Welcome to

Straight Lines

Session 01	03
Coordinate Plane	04
Distance Formula	06
Section Formula	16
Area of Triangle	21
Area of Quadrilateral.	23
Area of Polygon	24
Session 02	26
Polar Coordinates	27
Centroid	34
Incentre	39
Session 03	43
Excentre	44
Orthocenter	48
Circumcenter	50
Shifting of Origin	58
Rotation of Axis	63

Return to Top

Session 04	67
Locus	68
Angle of inclination	75
Slope of a line	79
Calculation of Slope	86
Condition for collinearity	89

Session 05 91
Angle between two lines: 92
Intercepts of a Line 98
Slope - Intercept Form 104
Slope Point Form 107
Two Point Form 108
Double Intercept Form 110
Session 06 115
Normal Form 119
Parametric Equation 124
General Equation 134
Slope Intercept Form 135
Intercept Form 136

Session 10
204
Pair of Straight Lines 205
Homogeneous Equation 208
Angle between Pair of Lines 210 for non-homogenous equation

Homogenization

Session $08 \quad 167$

Image of a point 168
Reflection of a point 172
about a Line
Concurrency of Three Lines 180
Session $09 \quad 184$
Family of Line 185
Angle Bisectors between 193 the lines
Angular Bisectors of Acute 195 and Obtuse angles
Bisector of the angle

Session 01

Basics of coordinate

Geometry

Coordinate Plane:

- $1^{\text {st }}$ Quadrant $\quad x>0 ; y>0$
- $2^{\text {nd }}$ Quadrant $x<0 ; y>0$
- $3^{\text {rd }}$ Quadrant $x<0 ; y<0$
- $4^{\text {th }}$ Quadrant $\quad x>0 ; y<0$

Lattice Point- A point whose abscissa and ordinate both are integers

Key Takeaways

Distance Formula:

Distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$

O Key Takeaways

Distance Formula:

Distance between $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$

Using Pythagoras theorem,

$$
\begin{aligned}
& P Q=\sqrt{P R^{2}+Q R^{2}} \\
& \Rightarrow P Q=\sqrt{\left|x_{2}-x_{1}\right|^{2}+\left|y_{2}-y_{1}\right|^{2}}
\end{aligned}
$$

$$
P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

(A) 10 units
(B) $10 \sqrt{2}$ units

$$
5 \sqrt{2} \text { units }
$$

5 units

The distance between points $(-3,4)$ and $(7,-6)$?

$?$
If $\frac{\pi}{2}<\alpha<\pi$, then the distance between the points $(\tan \alpha, 2)$ and $(0,1)$ is:

E0 If $\frac{\pi}{2}<\alpha<\pi$, then the distance between the points $(\tan \alpha, 2)$ and $(0,1)$ is:

Let $P \equiv(\tan \alpha, 2), Q \equiv(0,1)$

$$
\begin{array}{ll}
P Q=\sqrt{(\tan \alpha-0)^{2}+(2-1)^{2}} \\
=\sqrt{\tan ^{2} \alpha+1} \\
=\sqrt{\sec ^{2} \alpha} & \because 1+\tan ^{2} \alpha=\sec ^{2} \alpha \\
=|\sec \alpha| & \because \frac{\pi}{2}<\alpha<\pi
\end{array}
$$

A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :

IIT JEE 2006
$A(3,4)$ is the mid-point of $P Q$
$\frac{a+0}{2}=3 \& \frac{0+b}{2}=4$
$a=6 \& b=8$
\therefore Equation is $\frac{x}{6}+\frac{y}{8}=1$
$4 x+3 y=24$

$?$ A triangle with vertices $(4,0),(-1,-1)$ and $(3,5)$ is:

A triangle with vertices $(4,0),(-1,-1)$ and $(3,5)$ is:

Consider a $\triangle A B C$ with $A(4,0), B(-1,-1)$ and $C(3,5)$

$$
\begin{aligned}
& A B=\sqrt{(4-(-1))^{2}+(0-(-1))^{2}}=\sqrt{26} \\
& B C=\sqrt{(-1-3)^{2}+(-1-5)^{2}}=\sqrt{52} \\
& A C=\sqrt{(4-3)^{2}+(0-5)^{2}}=\sqrt{26} \\
& \text { Here } A B=B C \Rightarrow \triangle A B C \text { is Isosceles } \\
& \text { Also, } A B^{2}+A C^{2}=B C^{2} \Rightarrow \triangle A B C \text { is Right-angled at } A \\
& \therefore \triangle A B C \text { is Right-angled Isosceles }
\end{aligned}
$$

The quadrilateral formed by the points $P(-5,0), Q(-3,-1), R(-2,5)$ and $S(-4,6)$ is a:

A	Rectangle
B	Square
C	
D	Rarallelogram

Given: $P(-5,0), Q(-3,-1), R(-2,5)$ and $S(-4,6)$
Now, finding the distances

$P R=\sqrt{(-5+2)^{2}+(0-5)^{2}}=\sqrt{34}$ units
$Q S=\sqrt{(-3+4)^{2}+(-1-6)^{2}}=\sqrt{50}$ units As the diagonals are unequal so it is a parallelogram.

O Key Takeaways

Section Formula:

Internal Division: $P(x, y)$ divides the line segment joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ internally in the ratio $m: n$.

$$
x=\frac{m x_{2}+n x_{1}}{m+n} ; \quad y=\frac{m y_{2}+n y_{1}}{m+n}
$$

Key Takeaways

Mid-point of a line:
If P is the mid-point of $A B$
$\Rightarrow P$ divides $A B$ in the ratio 1:1

$$
x=\frac{x_{1}+x_{2}}{2} ; \quad y=\frac{y_{1}+y_{2}}{2}
$$

Section Formula:
External Division: $P(x, y)$ divides the line segment joining

$$
A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right) \text { externally in the ratio } m: n .
$$

Let the angular opposite points of a parallelogram be $(3,4)$ and ($1,-2$). Coordinates of remaining two points are $(6,1)$ and (x, y). Compute (x, y) :

Diagonals of a parallelogram bisect each other

$$
\begin{aligned}
& \Rightarrow 0 \equiv\left(\frac{3+1}{2}, \frac{4-2}{2}\right) \\
& \equiv(2,1) \\
& 2=\frac{x+6}{2} ; 1=\frac{y+1}{2} \\
& x=
\end{aligned}
$$

Find the length of the median from vertex A of a triangle $\triangle A B C$ whose vertices are $A(-1,3), B(1,-1)$ and $C(5,1)$
D is the mid-point of $B C$.

$$
D \equiv\left(\frac{1+5}{2}, \frac{-1+1}{2}\right)=(3,0)
$$

Using distance formula,

$$
\begin{aligned}
& A D=\sqrt{(-1-3)^{2}+(3-0)^{2}} \\
& =\sqrt{4^{2}+3^{2}} \\
& =5 \text { units }
\end{aligned}
$$

$\therefore A D=5$ units.

Area of Triangle:

$$
\begin{aligned}
& \text { Area } \left.(\triangle A B C)=\frac{1}{2} \left\lvert\, \begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & x_{1} \\
y_{3}
\end{array}\right.\right) \\
& =\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{1}-x_{1} y_{3}\right| \\
& =\frac{1}{2}\left|x_{1}\left(y_{2}-y_{3}\right)+x_{2}\left(y_{3}-y_{1}\right)+x_{3}\left(y_{1}-y_{2}\right)\right| \\
& =\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right| \\
& B\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Note:
If three points A, B, and C are collinear,

$A r .(\triangle A B C)=0$

$$
\begin{aligned}
& \text { Let } A \equiv\left(x_{1}, y_{1}\right)=(3,2) \\
& B \equiv\left(x_{2}, y_{2}\right)=(11,8) \\
& C \equiv\left(x_{3}, y_{3}\right)=(8,12) \\
& \text { Area of } \triangle A B C=\frac{1}{2}\left|\begin{array}{ccc}
3 & 2 & 1 \\
11 & 8 & 1 \\
8 & 12 & 1
\end{array}\right| \\
& =\frac{1}{2}|\{3(8-12)+11(12-2)+8(2-8)\}| \\
& =\frac{1}{2}|\{-12+110-48\}| \\
& =\frac{1}{2}|\{-12+110-48\}|=25
\end{aligned}
$$

\therefore Area of $\triangle A B C=25$ sq. units

Key Takeaways

Area of Quadrilateral.

- Ar. $(P Q R S)=\frac{1}{2}\left|\begin{array}{llll}x_{1} & x_{2} & x_{3} & x_{4} \\ y_{1} & y_{2} & y_{3} & y_{4}\end{array} y_{1}\right|$

- Ar. (PQRS) $=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}+x_{2} y_{3}-x_{3} y_{2}+x_{3} y_{4}-x_{4} y_{3}+x_{4} y_{1}-x_{1} y_{4}\right|$

Key Takeaways

Area of Polygon.

- Area of polygon $=\frac{1}{2} \left\lvert\, \begin{aligned} & x_{1} \\ & y_{1} \leqslant y_{2}\end{aligned} \quad \cdots\right.$

$$
=\frac{1}{2}\left|x_{1} y_{2}-x_{2} y_{1}+\cdots \cdots+x_{n} y_{1}-x_{1} y_{n}\right|
$$ $(0,-3)$ taken in order is?

Vertices of pentagon $\equiv(1,1),(7,21),(12,2),(7,-3)$ and $(0,-3)$

Area of Pentagon $=\frac{1}{2} \left\lvert\, \begin{aligned} & x_{1} \\ & y_{1}\end{aligned} \sum_{y_{2}}^{x_{2}}<y_{3}\right.$

$\left.\Rightarrow \Delta=\frac{1}{2} \right\rvert\,(14+(14-252)+(-36-14)+(-21)+(3) \mid$
$\Rightarrow \Delta=\frac{1}{2} \times|14-238-50-21+3|$
$=\frac{1}{2} \times|-309+17|$
$\Rightarrow \Delta=146$ sq. units

Session 02

Polar coordinates and

Geometrical centers

Key Takeaways

Polar Coordinates:
$O P=r$ (radius vector)
$\angle X O P=\theta$ (Vectorial angle)
where $\theta \in(-\pi, \pi]$

Polar coordinates of the point $P \equiv(r, \theta)$

Key Takeaways

Example:
To plot the point with polar coordinates $\left(2,-\frac{\pi}{3}\right)$ in the plane :

Key Takeaways

Relation between POLAR and CARTESIAN coordinates:
$P(x, y) \equiv$ Cartesian coordinates
$(r, \theta) \equiv$ Polar coordinates
In $\triangle O M P$,
$\Rightarrow r^{2}=x^{2}+y^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}}$
$\Rightarrow \sin \theta=\frac{y}{r} \Rightarrow y=r \sin \theta$
$\left.\Rightarrow \cos \theta=\frac{y}{r} \Rightarrow x=r \cos \theta\right\}$ Conversion formulas

Also, $\tan \theta=\frac{y}{x} \Rightarrow \theta=\tan ^{-1}\left(\frac{y}{x}\right)$

Key Takeaways

Relation between POLAR and CARTESIAN coordinates:
$y=r \sin \theta$
$x=r \cos \theta$ Conversion formulas
$r=\sqrt{x^{2}+y^{2}} ; \quad \theta=\tan ^{-1}\left(\frac{y}{x}\right) \quad-\pi<\theta \leq \pi$
$\therefore(x, y) \equiv(r \cos \theta, r \sin \theta)$
P can be written in polar coordinates as:

$$
P(r, \theta)=P\left(\sqrt{x^{2}+y^{2}}, \tan ^{-1}\left(\frac{y}{x}\right)\right)
$$

