\vec{F}_{\text {ext }}=M \vec{a}_{C M}$

- Particles of the wheel follow a path/loci called cycloid.

The displacement of the COM in one full rotation is $2 \pi r$, where r is the radius of the wheel.

- The instantaneous velocity of the point in contact with the road is zero. (No relative motion/pure rolling)

In the case of pure rolling, $v_{P}=v_{Q}$
If the ground is at rest, $v_{Q}=0$

$$
\Rightarrow v_{P}=v_{C M}-\omega R=0 \quad v_{C M}=\omega R
$$

- Despite the instantaneous contact point being stationary, the wheel continues rolling without slipping due to its ongoing rotational motion.

The centripetal acceleration is same at all points on the periphery equal to $\omega^{2} R$.

When the ground is at rest,

$$
\begin{array}{ll}
v_{C M}<\omega r & \text { Backward Slipping } \\
v_{C M}=\omega r & \text { Pure Rolling }
\end{array}
$$

$$
v_{C M}>\omega r
$$

Forward Slipping

Instantaneous Axis of Rotation concept helps us to treat the case of combined motion as a case of pure rotational motion.

$$
\begin{aligned}
K E_{t o t a l}= & \frac{1}{2} I_{I A O R} \omega^{2}=\frac{1}{2}\left(I_{C M}+m r^{2}\right) \omega^{2} \\
= & \frac{1}{2}\left(\frac{1}{2} m r^{2}+m r^{2}\right) \omega^{2} \\
& K E_{\text {total }}=\frac{3}{4} m v^{2}
\end{aligned}
$$

$$
\begin{aligned}
K E_{\text {total }} & =\frac{1}{2} m v^{2}+\frac{1}{2} I_{C M} \omega^{2} \\
& =\frac{1}{2} m v^{2}+\frac{1}{2}\left(\frac{1}{2} m r^{2} \omega^{2}\right)
\end{aligned}
$$

直 Velocities of various points

The velocities of various points of a circular rigid body in combined motion are as shown.

$$
\text { Pure rolling }(v=\omega r)
$$

A sphere is rolling without slipping on a fixed horizontal plane surface. In the figure, A is point of contact, B is the center of sphere and C is the topmost point. Then,

Solution : Say, $\overrightarrow{\mathrm{V}}_{0}$ is the velocity of the sphere. Then,
$\vec{V}_{A}=0 \quad \vec{V}_{B}=\vec{V}_{0} \quad \vec{V}_{C}=2 \vec{V}_{0}$
$\vec{V}_{C}-\vec{V}_{A}=2 \vec{V}_{0}$
$\vec{V}_{B}-\vec{V}_{C}=\overrightarrow{\mathrm{V}}_{0}-2 \overrightarrow{\mathrm{~V}}_{0}=-\overrightarrow{\mathrm{V}}_{0}$

$\vec{V}_{B}-\vec{V}_{A}=\vec{V}_{0}$
$\vec{V}_{C}-\vec{V}_{A}=2 \vec{V}_{0} \neq 2\left(\vec{V}_{B}-\vec{V}_{C}\right)$
Option a. is incorrect
$\vec{V}_{C}-\vec{V}_{B}=\vec{V}_{0}=\vec{V}_{B}-\vec{V}_{A}$
Option b. is correct
$\left|\vec{V}_{C}-\vec{V}_{A}\right|=2 V_{0}=2\left|\vec{V}_{B}-\vec{V}_{C}\right|$
Option c. is correct
$\left|\vec{V}_{C}-\vec{V}_{A}\right|=2 V_{0} \neq 4\left|\vec{V}_{B}\right|$

$$
\vec{V}_{C}-\vec{V}_{A}=2\left(\vec{V}_{B}-\vec{V}_{C}\right)
$$

$$
\mathrm{b} \quad \vec{V}_{C}-\vec{V}_{B}=\vec{V}_{B}-\vec{V}_{A}
$$

$$
\text { c }\left|\vec{V}_{C}-\vec{V}_{A}\right|=2\left|\vec{V}_{B}-\vec{V}_{C}\right|
$$

$$
\mathrm{d}\left|\vec{V}_{C}-\vec{V}_{A}\right|=4\left|\vec{V}_{B}\right|
$$

$$
\begin{aligned}
K E_{\text {total }} & =K E_{r o t}+K E_{\text {trans }} \\
& =\frac{1}{2} I_{C M} \omega^{2}+\frac{1}{2} m v^{2} \\
& =\frac{1}{2} I_{C M} \omega^{2}+\frac{1}{2} m(\omega r)^{2} \\
& =\frac{1}{2}\left(I_{C M}+m r^{2}\right) \omega^{2} \\
\frac{K E_{\text {rot }}}{K E_{\text {trans }}} & =\frac{I_{C M}}{m r^{2}}
\end{aligned}
$$