Note:

$$
\pi-\tan ^{-}\left(\frac{y}{x}\right)
$$

$$
-\pi+\tan ^{-}\left(\frac{y}{x}\right)
$$

$-\tan ^{-}\left(\frac{y}{x}\right)$

The polar coordinates of the points whose Cartesian coordinates are $(-3,3)$ is :

$$
B \equiv(-3,3) \equiv(x, y)
$$

Let the polar coordinates of $B(-3,3)$ be $Q(r, \theta)$

$$
\begin{array}{l|l}
r=\sqrt{x^{2}+y^{2}} & \alpha=\tan ^{-1}\left|\frac{y}{x}\right| \\
\Rightarrow r=\sqrt{(-3)^{2}+3^{2}} & \Rightarrow \alpha=\tan ^{-1}\left|\frac{3}{-3}\right| \\
=\sqrt{18} & =\tan ^{-1} 1 \\
=3 \sqrt{2} & =\frac{\pi}{4}
\end{array}
$$

But $B(-3,3)$ lies in $2^{\text {nd }}$ Quadrant
$\Rightarrow \theta=\pi-\alpha=\pi-\frac{\pi}{3}=\frac{3 \pi}{4}$
\therefore In polar coordinates $B(-3,3)=B\left(3 \sqrt{2}, \frac{3 \pi}{4}\right)$

The Cartesian coordinates of the points whose polar coordinates are $\left(5 \sqrt{2}, \frac{\pi}{4}\right)$ is:

$$
\begin{aligned}
& \begin{array}{l}
\left.\begin{array}{l}
y=r \sin \theta \\
x=r \cos \theta
\end{array}\right\} \text { Conversion formulas } \quad r=5 \sqrt{2}, \theta=\frac{\pi}{4} \\
\qquad x=5 \sqrt{2} \cos \frac{\pi}{4}=5 \sqrt{2} \times \frac{1}{\sqrt{2}}=5 \\
\qquad y=5 \sqrt{2} \sin \frac{\pi}{4}=5 \sqrt{2} \times \frac{1}{\sqrt{2}}=5 \\
\therefore \text { In Cartesian coordinates }\left(5 \sqrt{2}, \frac{\pi}{4}\right)=(5,5)
\end{array}
\end{aligned}
$$

Key Takeaways

Centroid

- The point of concurrency of the medians of a triangle.

$$
G \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}\right)
$$

?
Two vertices of a triangle are $(-1,4)$ and $(5,2)$. If $(0,-3)$ is its centroid then third vertex is :

Two vertices of a triangle are $(-1,4)$ and $(5,2)$. If $(0,-3)$ is its centroid then third vertex is :
$P(0,-3)$ is the centroid
$\Rightarrow(0,-3) \equiv\left(\frac{-1+5+x}{3}, \frac{4+2+y}{3}\right)$
$\Rightarrow(0,-3) \equiv\left(\frac{x+4}{3}, \frac{y+6}{3}\right)$

| $\frac{x+4}{3}=0$ | $\begin{array}{l}\frac{y+6}{3}=-3 \\ \Rightarrow x=-4\end{array}$ |
| :--- | :--- |$\Rightarrow y=-15$

\therefore Coordinates of $C \equiv(-4,-15)$

Key Takeaways

Features of Centroid

- Centroid divides the median in the ratio $2: 1$.
- All three medians together divide a triangle into six equal parts.

$$
\begin{array}{r}
x_{1}+x_{5}+x_{6}=x_{2}+x_{3}+x_{4} \\
+\quad x_{1}+x_{2}+x_{3}=x_{4}+x_{5}+x_{6} \\
\hline x_{1}=x_{4}
\end{array}
$$

Let $A(1,0), B(6,2)$ and $C\left(\frac{3}{2}, 6\right)$ be the vertices of a triangle $A B C$. If P is a point inside the triangle $A B C$ such that the triangles $A P C, A P B$ and $B P C$ have equal areas, then the length of the line segment $P Q$, where Q is the point $\left(-\frac{7}{6},-\frac{1}{3}\right)$ is \qquad
Given: P is a point inside the $\triangle A B C$ such that
JEE MAINS 2020
$A r .(\triangle A P C)=A r .(\triangle A P B)=A r .(\triangle B P C)$
$\Rightarrow P$ will be centroid of $\triangle A B C$
$\therefore P \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{2}\right) \equiv\left(\frac{1+6+\frac{3}{2}}{3}, \frac{0+2+6}{3}\right)$
$\Rightarrow P \equiv\left(\frac{17}{6}, \frac{8}{3}\right)$
Given, $Q\left(-\frac{7}{6},-\frac{1}{3}\right)$

$\Rightarrow P Q=\sqrt{\left(\frac{17}{6}-\left(-\frac{7}{6}\right)\right)^{2}+\left(\frac{8}{3}-\left(-\frac{1}{3}\right)\right)^{2}}=\sqrt{16+9}=\sqrt{25}=5$

Key Takeaways

Incentre

- The point of concurrency of internal angle bisectors of a triangle.

$$
I \equiv\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)
$$

(i) Features of Incentre

- Angular bisector divides opposite side in the ratio of other two sides (Angular bisector theorem)

$$
\begin{aligned}
& \frac{B D}{D C}=\frac{c}{b} \\
& \frac{A E}{E C}=\frac{c}{a} \\
& \frac{A F}{F B}=\frac{b}{a}
\end{aligned}
$$

- Ratio in which the incentre divides the internal angle bisectors:

$$
\begin{aligned}
& \frac{A I}{I D}=\frac{b+c}{a} \\
& \frac{B I}{I E}=\frac{c+a}{b} \quad \frac{C I}{I F}=\frac{a+b}{c}
\end{aligned}
$$

- The largest circle contained in a triangle is called the Inscribed circle or the incircle of the triangle.

F If the vertices of a triangle are $(4,-2),(-2,4)$ and $(5,5)$, then find its incentre.

$$
I \equiv\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}\right)
$$

Using distance formula

$$
\begin{aligned}
a & =\sqrt{(5+2)^{2}+(5-4)^{2}}=\sqrt{50}=5 \sqrt{2} \\
b & =\sqrt{(5-4)^{2}+(5+2)^{2}}=\sqrt{50}=5 \sqrt{2} \\
c & =\sqrt{(4+2)^{2}+(-2-4)^{2}}=\sqrt{72}=6 \sqrt{2} \\
& \equiv\left(\frac{4 \times 5 \sqrt{2}+(-2) \times 5 \sqrt{2}+5 \times 6 \sqrt{2}}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}, \frac{-2 \times 5 \sqrt{2}+4 \times 5 \sqrt{2}+5 \times 6 \sqrt{2}}{5 \sqrt{2}+5 \sqrt{2}+6 \sqrt{2}}\right) \\
& \equiv\left(\frac{20 \sqrt{2}-10 \sqrt{2}+30 \sqrt{2}}{16 \sqrt{2}}, \frac{-10 \sqrt{2}+20 \sqrt{2}+30 \sqrt{2}}{16 \sqrt{2}}\right) \equiv\left(\frac{40 \sqrt{2}}{16 \sqrt{2}}, \frac{40 \sqrt{2}}{16 \sqrt{2}}\right) \\
& \equiv\left(\frac{5}{2}, \frac{5}{2}\right) \quad \therefore \text { Incentre } \equiv\left(\frac{5}{2}, \frac{5}{2}\right)
\end{aligned}
$$

Session 03

Transformation and

Rotation of Axis

Excentre:

$$
I_{1} \equiv\left(\frac{-a x_{1}+b x_{2}+c x_{3}}{-a+b+c}, \frac{-a y_{1}+b y_{2}+c y_{3}}{-a+b+c}\right)
$$

Excentre:

Excentre:

If the coordinates of the vertices of the triangle $A B C$ are $(4,0),(2,8)$, $(0,-6)$ respectively then find excentre opposite to vertex A.

Steps for finding a, b, c;
By using distance formula

$$
\begin{aligned}
& B C=a=\sqrt{(0-2)^{2}+(-6-8)^{2}}=10 \sqrt{2} \\
& A C=b=\sqrt{(0-4)^{2}+(-6-0)^{2}}=2 \sqrt{13} \\
& A B=c=\sqrt{(2-4)^{2}+(8-0)^{2}}=2 \sqrt{17} \\
& a=10 \sqrt{2}, b=2 \sqrt{13}, c=2 \sqrt{17}
\end{aligned}
$$

Hence, excentre opposite to vertex A

$$
\begin{aligned}
\because I_{1} & =\left(\frac{-a x_{1}+b x_{2}+c x_{3}}{-a+b+c}, \frac{-a y_{1}+b y_{2}+c y_{3}}{-a+b+c}\right) \\
& =\left(\frac{-10 \sqrt{2}(4)+2 \sqrt{13}(2)+2 \sqrt{17}(0)}{-10 \sqrt{2}+2 \sqrt{13}+2 \sqrt{17}}, \frac{-10 \sqrt{2}(0)+2 \sqrt{13}(8)+2 \sqrt{17}(-6)}{-10 \sqrt{2}+2 \sqrt{13}+2 \sqrt{17}}\right) \\
& =\left(\frac{-20 \sqrt{2}+2 \sqrt{13}}{-5 \sqrt{2}+\sqrt{13}+\sqrt{17}}, \frac{8 \sqrt{13}-6 \sqrt{17}}{-5 \sqrt{2}+\sqrt{13}+\sqrt{17}}\right)
\end{aligned}
$$

Orthocenter:
The point of concurrency of altitudes of a triangle

O Key Takeaways

Feature of Orthocenter:

If $\triangle A B C$ is a right angled triangle, then, orthocenter coincides with the right angular vertex.

Circumcenter:

The point of concurrency of perpendicular side bisectors of a triangle.

The circle circumscribing the vertices of the triangle is called the Circumcircle of the triangle.

Feature of Circumcenter:
In a right angled triangle, circumcenter lies on the mid-point of the hypotenuse.

©

Feature of Circumcenter:

In a triangle, Circumcenter 'S', Centroid ' G ' and Orthocenter ' H ' are collinear. G divides $S H$ in the ratio 1: 2

$$
S G: G H=1: 2 \text { i.e. } \frac{S G}{G H}=\frac{1}{2}
$$

Circumcentre
Centroid
Orthocentre $B(3,3)$ respectively. If C is the circumcenter of this triangle , then the radius of the circle having line segment $A C$ as diameter is:

Let the orthocenter and centroid of a triangle be $A(-3,5)$ and $B(3,3)$ respectively. If C is the circumcenter of this triangle, then the radius of the circle having line segment $A C$ as diameter is:

Given $A \equiv$ Orthocentre $(-3,5)$
$B \equiv$ Centroid $(3,3)$
$C \equiv$ Circumcentre

Orthocentre
Centroid
Circumcentre

Let the orthocenter and centroid of a triangle be $A(-3,5)$ and $B(3,3)$ respectively. If C is the circumcenter of this triangle, then the radius of the circle having line segment $A C$ as diameter is:

Adding 1 both sides:
$\Rightarrow \frac{B C}{A B}+1=\frac{1}{2}+1=\frac{3}{2}$
$\Rightarrow \frac{B C+A B}{A B}=\frac{3}{2} \Rightarrow \frac{A C}{A B}=\frac{3}{2}$
$\Rightarrow|A B|=\sqrt{(3+3)^{2}+(3-5)^{2}}=\sqrt{40}=2 \sqrt{10}$

Let the orthocenter and centroid of a triangle be $A(-3,5)$ and $B(3,3)$ respectively. If C is the circumcenter of this triangle, then the radius of the circle having line segment $A C$ as diameter is:

$\Rightarrow A C=\frac{3}{2} A B \Rightarrow A C=\frac{3}{2} 2 \sqrt{10}=3 \sqrt{10}$
\therefore Radius of the circle r with $A C$ as diameter

$r=\frac{A C}{2}=\frac{3 \sqrt{10}}{2}=3 \sqrt{\frac{5}{2}}$

Shifting of Origin:

OX \& OY \rightarrow Original Coordinate Axes $O^{\prime} X^{\prime} \& O^{\prime} Y^{\prime} \rightarrow$ Shifted Coordinate Axes

$P(x, y)$ coordinate of point P with respect to 0 . $P(X, Y)$ coordinate of point P with respect to O^{\prime}.

Key Takeaways

Shifting of Origin:
Now, $O M=O L+L M$ $x=h+X$

And, $\mathrm{PM}=P N+N M$

$$
y=k+Y
$$

$P(x, y)=P(X+h, Y+k)$

Key Takeaways

Shifting of Origin:

When the origin is shifted at the point (h, k) then substitute $x=X+h$, $y=Y+k$.

The coordinates of the old origin referred to the new axes are $(-h,-k)$.

At what point the origin be shifted if the coordinates of a point $(4,5)$, becomes $(-3,9)$.
 $(4,5)$, becomes $(-3,9)$.

Let origin be shifted to $O^{\prime}(h, k)$
Original coordinates $=(4,5)$
Shifted coordinates $=(-3,9) \Rightarrow X=-3, Y=9$

$$
\begin{array}{ll}
x=X+h & y=Y+k \\
\Rightarrow 4=-3+h & \Rightarrow 5=9+k \\
\Rightarrow h=7 & \Rightarrow k=-4
\end{array}
$$

Hence the origin is to be shifted to $(7,-4)$

0
 Key Takeaways

Rotation of Axis:

OX \& OY \rightarrow Original Coordinate Axes $O^{\prime} X^{\prime} \& O^{\prime} Y^{\prime} \rightarrow$ Rotated Coordinate Axes
$P(x, y)$ coordinate of point P with respect to 0 .
$P(X, Y)$ coordinate of point P with respect to O^{\prime}.

	\boldsymbol{X}	\boldsymbol{Y}
x	$\cos \theta$	$\sin \theta$
y	$-\sin \theta$	$\cos \theta$

K Key Takeaways

Rotation of Axis:

$$
x=X \cos \theta-Y \sin \theta
$$

$$
y=X \sin \theta+Y \cos \theta
$$

$$
X=x \cos \theta+y \sin \theta
$$

$$
Y=-x \sin \theta+y \cos \theta
$$

 direction then the equation $3 x^{2}+3 y^{2}+2 x y=2$ transforms to:
 direction then the equation $3 x^{2}+3 y^{2}+2 x y=2$ transforms to:

The axes are turned through an angle 45°

$$
\begin{array}{ll}
\theta=45^{0} & \\
x=X \cos \theta-Y \sin \theta & y=X \sin \theta+Y \cos \theta \\
\Rightarrow \frac{X}{\sqrt{2}}-\frac{Y}{\sqrt{2}}=x & \Rightarrow \frac{X}{\sqrt{2}}+\frac{Y}{\sqrt{2}}=y
\end{array}
$$

B

$$
2 X^{2}+Y^{2}=1
$$

Session 04

Locus \& slope concept and
its applications

Key Takeaways

Locus:

- When a point moves in a plane under certain geometric conditions, the point traces out a path. This path of the moving point is called its locus.

Example: Locus of all the points equidistant from a fixed point on a plane is a Circle.

Key Takeaways

To find Locus of a point

- Let (h, k) be the coordinate of the moving point say P.
- Write the given condition in mathematical form involving (h, k).
- Transformation variable(s) if any.
- Replace h by x and k by y.
- Equation obtained is the locus of the point.

The ends of the hypotenuse of a right-angled triangle are $(6,0)$ and $(0,6)$, then the locus of the third vertex is:

The ends of the hypotenuse of a right-angled triangle are $(6,0)$ and $(0,6)$, then the locus of the third vertex is:

Let $P(h, k)$ be the third vertex of $\triangle P A B$
In $\triangle P A B$, using Pythagoras theorem:
$|A B|^{2}=|A P|^{2}+|B P|^{2}$
$\Rightarrow(6-0)^{2}+(0-6)^{2}=(h-6)^{2}+(k-0)^{2}+(h-0)^{2}+(k-6)^{2}$
$\Rightarrow 36+36=h^{2}+36-12 h+k^{2}+h^{2}+k^{2}+36-12 k$
$\Rightarrow 2 h^{2}+2 k^{2}-12 h-12 k=0$
$\Rightarrow h^{2}+k^{2}-6 h-6 k=0$
\therefore Locus of (h, k) is : $x^{2}+y^{2}-6 x-6 y=0$

$$
x^{2}+y^{2}-6 x-6 y=0
$$

B $x^{2}+y^{2}-6 x-6 y=0$

A rod of length l slides with its ends on two perpendicular lines, then the locus of its midpoint is :
a) $x^{2}+y^{2}=4 l^{2}$
b) $4 x^{2}+4 y^{2}=l^{2}$
c) $x^{2}+y^{2}=l^{2}$
d) $x^{2}+4 y^{2}=4 l^{2}$

Solution:

Let $A B$ be a rod of length l \& coordinates of A and B be ($a, 0$) and ($0, b$) respectively, Let $P(h, k)$ be locus of the mid point of the $\operatorname{rod} A B$
$\Rightarrow h=\frac{a+0}{2} \& k=\frac{0+b}{2}$
$\Rightarrow h=\frac{a}{2} \& k=\frac{b}{2} \Rightarrow a=2 h \& b=2 k$

In $\triangle O A B$, Using Pythagoras theorem $\Rightarrow A B^{2}=O A^{2}+O B^{2}$
$\Rightarrow l^{2}=a^{2}+b^{2} \Rightarrow l^{2}=(2 h)^{2}+(2 k)^{2}$
\therefore Locus of (h, k) is : $4 x^{2}+4 y^{2}=l^{2}$
? The locus of the point $\left(t^{2}+t+1, t^{2}-t+1\right), t \in \mathbb{R}$ is :

$$
\begin{aligned}
& \text { (A) } x^{2}+y^{2}+2 x y+2 y+4=0 \\
& \text { (B) } x^{2}+y^{2}-2 x y-2 x-2 y+4=0 \\
& \text { (C) } x^{2}+y^{2}+2 x y+2 x+2 y+4=0 \\
& \text { (D) } x^{2}+y^{2}-2 x y+2 x+4=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Let }(h, k) \equiv\left(t^{2}+t+1, t^{2}-t+1\right) \\
& \Rightarrow h=t^{2}+t+1, k=t^{2}-t+1 \\
& \Rightarrow h-k=2 t \Rightarrow t=\frac{h-k}{2} \\
& \Rightarrow h+k=2 t^{2}+2 \Rightarrow h+k-2=2 t^{2} \\
& \Rightarrow h+k-2=2\left(\frac{h-k}{2}\right)^{2} \\
& \Rightarrow h+k-2=2 \times \frac{h^{2}+k^{2}-2 h k}{4} \\
& \Rightarrow h^{2}+k^{2}-2 h k-2 h-2 k+4=0 \\
& \therefore \text { Locus of }(h, k) \text { is }: x^{2}+y^{2}-2 x y-2 x-2 y+4=0
\end{aligned}
$$

$$
x^{2}+y^{2}+2 x y+2 y+4=0
$$

$$
x^{2}+y^{2}-2 x y-2 x-2 y+4=0
$$

```
\mp@subsup{x}{}{2}+\mp@subsup{y}{}{2}+2xy+2x+2y+4=0
```


Key Takeaways

Angle of inclination

- Angle ' θ^{\prime} which a line makes with positive direction of x-axis measured in the anticlockwise sense.

Note

- Parallel lines have same angle of inclination.

Key Takeaways

Note

- Angle of inclination of a line parallel or coincident with X - axis is 0 .

Key Takeaways

Note

- Angle of inclination of a line parallel or coincident with $Y-a x$ is is 90°.

Key Takeaways

Slope of a line

- If the angle of inclination of a given line ' l ' is θ then, the slope ' m ' of that line is given by $\tan \theta$.

Examples

Key Takeaways

Note:

- Two parallel lines have same slope.

Key Takeaways

Note:

- Two parallel lines have same slope $(\theta=0)$.

Key Takeaways

Note:

- $\frac{\pi}{2}<\theta<\pi$.

Find the angle of inclination of the line whose slope is $-\frac{1}{\sqrt{3}}$:

Given: Slope of the line ' m '
$\Rightarrow \tan \theta=-\frac{1}{\sqrt{3}}$
$\Rightarrow \tan \theta=-\tan \frac{\pi}{6}$
$\Rightarrow \tan \theta=\tan \left(\pi-\frac{\pi}{6}\right)$
$\Rightarrow \theta=\frac{5 \pi}{6}$
Hence angle of inclination (θ) of the line 150°

Key Takeaways

Calculation of Slope

- In $\triangle P Q N$,

$$
\begin{aligned}
& \angle Q P N=\theta \\
& \Rightarrow \text { Slope of } P Q=\tan \theta \\
& \Rightarrow \tan \theta=\frac{Q N}{P N} \\
& \Rightarrow \tan \theta=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& \therefore m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \text { OR } \frac{y_{1}-y_{2}}{x_{1}-x_{2}}
\end{aligned}
$$

The slope of a line joining the points $(2,1) \&(0,-3)$ is

Let $(2,1)=\left(x_{1}, y_{1}\right) \&(0,-3)=\left(x_{2}, y_{2}\right)$
$\Rightarrow m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\Rightarrow m=\frac{-3-1}{0-2}$

$$
\Rightarrow m=-\frac{4}{-2}
$$

$$
\Rightarrow m=2
$$

(i) Condition for collinearity

Find x if the points $A(2,3), B(1,1), C(x, 3 x)$ are collinear.

Solution:

Given: $A(2,3), B(1,1), C(x, 3 x)$ are collinear

\Rightarrow Slope of $A B=$ Slope of $B C$
$\Rightarrow \frac{1-3}{1-2}=\frac{3 x-1}{x-1}$
$\Rightarrow \frac{-2}{-1}=\frac{3 x-1}{x-1}$
$\Rightarrow 2(x-1)=(3 x-1)$
$\Rightarrow 2 x-2=3 x-1 \quad \Rightarrow x=-1$

Session 05

Various Forms of Equation of Straight Line

Angle between two lines:

Key Takeaways

Angle between two lines:

$$
\begin{aligned}
& m_{1}=\tan \theta_{1} \\
& m_{2}=\tan \theta_{2} \\
& \text { Also, } \theta_{1}=\theta+\theta_{2} \\
& \Rightarrow \theta=\theta_{1}-\theta_{2} \\
& \Rightarrow \tan \theta=\tan \left(\theta_{1}-\theta_{2}\right) \\
& \Rightarrow \tan \theta=\frac{\tan \theta_{1}-\tan \theta_{2}}{1+\tan \theta_{1} \tan \theta_{2}} \\
& \Rightarrow \tan \theta=\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}
\end{aligned}
$$

Key Takeaways

Angle between two lines:
\therefore Acute angle θ between two lines:
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$

Case 1:	Case 2:	
$l_{1} \\| l_{2}$	$l_{1} \perp l_{2}$	
$\theta=0^{\circ}$	$\theta=90^{\circ}$	
$\tan \theta=0$	$\cot \theta=0$	
$\therefore m_{1}=m_{2}$	$\therefore m_{1} m_{2}=-1$	

The angle between the two lines is 45° and the slope of one of them is $\frac{1}{2}$, then the slope of the other line is :

The angle between the two lines is 45° and the slope of one of them is $\frac{1}{2}$, then the slope of the other line is :