- 1 A circular disc of mass 2 kg and radius 10 cm rolls without slipping with a speed $2 \mathrm{~m} / \mathrm{s}$. The total kinetic energy of disc is

Solution :

$$
\begin{aligned}
& K E_{\text {total }}=\frac{1}{2}\left(I_{C M}+m r^{2}\right) \omega^{2} \\
& K E_{\text {total }}=\frac{1}{2}\left(\frac{1}{2} m r^{2}+m r^{2}\right)\left(\frac{v}{r}\right)^{2} \\
& K E_{\text {total }}=\frac{1}{2} \cdot \frac{3}{2} m r^{2}\left(\frac{v^{2}}{r^{2}}\right)=\frac{3}{4} m v^{2} \\
& K E_{\text {total }}=\frac{3}{4}(2)(2)^{2}=6 \mathrm{~J}
\end{aligned}
$$

$K E_{\text {total }}=6 \mathrm{~J}$

\square
c| 2 c

Accelerated Pure Rolling

For the centre of mass of rigid body in pure rolling motion,

$$
\begin{aligned}
a_{C M} & =\frac{d v_{C M}}{d t}=\frac{d(r \omega)}{d t} \\
& =r \frac{d \omega}{d t} \\
a_{C M} & =r \alpha
\end{aligned}
$$

The acceleration of various points of a circular rigid body in combined motion are as shown. (Ground frame)

$$
a=\alpha r \text { (Pure rolling) }
$$

A solid sphere of mass 10 kg is placed on a rough surface having coefficient of friction $\mu=$ 0.1 . A constant force $F=7 \mathrm{~N}$ is applied along a line passing through the centre of the sphere as shown such that it rolls without slipping. The value of frictional force on the sphere is

Solution :

Maximum value of kinetic friction,

$$
f_{\max }=\mu m g=10 \mathrm{~N}
$$

Equation for the translational motion,

$$
F-f=m a
$$

$$
F-f=m \alpha R \quad \ldots(1) \quad(\because \text { Assuming pure rolling })
$$

Equation for the rotational motion,

$$
f=\frac{7}{1+\frac{5}{2}} \quad\left(\because I=\frac{2}{5} M R^{2}\right)
$$

$$
=2 N<f_{\max }
$$

$f R=I \alpha$

$$
F-f=\frac{f m R^{2}}{I} \quad f=\frac{F}{1+\frac{m R^{2}}{I}}
$$

Pure Rolling on an Inclined Plane

For a body rolling w/o slipping on a rough wedge,

$$
u=0 ; \omega_{0}=0
$$

Linear and angular acceleration of the body are constant.
$v=u+a t=a t$
$\omega=\omega_{0}+\alpha t=\alpha t$

At all instances of pure rolling,
$v=\omega R$
$a t=\alpha t R$
$a=\alpha R$

- No force other than friction induces torque in the body about the COM.
- In order to begin (and maintain) pure rolling, frictional force will act in the upward direction of the incline.

A rigid body of mass m, radius R, and moment of inertia I starts pure rolling on a wedge of height h as shown. Find out the time taken by the body to reach the bottom of the inclined plane. K is the radius of gyration of the body about the axis passing through its COM. $\left(I=M K^{2}\right)$

Solution :

Force equation for the Time taken in reaching the bottom rolling body,

$$
m g \sin \theta-f=m a \quad d=u t+\frac{1}{2} a t^{2}
$$

Torque equation for the rolling body,

$$
f R=I \alpha
$$

$$
\frac{h}{\sin \theta}=0+\frac{1}{2} \times \frac{g \sin \theta}{1+\frac{I}{m R^{2}}} \times t^{2}
$$

$$
f=\frac{I a}{R^{2}} \quad(\because a=\alpha R)
$$

$$
m g \sin \theta-\frac{I a}{R^{2}}=m a
$$

$$
t^{2}=\frac{2 h\left(1+\frac{I}{m R^{2}}\right)}{g \sin ^{2} \theta}
$$

$$
a=\frac{g \sin \theta}{1+\frac{I}{m R^{2}}}
$$

$$
t=\frac{1}{\sin \theta} \sqrt{\frac{2 h}{g}\left(1+\frac{K^{2}}{R^{2}}\right)}
$$

A solid ball of radius r rolls down a parabolic path $A B C$ from a height $h(\gg r)$ without slipping as shown in figure. Portion $A B$ of the path is rough while $B C$ is smooth. How high will the ball climb in $B C$?