Given, $\theta=45^{\circ} \& m_{1}=\frac{1}{2}$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right| \Rightarrow \tan 45^{\circ}=\left|\frac{\frac{1}{2}-m_{2}}{1+\frac{1}{2} \cdot m_{2}}\right|$
$\Rightarrow 1= \pm\left(\frac{1-2 m_{2}}{2+m_{2}}\right)$

Case I
$1=\left(\frac{1-2 m_{2}}{2+m_{2}}\right)$
$\Rightarrow 2+m_{2}=1-2 m_{2}$
$\therefore m_{2}=-\frac{1}{3}$

Case II

$$
\begin{aligned}
& 1=-\left(\frac{1-2 m_{2}}{2+m_{2}}\right) \\
& \Rightarrow 2+m_{2}=-1+2 m_{2} \\
& \therefore m_{2}=3
\end{aligned}
$$

$$
3,-\frac{1}{3}
$$

The angle between the two lines is 60° and the slope of one of them is $\frac{1}{\sqrt{3}}$, then the slope of the other line is :

Given: $\theta=60^{\circ}, m_{1}=\frac{1}{\sqrt{3}}$

$$
\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|
$$

$\Rightarrow \tan 60^{\circ}=\left|\frac{\frac{1}{\sqrt{3}}-m_{2}}{1+\frac{1}{\sqrt{3}} m_{2}}\right|$
$\Rightarrow \sqrt{3}= \pm\left(\frac{1-\sqrt{3} m_{2}}{\sqrt{3}+m_{2}}\right)$

Case I

$$
\begin{aligned}
& \sqrt{3}=\frac{1-\sqrt{3} m_{2}}{\sqrt{3}+m_{2}} \\
& \Rightarrow 3+\sqrt{3} m_{2}=1-\sqrt{3} m_{2} \\
& \Rightarrow m_{2}=-\frac{1}{\sqrt{3}}
\end{aligned}
$$

Case II

$$
-\sqrt{3}=\frac{1-\sqrt{3} m_{2}}{\sqrt{3}+m_{2}}
$$

$$
\Rightarrow-3-\sqrt{3} m_{2}=1-\sqrt{3} m_{2}
$$

$$
\Rightarrow m_{2} \text { is undefined. }
$$

$$
\therefore m_{2}=-\frac{1}{\sqrt{3}}
$$

Key Takeaways

Intercepts of a Line
The intercept of a line is the point at which it crosses either the x or y axis .

Key Takeaways

Eqn. of line parallel to X - axis

Key Takeaways

Eqn. of line parallel to Y - axis

Draw the graph of :
(i) $x=5$ (ii) $y=-1$
A. $x=5$
D. $y=-1$

$$
y=-3
$$

$$
\text { B } \quad x=-4
$$

$$
x=4
$$

$$
y=3
$$

Equation of a line parallel to y-axis and passing through $(-4,3)$ is :

Given: Line is parallel to y - axis
i.e., its equation is $x=a$

Also, line is passing through $(-4,3)$
\therefore Equation of the line is $x=-4$.

Key Takeaways

Slope - Intercept Form
Equation:

Slope of $P A=$ Slope of $l=m$

$$
\Rightarrow \frac{y-c}{x-0}=m
$$

$$
y \text {-intercept } \longleftarrow c
$$

$$
\underbrace{y=m x+c}_{\substack{\text { Slope }}} \rightarrow \text { Intercept }
$$

Key Takeaways

Slope - Intercept Form
Note: $y=m x+c$
Note: $y=m x$

Find the equation of a line which cuts off an intercept of 5 units on negative direction of y-axis and makes an angle of 120° with the positive direction of x - axis.

Given: y - intercept ' $c^{\prime}=-5$
Also, $\theta=120^{\circ}$
$\therefore m=\tan \theta=\tan 120^{\circ}$
$\Rightarrow m=-\sqrt{3}$
Hence, using Slope-intercept form :
$l: y=m x+c$

$\Rightarrow y=-\sqrt{3} x-5$
$\Rightarrow y+\sqrt{3} x+5=0$

Key Takeaways

Slope Point Form

Equation:
Slope of $P Q=m=\frac{y-y_{1}}{x-x_{1}}$

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Key Takeaways

Two Point Form

Equation:

Slope of $P A=$ Slope of $A B$

$$
\frac{y-y_{1}}{x-x_{1}}=\frac{y_{1}-y_{2}}{x_{1}-x_{2}}
$$

$$
y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

Key Takeaways

Two Point Form

Note:
Equation of a line passing through $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
y-y_{1}=\left(\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\right)\left(x-x_{1}\right)
$$

Or

$$
\left|\begin{array}{ccc}
x & y & 1 \\
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1
\end{array}\right|=0
$$

Key Takeaways

Double Intercept Form

Equation:
Slope of $P A=$ Slope of $A B$

$$
\begin{aligned}
& \frac{y-0}{x-a}=\frac{0-b}{a-0} \\
& y=-\frac{b}{a}(x-a) \\
& \frac{b x}{a}+y=b \\
& \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$$

$?$
Area of a triangle formed by the axes and the line $e^{-\alpha} x+e^{\alpha} y=2$ in square units is :

Area of a triangle formed by the axes and the line $e^{-\alpha} x+e^{\alpha} y=2$ in square units is :

Given: $e^{-\alpha} x+e^{\alpha} y=2$
Converting the equation into double intercept form :
$\frac{x}{2 e^{\alpha}}+\frac{y}{2 e^{-\alpha}}=1$
Area of $\triangle O A B=\frac{1}{2} \times O A \times O B$

$$
\begin{aligned}
& =\frac{1}{2} \times 2 \mathrm{e}^{\alpha} \times 2 \mathrm{e}^{-\alpha} \\
& =2
\end{aligned}
$$

\therefore Area $=2$ sq. units

Find the equation of the line which passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14 .

Let the equation of line be : $\frac{x}{a}+\frac{y}{b}=1$

This passes through $(3,4)$
$\therefore \frac{3}{a}+\frac{4}{b}=1 \quad \cdots(i)$

Given : $a+b=14 \Rightarrow b=14-a$

Putting $b=14-a$ in $(i) \Rightarrow \frac{3}{a}+\frac{4}{14-a}=1$

$$
\begin{aligned}
& \Rightarrow a^{2}-13 a+42=0 \\
& \Rightarrow(a-7)(a-6)=0
\end{aligned}
$$

Find the equation of the line which passes through the point $(3,4)$ and the sum of its intercepts on the axes is 14.

$$
\begin{array}{lll}
\therefore \frac{3}{a}+\frac{4}{b}=1 & \cdots(i) & \\
\Rightarrow(a-7)(a-6)=0 & \\
\Rightarrow a=7 & \Rightarrow a=6 \\
& b=14-a & b=14-a \\
\Rightarrow b=7 & \Rightarrow b=8
\end{array}
$$

Putting values of a and b in (i)

$$
\begin{array}{lll}
\frac{x}{7}+\frac{y}{7}=1 & \text { And } & \frac{x}{6}+\frac{y}{8}=1 \\
x+y=7 & \text { And } & 4 x+3 y=24
\end{array}
$$

Session 06

Normal form \& parametric
form of line

A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :

A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is :

IIT JEE 2006
$A(3,4)$ is the mid-point of $P Q$
$\frac{a+0}{2}=3 \& \frac{0+b}{2}=4$
$a=6 \& b=8$
\therefore Equation is $\frac{x}{6}+\frac{y}{8}=1$
$4 x+3 y=24$

A straight line through the point $A(3,4)$ is such that its intercept between the axes is bisected at A. Its equation is:

IIT JEE 2006

Key Takeaways

Normal Form

Equation: Using Intercept form,

$$
\text { Eqn. of } l \equiv \frac{x}{O A}+\frac{y}{O B}=1
$$

In $\triangle O A Q$

$$
\cos \alpha=\frac{p}{O A} \quad \Rightarrow O A=\frac{p}{\cos \alpha}
$$

Similarly, In $\triangle O B Q$

$$
\begin{array}{ll}
\cos (\angle B O Q)=\frac{O Q}{O B} & \Rightarrow \cos \left(\frac{\pi}{2}-\alpha\right)=\frac{O Q}{O B} \\
\Rightarrow \sin \alpha=\frac{p}{O B} & \Rightarrow O B=\frac{p}{\sin \alpha}
\end{array}
$$

Key Takeaways

Normal Form

$$
\begin{aligned}
& \frac{x}{O A}+\frac{y}{O B}=1 \\
& O A=\frac{p}{\cos \alpha} \\
& O B=\frac{p}{\sin \alpha} \\
& \Rightarrow \frac{x}{p} \times \cos \alpha+\frac{y}{p} \times \sin \alpha=1 \\
& x \cos \alpha+y \sin \alpha=p
\end{aligned}
$$

A line forms a triangle of area $54 \sqrt{3}$ sq. units with the coordinate axes. If the perpendicular drawn from the origin to the line makes an angle of 60° with the positive x-axis, then the equation of the line is :

Now, equation of l in Normal Form is :

$$
\begin{aligned}
& x \cos \alpha+y \sin \alpha=p \\
& \Rightarrow x \cos 60^{\circ}+y \sin 60^{\circ}=p \\
& \Rightarrow \frac{x}{2}+\frac{\sqrt{3}}{2} y=p \\
& \Rightarrow x+\sqrt{3} y=2 p \\
& \Rightarrow \frac{x}{2 p}+\frac{\sqrt{3} y}{2 p}=1 \\
& \Rightarrow \frac{x}{2 p}+\frac{y}{\left(\frac{2 p}{\sqrt{3}}\right)}=1
\end{aligned}
$$

A line forms a triangle of area $54 \sqrt{3}$ sq. units with the coordinate axes. If the perpendicular drawn from the origin to the line makes an angle of 60° with the positive x-axis, then the equation of the line is :

$$
\Rightarrow \frac{x}{2 p}+\frac{y}{\left(\frac{2 p}{\sqrt{3}}\right)}=1
$$

Given : Area $=54 \sqrt{3}$ sq. units
$\Rightarrow \frac{1}{2} \times 2 p \times \frac{2 p}{\sqrt{3}}=54 \sqrt{3}$
$\Rightarrow p^{2}=81 \Rightarrow p= \pm 9$
$\Rightarrow p=9 \because$ length is always positive

Now equation of line is :
$x+\sqrt{3} y=2 p$

$$
\Rightarrow x+\sqrt{3} y=18
$$

The length of the perpendicular from the origin to a line is 7 and the line makes an angle of 150° with the positive direction of y-axis. Find the equation of the line.

Given : $p=7$

$$
l \equiv x \cos \alpha+y \sin \alpha=p
$$

$$
\alpha=30^{\circ}
$$

$$
\Rightarrow x \cdot \frac{\sqrt{3}}{2}+y \cdot \frac{1}{2}=7
$$

$$
\therefore \sqrt{3} x+y=14
$$

Key Takeaways

Parametric Equation
In $\triangle P Q N$,
$\cos \theta=\frac{Q N}{P Q}=\frac{x-x_{1}}{r}$
$\Rightarrow r=\frac{x-x_{1}}{\cos \theta}$
$\sin \theta=\frac{P N}{P Q}=\frac{y-y_{1}}{r}$
$\Rightarrow r=\frac{y-y_{1}}{\sin \theta}$

$$
\text { Thus, } \frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

Key Takeaways

Note

$$
\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r
$$

$x=x_{1}+r \cos \theta$ and $y=y_{1}+r \sin \theta$ represent coordinates of any point on the line at a distance r from $\left(x_{1}, y_{1}\right)$.

At a given distance r from $\left(x_{1}, y_{1}\right)$ on the line $\frac{x-x_{1}}{\cos \theta}=\frac{y-y_{1}}{\sin \theta}=r$ there will be two points i.e., $\left(x_{1}+r \cos \theta, y_{1}+r \sin \theta\right)$ and $\left(x_{1}-r \cos \theta, y_{1}-r \sin \theta\right)$.

A straight line is drawn through the point $P(2,3)$ and is inclined at an angle of 30° with the x-axis in anti-clockwise direction. Find the equation of the line and the coordinates of two points on it at a distance of 4 units from P.

Here $\left(x_{1}, y_{1}\right)=(2,3), \theta=30^{\circ}$
The equation of the line is :

$$
\begin{aligned}
& \frac{x-2}{\cos 30^{\circ}}=\frac{y-3}{\sin 30^{\circ}} \\
& \Rightarrow \frac{x-2}{\frac{\sqrt{3}}{2}}=\frac{y-3}{\frac{1}{2}} \\
& \Rightarrow x-2=\sqrt{3}(y-3) \\
& \Rightarrow x-\sqrt{3} y=2-3 \sqrt{3}
\end{aligned}
$$

Points on the line at a distance 4 from (2,3):
$\left(x_{1} \pm r \cos \theta, y_{1} \pm r \sin \theta\right)$

A straight line is drawn through the point $P(2,3)$ and is inclined at an angle of 30° with the x-axis in the anti-clockwise direction. Find the equation of the line and the coordinates of two points on it at a distance of 4 units from P.

$$
\begin{aligned}
& \left(x_{1} \pm r \cos \theta, y_{1} \pm r \sin \theta\right) \\
\Rightarrow & \left(2 \pm 4 \cos 30^{\circ}, 3 \pm 4 \sin 30^{\circ}\right) \\
\Rightarrow & (2 \pm 2 \sqrt{3}, 3 \pm 2) \\
\Rightarrow & (2+2 \sqrt{3}, 5) \text { and }(2-2 \sqrt{3}, 1)
\end{aligned}
$$

 along the line $2 x-2 y+5=0$ is :

A	$\sqrt{2}$
B	$2 \sqrt{2}$
C	$3 \sqrt{2}$
D	$4 \sqrt{2}$

The distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along the line $2 x-2 y+5=0$ is :

Given, $l_{1}: 2 x-2 y+5=0$
$\Rightarrow 2 y=2 x+5$
$\Rightarrow y=x+\frac{5}{2}$
\therefore Slope of $l_{1}=1 \Rightarrow \tan \theta=1$
$\therefore l_{2}$ is passing through $A(2,3)$ with slope $=1$
\therefore Equation of $l_{2}: \frac{x-2}{\cos \frac{\pi}{4}}=\frac{y-3}{\sin \frac{\pi}{4}}=r$
Hence, any point lying on l_{2} will have coordinates,
$\left(2+r \cos \frac{\pi}{4}, 3+r \sin \frac{\pi}{4}\right)$
i.e. $\left(2+\frac{r}{\sqrt{2}}, 3+\frac{r}{\sqrt{2}}\right)$

The distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along the line $2 x-2 y+5=0$ is :

This point lies on the line $l: 2 x-3 y+9=0$
$\therefore 2\left(2+\frac{r}{\sqrt{2}}\right)-3\left(3+\frac{r}{\sqrt{2}}\right)+9=0$
$\Rightarrow 4+\frac{2 r}{\sqrt{2}}-9-\frac{3 r}{\sqrt{2}}+9=0$
$\Rightarrow \frac{r}{\sqrt{2}}=4$

\therefore Distance of $(2,3)$ from the line $2 x-3 y+9=0$ along $2 x-2 y+5=0$ is $4 \sqrt{2}$ units.

The distance of the point $(2,3)$ from the line $2 x-3 y+9=0$ measured along the line $2 x-2 y+5=0$ is :

Two adjacent vertices of a square are $(1,2)$ and $(-2,6)$.
Find the coordinates of other vertices.

$$
\begin{aligned}
A B & =\sqrt{(6-2)^{2}+(-2-1)^{2}} \\
& =\sqrt{16+9} \\
& =\sqrt{25}=5 \text { units. }
\end{aligned}
$$

$$
m_{A B}=\frac{6-2}{-2-1}=-\frac{4}{3}
$$

Now, $D D^{\prime} \perp A B \Rightarrow$ Slope of $D D^{\prime}=\frac{3}{4}$

$$
\Rightarrow \tan \theta=\frac{3}{4}
$$

$\Rightarrow \sin \theta=\frac{3}{5} ; \cos \theta=\frac{4}{5}$

Two adjacent vertices of a square are $(1,2)$ and $(-2,6)$.
Find the coordinates of other vertices.
\therefore Coordinates of C and C^{\prime}

$$
\begin{aligned}
& \equiv(-2 \pm 5 \cos \theta, 6 \pm 5 \sin \theta) \\
& \equiv\left(-2 \pm 5 \times \frac{4}{5}, 6 \pm 5 \times \frac{3}{5}\right) \\
& \equiv(-2 \pm 4,6 \pm 3) \\
& C(2,9) \text { and } C^{\prime}(-6,3)
\end{aligned}
$$

\therefore Coordinates of D and D^{\prime}

$$
\begin{aligned}
& \equiv(1 \pm 5 \cos \theta, 2 \pm 5 \sin \theta) \\
& \equiv\left(1 \pm 5 \times \frac{4}{5}, 2 \pm 5 \times \frac{3}{5}\right) \\
& \equiv(1 \pm 4,2 \pm 3) \\
& D(5,5) \text { and } D^{\prime}(-3,-1)
\end{aligned}
$$

Key Takeaways

General Equation:
Every first degree equation in x, y represents a straight line.

$$
a x+b y+c=0 ; a, b, c \in \mathbb{R}
$$

Example:
$x+y+2=0$
$2 x-3 y+7=0$

Key Takeaways

Slope Intercept Form:

Every first degree equation in x, y represents a straight line.

$$
a x+b y+c=0 ; a, b, c \in \mathbb{R} \Rightarrow b y=-a x-c
$$

$$
\Rightarrow y=\left(-\frac{a}{b}\right) x+\left(-\frac{c}{b}\right)
$$

$$
\Rightarrow y=m x+c
$$

Slope $=m=\left(-\frac{a}{b}\right), Y$-intercept $=c=\left(-\frac{c}{b}\right)$

K Key Takeaways

Intercept Form:

Every first degree equation in x, y represents a straight line.

$$
\begin{aligned}
& a x+b y+c=0 ; a, b, c \in \mathbb{R} \Rightarrow a x+b y=-c \\
& \Rightarrow \frac{a x}{-c}+\frac{b y}{-c}=1 \\
& \Rightarrow \frac{x}{\left(-\frac{c}{a}\right)}+\frac{y}{\left(-\frac{c}{b}\right)}=1 \Rightarrow \frac{x}{a}+\frac{y}{b}=1
\end{aligned}
$$

X-intercept $=a=\left(-\frac{c}{a}\right), Y$-intercept $=b=\left(-\frac{c}{b}\right)$

Session 07

Distance evaluation

between line \& point, lines.
(a) Slope intercept form (b) Intercept form
(a) Slope intercept form:

Given equation, $x+\sqrt{3} y+4=0$
$\Rightarrow \sqrt{3} y=-x-4$
$\Rightarrow y=-\frac{1}{\sqrt{3}} x-\frac{4}{\sqrt{3}}$
$\because y=m x+c$
\therefore Slope ' $m^{\prime}=-\frac{1}{\sqrt{3}}$
Y-Intercept ' $\mathrm{c}^{\prime}=-\frac{4}{\sqrt{3}}$
(a) Slope intercept form (b) Intercept form
(b) Intercept form:

Given equation, $x+\sqrt{3} y+4=0$
$\Rightarrow x+\sqrt{3} y=-4$
$\Rightarrow \frac{x}{-4}+\frac{y}{(-4 / \sqrt{3})}=1$
$\because \frac{x}{a}+\frac{y}{b}=1$
$\therefore X-$ intercept $=-4 \& Y-$ intercept $=-\frac{4}{\sqrt{3}}$
$?$
If the x-intercept of some line L is double as that of the line $3 x+4 y=12$ and the y-intercept of L is half as that of the same line, then the slope of L is :

If the x-intercept of some line L is double as that of the line $3 x+4 y=12$ and the Y-intercept of L is half as that of the same line, then the slope of L is :

If the x-intercept of some line L is double as that of the line $3 x+4 y=12$ and the y-intercept of L is half as that of the same line, then the slope of L is:

$?$
If the straight line $2 x-3 y+17=0$ is perpendicular to the line passing through the points $(7,17)$ and $(15, \beta)$, then β equals :

If the straight line $2 x-3 y+17=0$ is perpendicular to the line passing through the points $(7,17)$ and $(15, \beta)$, then β equals :
$2 x-3 y+17=0$
\Rightarrow Slope $=\frac{2}{3}$
Slope of line passing through the points $(7,17)$ and $(15, \beta)=\frac{\beta-17}{15-7}$
$=\frac{\beta-17}{8}$
Since lines are perpendicular to each other :
$\Rightarrow \frac{2}{3} \times \frac{\beta-17}{8}=-1$

$$
\beta=5
$$ passing through the points $(7,17)$ and $(15, \beta)$, then β equals :

 and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is:

Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is:
$P S$ is the median $\Rightarrow S$ is the midpoint of Q and R
$\Rightarrow S \equiv\left(\frac{6+7}{2}, \frac{-1+3}{2}\right)$
$\Rightarrow S \equiv\left(\frac{13}{2}, 1\right)$
Now, Slope of $P S=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{2-1}{2-\frac{13}{2}}=-\frac{1}{9} \times 2=-\frac{2}{9}$

Let l be the line parallel to PS passing through ($1,-1$)

Let $P S$ be the median of the triangle with vertices $P(2,2), Q(6,-1)$ and $R(7,3)$. The equation of the line passing through $(1,-1)$ and parallel to PS is:
\therefore Slope of $l=-\frac{2}{9}$
\therefore By Point Slope Form, Equation of l :
$\frac{y-(-1)}{x-1}=-\frac{2}{9}$
$\Rightarrow y+1=-\frac{2}{9}(x-1)$
$\Rightarrow 2 x+9 y+7=0$
 $B(3,3)$ respectively. If C is the circumcenter of this triangle, then the radius of the circle having line segment $A C$ as diameter is:

$$
2 x+9 y+7=0
$$

K Key Takeaways

Internal Division:

If the straight line $a x+b y+c=0$ divides the line segment joining $A\left(x_{1}, y_{1}\right) \& B\left(x_{2}, y_{2}\right)$ in the ratio $\lambda: 1$

K Key Takeaways

Internal Division:

If A and B are on the opposite side of the line $a x+b y+c=0$
$\Rightarrow a x+b y+c=0$ divides $A B$ internally
$\Rightarrow \lambda>0$
$-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}>0$

$\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}<0$
$\therefore a x_{1}+b y_{1}+c \& a x_{2}+b y_{2}+c$ are of opposite sign.

Key Takeaways

External Division:

If A and B are on the same side of the line $a x+b y+c=0$
$\Rightarrow a x+b y+c=0$ divides $A B$ externally
$\Rightarrow \lambda<0$
$-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}<0$

$\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}>0$
$\therefore a x_{1}+b y_{1}+c \& a x_{2}+b y_{2}+c$ are of same sign.

In what ratio is the line segment joining the points $(-1,1)$ and $(5,7)$ divides the line $x+y=4$.