Solution :
In portion $B C$, friction is absent. Therefore only $K E_{\text {trans }}$ will be converted into potential energy. $K E_{\text {rot }}$ will remain constant.

To find $K E_{\text {trans }}$:

$$
\frac{K E_{r o t}}{K E_{\text {trans }}}=\frac{I_{C M}}{m r^{2}}=\frac{\frac{2}{5} m r^{2}}{m r^{2}}
$$

$$
\frac{K E_{\text {rot }}}{K E_{\text {trans }}}=\frac{2}{5}
$$

$$
K E_{\text {trans }}=\frac{5 m g h}{7}
$$

$$
\frac{K E_{r o t}}{K E_{\text {total }}}=\frac{2}{7}
$$

$$
m g h_{\max }=\frac{5 m g h}{7} \quad\left(\begin{array}{c}
\text { Energy spent } \\
\text { in climbing } \\
\text { the other side }
\end{array}\right)
$$

$$
K E_{\text {rot }}=\frac{2 m g h}{7}
$$

A string is wound around a hollow cylinder of mass 5 kg and radius 0.5 m . If the string is now pulled with a horizontal force of 40 N and the cylinder is rolling without slipping on a frictionless horizontal surface (see figure), then the angular acceleration of the cylinder will be (Neglect the mass and thickness of the string)

Solution : Given, $m=5 \mathrm{~kg}, r=0.5 \mathrm{~m}$
As the cylinder is rolling without slipping, horizontal force F produces torque about the centre as shown.

$$
\begin{aligned}
& \tau=r F \quad(\because r \perp F) \\
& I \alpha=0.5 \times 40 \\
& m r^{2} \alpha=20 \\
& \alpha=\frac{20}{5 \times 0.5^{2}}
\end{aligned}
$$

40 N

G Pure Rolling on an Inclined Plane

- No force other than friction induces torque in the body about the COM.
- In order to begin (and maintain) pure rolling, frictional force will act in the upward direction of the incline.
 ball becomes air borne leaving at an angle of 30° with the horizontal.

Solution :

Since $W_{\text {friction }}=0$, by applying conservation of mechanical energy,

$$
\begin{aligned}
& \left(K E_{T}+K E_{R}\right)_{i}+U_{i}=\left(K E_{T}+K E_{R}\right)_{f}+U_{f} \\
& 0+0+m g h_{1}=\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}+m g h_{2} \\
& g\left(h_{1}-h_{2}\right)=\frac{1}{2} v^{2}+\frac{1}{2} \times \frac{2}{3} R^{2}\left(\frac{v}{R}\right)^{2}
\end{aligned}
$$

$$
g(2-0.2)=\frac{v^{2}}{2}+\frac{v^{2}}{3}
$$

$$
\Rightarrow v^{2}=\frac{6 \times 1.8 \times 10}{5}=21.6
$$

Horizontal range $A B$:

$$
A B=\frac{v^{2} \sin 2 \theta}{g}
$$

$$
=\frac{21.6 \times \sin \left(2 \times 30^{\circ}\right)}{g}
$$

$A B=1.87 \mathrm{~m}$

The sphere is set into combined motion (rolling and slipping)

Frictional force provides linear deceleration and angular acceleration (to initiate pure rolling)

It starts pure rolling and friction diminishes.

A solid cylinder having radius 0.4 m , initially rotating with $\omega_{0}=54 \mathrm{rad} / \mathrm{s}$ is placed on a rough inclined plane with $\theta=37^{\circ}$ having friction coefficient $\mu=0.5$. The time taken by the cylinder to start pure rolling is $(g=$ $10 \mathrm{~m} / \mathrm{s}^{2}$)

Solution :

Linear acceleration of the cylinder,

$$
\begin{aligned}
a & =\mu g \cos \theta+g \sin \theta \\
& =0.5 \times 10 \cos 37^{\circ}+10 \sin 37^{\circ} \\
a & =10 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Angular acceleration of the cylinder,

$$
\alpha=\frac{f_{k} R}{I}=\frac{\mu m g R \cos \theta}{\frac{1}{2} m R^{2}}=\frac{2 \times 0.5 \times 10 \times \frac{4}{5}}{0.4}
$$

$$
\alpha=20 \mathrm{rad} / \mathrm{s}^{2}
$$

Pure rolling will start when,

$$
v=R \omega
$$

$$
a t=R\left(\omega_{0}-\alpha t\right)
$$

$$
10 t=0.4(54-20 t)
$$

$$
25 t=54-20 t
$$

$t=1.2 \mathrm{~s}$