On comparing $x+y=4$ with $a x+b y+c=0$ $a=1, b=1 \& c=-4$
$\frac{A P}{P B}=\frac{\lambda}{1}=-\frac{a x_{1}+b y_{1}+c}{a x_{2}+b y_{2}+c}$
$\frac{A P}{P B}=\frac{\lambda}{1}=-\frac{-1+1+(-4)}{5+7+(-4)}=\frac{4}{8}=\frac{1}{2}$
$A P: P B=1: 2$

Key Takeaways

Distance of a point from a line:
The length of the perpendicular from a point $\left(x_{1}, y_{1}\right)$ to the line $a x+b y+c=0$ is $\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$

$$
r=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|
$$

K Key Takeaways

Distance of a point from a line:

Proof:

We have, $l: a x+b y+c=0$
\therefore Slope of $l=-\frac{a}{b}$
Then, Slope of $P M=\frac{b}{a}$
$\Rightarrow \tan \theta=\frac{b}{a}$

$\Rightarrow \cos \theta=\frac{a}{\sqrt{a^{2}+b^{2}}} \& \quad \sin \theta=\frac{b}{\sqrt{a^{2}+b^{2}}}$
M lies on $l: a x+b y+c=0$
$\Rightarrow a\left(x_{1}+r \cos \theta\right)+b\left(y_{1}+r \sin \theta\right)+c=0$

K Key Takeaways

$\Rightarrow a\left(x_{1}+r \cos \theta\right)+b\left(y_{1}+r \sin \theta\right)+c=0$
$\Rightarrow a r \cos \theta+b r \sin \theta+a x_{1}+b y_{1}+c=0$
$\Rightarrow r(a \cos \theta+b \sin \theta)=-\left(a x_{1}+b y_{1}+c\right)$
$\Rightarrow r=-\left(\frac{a x_{1}+b y_{1}+c}{a \cos \theta+b \sin \theta}\right)$
$\Rightarrow r=-\left(\frac{a x_{1}+b y_{1}+c}{a \times \frac{a}{\sqrt{a^{2}+b^{2}}}+b \times \frac{b}{\sqrt{a^{2}+b^{2}}}}\right)$

But $r \geq 0$
$\Rightarrow r=\left|\frac{a x_{1}+b y_{1}+c}{\sqrt{a^{2}+b^{2}}}\right|$

Distance of a point from a line:
The length of the perpendicular from the origin to the line $a x+b y+c=0$ is $\frac{|c|}{\sqrt{a^{2}+b^{2}}}$

$$
r=\left|\frac{c}{\sqrt{a^{2}+b^{2}}}\right|
$$

Find the points on Y-axis whose perpendicular distance from the line $4 x-3 y-12=0$ is 3 .

Let the required point be $P(0, \alpha)$.
Length of the perpendicular from $P(0, \alpha)$ on $4 x-3 y-12=0$ is 3
$\Rightarrow\left|\frac{4(0)-3 \alpha-12}{\sqrt{4^{2}+(-3)^{2}}}\right|=3$
$\Rightarrow|3 \alpha+12|=15$
$\Rightarrow \alpha+4= \pm 5$
$\Rightarrow \alpha=1,-9$
\therefore Required points are $(0,1)$ and $(0,-9)$

Key Takeaways

Distance between parallel lines:
Distance between parallel lines
$a x+b y+c_{1}=0$ and $a x+b y+c_{2}=0$ is $\left|\frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right|$

K Key Takeaways

Distance between parallel lines:

Proof:

Perpendicular distance of $P\left(x_{1}, y_{1}\right)$
from l_{2} is $d=\left|\frac{a x_{1}+b y_{1}+c_{2}}{\sqrt{a^{2}+b^{2}}}\right|$
Also, $P\left(x_{1}, y_{1}\right)$ lies on l_{1}
$\Rightarrow a x_{1}+b y_{1}+c_{1}=0$
$\Rightarrow a x_{1}+b y_{1}=-c_{1}$
$\therefore d=\left|\frac{c_{2}-c_{1}}{\sqrt{a^{2}+b^{2}}}\right|$ or $\left|\frac{c_{1}-c_{2}}{\sqrt{a^{2}+b^{2}}}\right|$

Distance between the lines given by $x-2 y=1$ and $3 x+15=6 y$ is:

$$
\begin{aligned}
& \text { Let, } l_{1}: x-2 y=1 \\
& \qquad \begin{array}{l}
l_{2}: 3 x+15=6 y \\
\\
\qquad \text { Or } l_{2}: x-2 y=-5 \\
d=\left|\frac{c_{1}-l_{1}}{\sqrt{a^{2}+b^{2}}}\right| \\
\Rightarrow d=\left|\frac{-5-1}{\sqrt{1^{2}+(-2)^{2}}}\right| \\
\Rightarrow \frac{6}{\sqrt{5}} \text { units. }
\end{array}
\end{aligned}
$$

Distance between the lines given by $x-2 y=1$ and $3 x+15=6 y$ is:

The coordinates of the point on $x+y+3=0$, whose distance
from $x+2 y+2=0$ is $\sqrt{5}$ units, is

Let the points on the line $x+y+3=0$ be $(a,-3-a)$
Length of the perpendicular from $(a,-3-a)$ to $x+2 y+2=0$ is

$$
\Rightarrow\left|\frac{a-6-2 a+2}{\sqrt{1^{2}+2^{2}}}\right|=\sqrt{5}
$$

$$
\Rightarrow \quad a=-9,1
$$

\therefore The points are $(-9,6),(1,-4)$.

The coordinates of the point on $x+y+3=0$, whose distance
from $x+2 y+2=0$ is $\sqrt{5}$ units, is

Session 08

Image of a point and

Concurrency of lines

Key Takeaways

Image of a point:
The image of a point $P(\alpha, \beta)$ with respect to x-axis is $Q(\alpha,-\beta)$.

Key Takeaways

Image of a point:
The image of a point $P(\alpha, \beta)$ with respect to y-axis is $Q(-\alpha, \beta)$.

Key Takeaways

Image of a point:
The image of a point $P(\alpha, \beta)$ with respect to $y=x$ is $Q(\beta, \alpha)$.

The image of the point $A(1,2)$ by the mirror $y=x$ is the point B and the image of B by the line mirror $y=0$ is the point $C(\alpha, \beta)$, then $\alpha=$ \qquad , $\beta=$ \qquad .

The image of a point $A(\alpha, \beta)$ with respect to $y=x$ is $B(\beta, \alpha)$.
$\Rightarrow B \equiv(2,1)$
The image of a point $B(\beta, \alpha)$ with respect to x-axis $(y=0)$ is $C(\beta,-\alpha)$.
$\Rightarrow C \equiv(2,-1)$

Key Takeaways

Reflection of a point about a Line:
$F\left(x_{f}, y_{f}\right)$ is the foot of perpendicular.

$$
\frac{x_{f}-x_{0}}{a}=\frac{y_{f}-y_{o}}{b}=-\frac{a x_{o}+b y_{o}+c}{a^{2}+b^{2}}
$$

Key Takeaways

Reflection of a point about a Line:
$I\left(x_{i}, y_{i}\right)$ is the reflection of point $P\left(x_{o}, y_{o}\right)$ about the line $a x+b y+c=0$.

$$
\frac{x_{i}-x_{o}}{a}=\frac{y_{i}-y_{o}}{b}=-2 \frac{a x_{o}+b y_{o}+c}{a^{2}+b^{2}}
$$

The coordinates of the foot of the perpendicular and the image of the point $(8,2)$ about the line $3 x-y=2$ are:

Consider $l: 3 x-y=2$ compare with $a x+b y+c=0$

$$
\begin{aligned}
& a=3, b=-1, c=-2 \\
& \frac{x_{f}-x_{0}}{a}=\frac{y_{f}-y_{o}}{b}=-\frac{a x_{o}+b y_{o}+c}{a^{2}+b^{2}} \\
& \Rightarrow \frac{x_{f}-8}{3}=\frac{y_{f}-2}{-1}=-\frac{24-2-2}{(3)^{2}+(-1)^{2}} \\
& \Rightarrow \frac{x_{f}-8}{3}=\frac{y_{f}-2}{-1}=-2 \\
& \frac{x_{f}-8}{3}=-2 \\
& \Rightarrow x_{f}-8=-6 \\
& \Rightarrow x_{f}=2
\end{aligned} \quad \Rightarrow y_{f}-2=2, \quad \Rightarrow y_{f}=4
$$

$$
P(8,2) \leftrightarrow\left(x_{0}, y_{o}\right)
$$

$I\left(x_{i}, y_{i}\right)$ the point $(8,2)$ about the line $3 x-y=2$ are:

$$
\begin{aligned}
& x_{f}=2, y_{f}=4 \\
& P F=I F \\
& \Rightarrow F \text { is mid point of } P I \text {. } \\
& \begin{array}{l:l}
\frac{x_{i}+8}{2}=2 & \frac{y_{i}+2}{2}=4 \\
\Rightarrow x_{i}+8=4 & \Rightarrow y_{i}+2=8 \\
\Rightarrow x_{i}=-4 &
\end{array} \\
& O P(8,2) \leftrightarrow\left(x_{0}, y_{o}\right)
\end{aligned}
$$

So, $I \equiv(-4,6)$

Find a point P on $y=x$ such that $P A+P B$ is minimum where $A \equiv(1,3), B \equiv(5,2)$.

$$
\begin{aligned}
& l: y=x \Rightarrow x-y=0 \\
& l_{A}: l_{(1,3)}=1-3<0 \text { and } l_{B}: l_{(5,2)}=5-2>0
\end{aligned}
$$

$\Rightarrow A \& B$ lies on opposite sides of l
\therefore For $A P+B P$ to be minimum,
$A, P \& B$ must be colinear.

$$
\begin{aligned}
& \therefore m_{A P}=m_{A B} \\
& \Rightarrow \frac{\alpha-3}{\alpha-1}=\frac{2-3}{5-1} \\
& \Rightarrow \alpha=\frac{13}{5} \\
& \therefore P \equiv\left(\frac{13}{5}, \frac{13}{5}\right)
\end{aligned}
$$

$?$
Point R on X-axis such that $P R+R Q$ is minimum when $P=(1,1)$ and $Q=(3,2)$ is:

A	$\left(\frac{5}{3}, 0\right)$
B	$(2,0)$
C	$\left(\frac{3}{2}, 0\right)$
D	$\left(\frac{5}{4}, 0\right)$

Point R on X-axis such that $P R+R Q$ is minimum when $P=(1,1)$ and $Q=(3,2)$ is:
$P \& Q$ lies on the same sides of X - axis.
The mirror image of Q with respect to X - axis is Q^{\prime}.
$\Rightarrow P R+R Q=P R+R Q^{\prime}$
\therefore For $P R+R Q$ to be minimum, when $P, R \& Q^{\prime}$ must be collinear.
$m_{P Q^{\prime}}=m_{R Q^{\prime}}$
$\frac{1+2}{1-3}=\frac{0+2}{\alpha-3}$
$\Rightarrow \alpha=\frac{5}{3}$
$\therefore R \equiv\left(\frac{5}{3}, 0\right)$

Point R on X-axis such that $P R+R Q$ is minimum when $P=(1,1)$ and $Q=(3,2)$ is:

K Key Takeaways

Concurrency of Three Lines:

The three lines are concurrent if any one of the lines passes through the point of intersection of other two lines.

$$
a_{1}\left(b_{2} c_{3}-c_{2} b_{3}\right)+b_{1}\left(c_{2} a_{3}-a_{2} c_{3}\right)+c_{1}\left(a_{2} b_{3}-b_{2} a_{3}\right)=0
$$

$$
\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|=0
$$

Find the value of λ, if the lines $3 x-4 y-13=0,8 x-11 y-33=0$ and $2 x-3 y+\lambda=0$ are concurrent.

The given lines are concurrent if :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3 & -4 & -13 \\
8 & -11 & -33 \\
2 & -3 & \lambda
\end{array}\right|=0 \\
& \Rightarrow 3(-11 \lambda-99)+4(8 \lambda+66)-13(-24+22)=0 \\
& \Rightarrow-\lambda-7=0 \\
& \Rightarrow \lambda=-7
\end{aligned}
$$

A ray of light coming from the point $(1,2)$ is reflected at a point A on the x-axis and then passes through the point $(5,3)$.Then the coordinates of the point A are:

Let the coordinate of A be $(a, 0)$ Slope of reflected ray $A C$ is,
$m_{A C}=\frac{3-0}{5-a}=\frac{3}{5-a}=\tan \theta$
Slope of incident ray $A B$ is,
$m_{A B}=\frac{2-0}{1-a}=\tan (\pi-\theta)=-\tan \theta$

Slope of $A B+$ Slope of $A C=0$
$\Rightarrow \frac{3}{5-a}+\frac{2}{1-a}=0$
$\Rightarrow 10-2 a+3-3 a=0$
$\Rightarrow 5 a=13$
$\underset{\text { urn to Top }}{\Rightarrow a=\frac{13}{\text { P }}}$

A beam of light is sent along the line $x-y=1$, which after refracting from the x-axis enters the opposite side by turning through 30° away from the normal at the point of incidence on the x-axis. Find the equation of the refracted ray.

Given Equation:

$$
y=x-1
$$

Slope of line $I I^{\prime}$ is 1 .
$\Rightarrow \tan \alpha=1$
$\Rightarrow \alpha=45^{\circ}$
$\theta=\alpha-30^{\circ}$
$\Rightarrow \theta=45^{\circ}-30^{0}$
$\Rightarrow \theta=15^{\circ}$
$\Rightarrow \tan \theta=\tan 15^{\circ}=(2-\sqrt{3})$

Equation of $B R$:
$y-0=(2-\sqrt{3})(x-1)$

Session 09

Family of Lines and Angle bisector between Lines

Key Takeaways

Family of Line:

The equation for the family of lines ' L^{\prime} 'passing through the point of intersection of lines l_{1} and l_{2} is $l_{1}+\lambda l_{2}=0, \quad \lambda \in \mathbb{R}$

Where λ is a parameter and can be determined from imposed
 condition.

For $l_{1}: a_{1} x+b_{1} y+c_{1}=0$

$$
l_{2}: a_{2} x+b_{2} y+c_{2}=0
$$

$$
\left(a_{1} x+b_{1} y+c_{1}\right)+\lambda\left(a_{2} x+b_{2} y+c_{2}\right)=0
$$

$$
\begin{aligned}
& (1+\lambda) x+(2-\lambda) y+5=0 \forall \lambda \in \mathbb{R} \\
& L_{1}+\lambda L_{2}=0 \\
& \Rightarrow(x+2 y+5)+\lambda(x-y)=0
\end{aligned}
$$

$$
\left.\begin{array}{l}
L_{1} \equiv x+2 y+5=0 \\
L_{2} \equiv x-y=0
\end{array}\right\} \text { Fixed point or intercept point }
$$

$$
\text { Put } y=x \text { in } L_{1}
$$

$$
\Rightarrow 3 x+5=0
$$

$$
\Rightarrow x=-\frac{5}{3}
$$

$$
\text { Intercept point }\left(-\frac{5}{3},-\frac{5}{3}\right)
$$

If a, b, c are variables such that $21 a+40 b+56 c=0$, then find the fixed point through which each member of the family of the lines $a x+b y+c=0$ passes is

Given: $21 a+40 b+56 c=0$ and $a x+b y+c=0$ passes through the fixed point.

Dividing the equation by 56
$\Rightarrow\left(\frac{21}{56}\right) a+\left(\frac{40}{56}\right) b+\left(\frac{56}{56}\right) c=0$
$\Rightarrow\left(\frac{3}{8}\right) a+\left(\frac{5}{7}\right) b+c=0$

Now, $a x+b y+c=0$ passes through the same point.
$\Rightarrow x=\frac{3}{8}, y=\frac{5}{7}$

So, fixed point $\equiv\left(\frac{3}{8}, \frac{5}{7}\right)$

If the straight lines cuts intercepts on the coordinate axes such that the sum of their reciprocals is 3, then the fixed point through which all these lines passes is

Let the intercept on x and y axes be a and b respectively.

Given, $\frac{1}{a}+\frac{1}{b}=3$
$\Rightarrow \frac{1}{3 a}+\frac{1}{3 b}=1$
$\Rightarrow \frac{\left(\frac{1}{3}\right)}{a}+\frac{\left(\frac{1}{3}\right)}{b}=1 \quad \frac{x}{a}+\frac{y}{b}=1$
On comparing we get, $x_{0}=\frac{1}{3}, y_{0}=\frac{1}{3}$
\therefore Fixed Point $\rightarrow\left(\frac{1}{3}, \frac{1}{3}\right)$.

If the straight lines cuts intercepts on the coordinate axes such that the sum of their reciprocals is 3, then the fixed point through which all these lines passes is

Find the straight line of the family $(x+y)+\lambda(2 x-y+1)=0, \lambda \in \mathbb{R}$ that is:
(i) Nearest from the point $(1,-3)$
(ii) Farthest from the point $(1,-3)$

$$
\begin{align*}
& (x+y)+\lambda(2 x-y+1)=0 \tag{i}\\
& L_{1}+\lambda L_{2}=0
\end{align*}
$$

Passes through intersection of lines $x+y=0$ and $2 x-y+1=0$

(i) Put $(1,-3)$ in (i) family of lines equation
$\Rightarrow(1-3)+\lambda(2+3+1)=0$
$\Rightarrow \lambda=\frac{1}{3}$
Put $\lambda=\frac{1}{3}$ in (i)
$\Rightarrow(x+y)+\frac{1}{3}(2 x-y+1)=0$

$$
\Rightarrow 5 x+2 y+1=0
$$

\Rightarrow Find the straight line of the family $(x+y)+\lambda(2 x-y+1)=0, \lambda \in \mathbb{R}$ that is:
(i) Nearest from the point $(1,-3)$
(ii) Farthest from the point $(1,-3)$
(ii) The line furthest from point $(1,-3)$ will be perpendicular to the line passing through $(1,-3)$ and point A, where A is the point of intersection of lines $x+y=0$ and $2 x-y+1=0$
$(x+y)+\lambda(2 x-y+1)=0$
$\Rightarrow(2 \lambda+1) x+y(1-\lambda)+\lambda=0 \cdots(i i)$

Slope of line perpendicular to $5 x+2 y+1=0$ is $\frac{2}{5}$.
$\therefore \frac{2}{5}=-\frac{(2 \lambda+1)}{(1-\lambda)} \Rightarrow 2-2 \lambda=-10 \lambda-5 \Rightarrow \lambda=-\frac{7}{8}$
Putting $\lambda=-\frac{7}{8}$ in (i)
A(xtury) $T_{8}^{7}(2 x-y+1)=0 \Rightarrow 6 x-15 y+7=0$

Key Takeaways

Angle Bisectors between the lines:
Angle Bisector:
Locus is a moving point equidistant from the two intersecting lines.

Note:

- The bisectors are orthogonal to each other.
- B_{1} and B_{2} are always perpendicular to each other.

Angle Bisector between the lines:

Equation:

Here, $d_{1}=d_{2}$
$\left|\frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}\right|=\left|\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}\right|$

$a_{2}^{2}+b_{2}^{2}=p$ and $a_{1}^{2}+b_{1}^{2}=q$

$$
\begin{array}{ll}
(p=q) \text { or }(-p=-q) & \text { and }(p=-q) \text { or }(-p=q) \\
\Rightarrow p=q & \text { and } \Rightarrow p=-q
\end{array}
$$

$$
\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}
$$

Key Takeaways

Angular Bisectors of Acute and Obtuse angles:

Let revised equations
$\left.\begin{array}{l}a_{1} x+b_{1} y+c_{1}=0 \\ a_{2} x+b_{2} y+c_{2}=0\end{array}\right\} c_{1}, c_{2}>0$
$\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$

Step I: Make constants of both lines (+ve).
Step II: Using equation of modified lines find $a_{1} a_{2}+b_{1} b_{2}$.

Key Takeaways

Angular Bisectors of Acute and Obtuse angles:

Find the straight line $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the:
A. Bisector of the obtuse angle between them
B. Bisector of the acute angle between them

Solution:

$$
\begin{aligned}
& \left.\begin{array}{l}
4 x+3 y-6=0 \\
\Rightarrow \quad-4 x-3 y+6=0 \\
\text { And } 5 x+12 y+9=0
\end{array}\right\} \quad c_{1}, c_{2}>0 \\
& \text { Now, } a_{1}=-4, b_{1}=-3 \text { and } a_{2}=5, b_{2}=12 \\
& a_{1} a_{2}+b_{1} b_{2}=(-4)(5)+(-3)(12) \\
& \Rightarrow a_{1} a_{2}+b_{1} b_{2}=-56<0
\end{aligned}
$$

Find the straight line $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the:
A. Bisector of the obtuse angle between them
B. Bisector of the acute angle between them
A. Obtuse angle bisector: $\Rightarrow-v e$

$$
\begin{aligned}
& \left(\frac{-4 x-3 y+6}{\sqrt{(-4)^{2}+(-3)^{2}}}\right)=-\left(\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}\right) \\
& \Rightarrow \frac{-4 x-3 y+6}{5}=-\frac{5 x+12 y+9}{13} \\
& \Rightarrow-52 x-39 y+78=-25 x-60 y-45 \\
& \Rightarrow 27 x-21 y-123=0
\end{aligned}
$$

So, the bisector of the obtuse angle is $9 x-7 y-41=0$.

Find the straight line $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the:
A. Bisector of the obtuse angle between them
B. Bisector of the acute angle between them
B. Acute angle bisector: $\Rightarrow+v e$

$$
\begin{aligned}
& \left(\frac{-4 x-3 y+6}{\sqrt{(-4)^{2}+(-3)^{2}}}\right)=\left(\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}\right) \\
& \Rightarrow \frac{-4 x-3 y+6}{5}=\frac{5 x+12 y+9}{12}
\end{aligned}
$$

Key Takeaways

Bisector of the angle containing the given point
$\frac{a_{1} x+b_{1} y+c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}}}= \pm \frac{a_{2} x+b_{2} y+c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}}}$

Step I: Substitute the point in the
L.H.S of both $l_{1} \& l_{2}$ to get $l_{1}(P) \& l_{2}(P)$.
$a_{1} \alpha+b_{1} \beta+c_{1}$ and $a_{2} \alpha+b_{2} \beta+c_{2}$.

Key Takeaways

Step II: Use the working rule:

For the straight line $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the angle:
(i) Which contains $(1,2)$
(ii) Which contains the origin
(i) Given $l_{1} \equiv 4 x+3 y-6=0$ and $l_{2} \equiv 5 x+12 y+9=0$

$$
\left.\begin{array}{l}
l_{1}(1,2) \equiv 4(1)+3(2)-6>0 \\
l_{2}(1,2) \equiv 5(1)+12(2)+9>0
\end{array}\right\} \text { Same sign } \Rightarrow l_{1}(1,2) \cdot l_{2}(1,2)>0
$$

Hence, equation w.r.t +ve sign is the required bisector.

$$
\begin{aligned}
& \left(\frac{4 x+3 y-6}{\sqrt{(4)^{2}+(3)^{2}}}\right)=+\left(\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}\right) \\
& \Rightarrow 52 x+39 y-78=25 x+60 y+45 \\
& \Rightarrow 27 x-21 y-123=0
\end{aligned}
$$

So, the bisector of the angle that contains $(1,2)$ is $9 x-7 y-41=0$.

For the straight line $4 x+3 y-6=0$ and $5 x+12 y+9=0$, find the equation of the bisector of the angle:
(i) Which contains $(1,2)$
(ii) Which contains the origin
(ii) Given $l_{1} \equiv 4 x+3 y-6=0$ and $l_{2} \equiv 5 x+12 y+9=0$
$\left.\begin{array}{l}l_{1}(0,0) \equiv 4(0)+3(0)-6<0 \\ l_{2}(0,0) \equiv 5(0)+12(0)+9>0\end{array}\right\}$ Opposite sign $\Rightarrow l_{1}(0,0) \cdot l_{2}(0,0)<0$
Hence, equation w.r.t -ve sign is the required bisector.

$$
\begin{aligned}
& \left(\frac{4 x+3 y-6}{\sqrt{(4)^{2}+(3)^{2}}}\right)=-\left(\frac{5 x+12 y+9}{\sqrt{5^{2}+12^{2}}}\right) \\
& \Rightarrow 52 x+39 y-78=-25 x-60 y-45 \\
& \Rightarrow 77 x+99 y-33=0
\end{aligned}
$$

So, the bisector of the angle that contains the origin is $7 x+9 y-3=0$.

Session 10

Family of Lines and Angle bisector between Lines

Key Takeaways

Pair of Straight Lines:

Joint equation of l_{1} and l_{2} is given by : $l_{1} l_{2}=0$

$$
\begin{aligned}
& \Rightarrow\left(a_{1} x+b_{1} y+c_{1}\right)\left(a_{2} x+b_{2} y+c_{2}\right)=0 \\
& \Rightarrow a_{1} a_{2} x^{2}+b_{1} b_{2} y^{2}+x y\left(a_{1} b_{2}+a_{2} b_{1}\right)+ \\
& x\left(a_{1} c_{2}+c_{1} a_{2}\right)+y\left(b_{1} c_{2}+b_{2} c_{1}\right)+c_{1} c_{2}=0
\end{aligned}
$$

General Form : $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$

Key Takeaways

General Equation of Pair of Lines :
General $2^{\text {nd }}$ degree equation in x, y :
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
Represents a pair of straight lines iff :

$$
\begin{gathered}
\left|\begin{array}{lll}
a & h & g \\
h & b & f \\
g & f & c
\end{array}\right|=0 \\
\text { Or } \\
a b c+2 f g h-a f^{2}-b g^{2}-c h^{2}=0
\end{gathered}
$$ represents two straight lines.

Comparing the given equation $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18=0$ with
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
We get,

$$
a=-3,2 h=-8, b=3,2 g=-29,2 f=3, c=-18
$$

We find that

$$
\begin{aligned}
& a b c+2 f g h-a f^{2}-b g^{2}-c h^{2} \\
& =(-3)(3)(-18)+2\left(\frac{3}{2}\right)\left(-\frac{29}{2}\right)(-4)-(-3)\left(\frac{3}{2}\right)^{2}-(3)\left(-\frac{29}{2}\right)^{2}-(-18)(-4)^{2} \\
& =0
\end{aligned}
$$

Key Takeaways

Homogeneous Equation:

An equation in which combined degree of each term is same is called a homogeneous equation.

Example:

$2 x+3 y=0 \Rightarrow$ Homogeneous Equation of degree 1 .
$x^{2}-5 x y-6 y^{2}=0 \Rightarrow$ Homogeneous Equation of degree 2.
$x^{3}-6 x^{2} y+11 x y^{2}-6 y^{3}=0$ Homogeneous Equation of degree 3 .
$2 x+3 y+4=0 \Rightarrow$ Not a Homogeneous Equation.
$a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0 \Rightarrow$ Not a Homogeneous Equation.

Key Takeaways

Homogeneous Equation:

The homogeneous second degree equation $a x^{2}+2 h x y+b y^{2}=0$ represents a pair of straight lines passing through the origin. i.e., $a x^{2}+2 h x y+b y^{2}=0$ represents two straight lines passing through $(0,0)$.

If $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ represents pair of straight lines having slopes $m_{1} \& m_{2}$ then,

$$
\begin{aligned}
& m_{1}+m_{2}=-\frac{2 h}{b} \text { and } m_{1} \times m_{2}=\frac{a}{b} \\
& \tan \theta=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|
\end{aligned}
$$

Note:

- If $a+b=0 \Rightarrow$ Lines are perpendicular i.e. Coeff. of $x^{2}+$ Coeff. of $y^{2}=0$
- If $h^{2}=a b \Rightarrow$ Lines are coincident.
- If $h^{2}>a b \Rightarrow$ Lines are real and distinct.
- If $h^{2}<a b \Rightarrow$ Lines are imaginary

Let $y=m x$ be the 2 straight lines passing through origin represented by $a x^{2}+2 h x y+b y^{2}=0 i t$.

Putting $y=m x$ in $a x^{2}+2 h x y+b y^{2}=0$,
$a x^{2}+2 h x(m x)+b(m x)^{2}=0$
$\Rightarrow a x^{2}+2 h m x^{2}+b m^{2} x^{2}=0$

$\Rightarrow \underbrace{a+2 h m+b m^{2}=0}$
Let the roots be $m_{1} \& m_{2}$
$a+2 h m+b m^{2}=0$
Let the roots be $m_{1} \& m_{2}$
Sum of roots $=m_{1}+m_{2}=-\frac{2 h}{b}$
Product of roots $=m_{1} \cdot m_{2}=\frac{a}{b}$
$\tan \theta=\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|$
$\tan \theta=\frac{2 \sqrt{h^{2}-a b}}{|a+b|}$
$?$ The gradient of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then

$$
h^{2}=a b
$$

The gradient of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then

Given $a x^{2}+2 h x y+b y^{2}=0$
Let m and $2 m$ be the gradients.
$\Rightarrow m+2 m=-\frac{2 h}{b}$
$\Rightarrow m=-\frac{2 h}{3 b} \quad \cdots(i)$
Also $m \cdot 2 m=\frac{a}{b}$
$\Rightarrow 2 m^{2}=\frac{a}{b}$
$\Rightarrow m^{2}=\frac{a}{2 b}$
From (i) and (ii):

$$
\begin{aligned}
& \left(-\frac{2 h}{3 b}\right)^{2}=\frac{a}{2 b} \\
& \Rightarrow \frac{4 h^{2}}{9 b^{2}}=\frac{a}{2 b} \\
& \Rightarrow 8 h^{2}=9 a b
\end{aligned}
$$

The gradient of one of the lines given by $a x^{2}+2 h x y+b y^{2}=0$ is twice that of the other, then

Homogeneous Equation:

If joint equation of l_{1} and l_{2} is $a x^{2}+2 h x y+b y^{2}=0$, then joint equation of lines perpendicular to l_{1} and l_{2} and passing through origin is given by $b x^{2}-2 h x y+a y^{2}=0$

$$
\begin{aligned}
& l_{1} l_{2}: a x^{2}+2 h x y+b y^{2}=0 \\
& l_{3} l_{4}: b x^{2}-2 h x y+a y^{2}=0
\end{aligned}
$$

Key Takeaways

The two lines having joint equation as $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$ intersects at the point $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right),\left(h^{2} \neq a b\right)$.

$$
l_{1} l_{2}: a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0
$$

For the pair of lines represented by
$3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18=0$, find:
(i) Point of intersection
(ii) The equation of the lines
(i) Comparing the given equation $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18=0$ with $a x^{2}+2 h x y+b y^{2}+2 g x+2 f y+c=0$
We get,
$a=-3,2 h=-8, b=3,2 g=-29,2 f=3, c=-18$
Point of Intersection: $\left(\frac{h f-b g}{a b-h^{2}}, \frac{g h-a f}{a b-h^{2}}\right),\left(h^{2} \neq a b\right)$

$$
\begin{aligned}
& =\left(\frac{(-4)\left(\frac{3}{2}\right)-(3)\left(-\frac{29}{2}\right)}{3(-3)-(-4)^{2}}, \frac{\left(-\frac{29}{2}\right)(-4)-(-3)\left(\frac{3}{2}\right)}{3(-3)-(-4)^{2}}\right) \\
& =\left(\frac{-6+\frac{87}{2}}{-25}, \frac{58+\left(\frac{9}{2}\right)}{-25}\right)=\left(-\frac{3}{2},-\frac{5}{2}\right)
\end{aligned}
$$

(i) Point of intersection
(ii) The equation of the lines
(ii) $3 y^{2}-8 x y-3 x^{2}=(3 y+x)(y-3 x)$

Hence, let $3 y^{2}-8 x y-3 x^{2}-29 x+3 y-18 \equiv(3 y+x+p)(y-3 x+q)$
Equating the coefficients of $x \& y$, we get
$-3 p+q=-29$ and $p+3 q=3$
$\Rightarrow p=9$ and $q=-2$
Thus, the equation of the represented lines are $3 y+x+9=0$ and $y-3 x-2=0$

Key Takeaways

Homogenization:

It gives the joint equation of Pair of lines joining the Origin and the Points of Intersection of a Line and a Curve. .

Key Takeaways

Homogeneous Equation:

Homogenizing equation of curve by using $l_{1}=0$

$$
l_{1}: l x+m y+n=0 \Rightarrow \frac{l x+m y}{-n}=1 \cdots(i)
$$

$a x^{2}+2 h x y+b y^{2}+2 g x \cdot 1+2 f y \cdot 1+c \cdot(1)^{2}=0 \cdots(i i)$
Substituting (i) in (ii):

$a x^{2}+2 h x y+b y^{2}+2 g x\left(\frac{l x+m y}{-n}\right)+2 f y\left(\frac{l x+m y}{-n}\right)+c\left(\frac{l x+m y}{-n}\right)^{2}=0$
This is the joint equation of line $O P$ and $O Q$.
?
The angle between the lines joining the origin to the points of intersection of the line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is:

$$
\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)
$$

B

$$
\tan ^{-1}\left(\frac{\sqrt{2}}{3}\right)
$$

C

$$
\tan ^{-1}\left(\frac{2}{3}\right)
$$

$$
\tan ^{-1}\left(\frac{2}{\sqrt{3}}\right)
$$

The angle between the lines joining the origin to the points of intersection of the line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is:

Given line is $y=3 x+2$ and curve

$$
\begin{align*}
& x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0 \\
& \Rightarrow \frac{y-3 x}{2}=1 \quad \cdots(i) \tag{i}\\
& x^{2}+2 x y+3 y^{2}+4 x \cdot 1+8 y \cdot 1-11 \cdot(1)^{2}=0 \tag{ii}
\end{align*}
$$

Substituting (i) in (ii):
$x^{2}+2 x y+3 y^{2}+4 x\left(\frac{y-3 x}{2}\right)+8 y\left(\frac{y-3 x}{2}\right)-11\left(\frac{y-3 x}{2}\right)^{2}=0$

$\Rightarrow 4 x^{2}+8 x y+12 y^{2}+8 x y-24 x^{2}+16 y^{2}-48 x y-11 y^{2}-99 x^{2}+66 x y=0$
$\Rightarrow-119 x^{2}+17 y^{2}+34 x y=0$
$\Rightarrow 7 x^{2}-2 x y-y^{2}=0 \Leftrightarrow a x^{2}+2 h x y+b y^{2}=0$

The angle between the lines joining the origin to the points of intersection of the line $y=3 x+2$ with the curve $x^{2}+2 x y+3 y^{2}+4 x+8 y-11=0$ is:

On comparing : $a=7, h=-1$ and $b=-1$
Let the required angle be θ.
$\Rightarrow \tan \theta=\left|\frac{2 \sqrt{h^{2}-a b}}{a+b}\right|$
$\Rightarrow \tan \theta=\left|\frac{2 \sqrt{1+7}}{7-1}\right|$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$

The angle between the lines joining the origin to the points of intersection of the line $y=3 x+2$ with the curve $x^{2}+2 x y+$ $3 y^{2}+4 x+8 y-11=0$ is:

$$
\text { (A) } \tan ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)
$$

Thank

