Welcome to

States of matter

> Something that occupies space and has mass

States of Matter

Bulk Properties

Most of the observable characteristics of chemical systems represent bulk properties of matter

Properties associated with a collection of a large number of atoms, ions or molecules

Classification of Matter

Intermolecular Forces

Intermolecular Attractive Forces

Thermal Energy

Energy of a body arising from motion of its atoms or molecules

Thermal Energy \propto

Temperature (T) of substance

Intermolecular Forces vs Thermal Energy

Intermolecular forces tend to keep the molecules together but

Thermal energy tends
to keep them apart

The result of balance between these two forces

Three states of matter

Intermolecular Forces vs Thermal Energy

Predominance of thermal Energy

General Properties of Gaseous State

01

No fixed shape $\&$ volume

02
Much lower density than the solids \& liquids

03
Weak forces of attraction

Exerts pressure equally in all directions

05

Infinite expansibility \& high compressibility

Pressure

Pressure of the gas is the force exerted by the gas per unit area on the walls of the container in all directions.

Pressure (P)

$1 \mathrm{~atm}=1.01325 \times 10^{5} \mathrm{~Pa}$
$1 \mathrm{bar}=1 \mathrm{P}=10^{5} \mathrm{~Pa}=750 \mathrm{torr}=750 \mathrm{~mm}$ of Hg
$1 \mathrm{~atm}=760$ torr $=760 \mathrm{~mm}$ of $\mathrm{Hg}=76 \mathrm{~cm}$ of Hg
$1 \mathrm{~atm}=1.01325 \mathrm{bar}$
$1 \mathrm{~N} / \mathrm{m}^{2}=1 \mathrm{~Pa}=10 \mathrm{dyne} / \mathrm{cm}^{2}$

Volume \& Temperature

Volume (V)

The volume of the container is the volume of the gas sample as gases occupy the entire space available to them.

$1 \mathrm{~m}^{3}=$ Temperature (T)

Temperature is the measure of hotness of the system.

Standard Temperature \& Pressure (STP)

Molar Volume of an ideal gas $=\quad 22.71098 \mathrm{~L} \mathrm{~mol}^{-1}$

Gas Laws

Behaviour of gases is governed by some laws

Relationships between measurable properties pressure, volume, temperature \& amount of gases

Gas Laws

Boyle's Law

- T = Constant
- Amount of gas = Constant

At constant temperature

The volume of a fixed amount (number of moles ' n ') of gas varies inversely with its pressure

Boyle's Law

Boyle's Law

Boyle's Law at Different Temperatures

$$
T_{3}>T_{2}>T_{1}
$$

Charles' Law

- $P=$ Constant
- Amount of gas = constant

At constant pressure

The volume of a fixed amount of gas is directly proportional to its absolute temperature.

Charles' Law

v

(P, n constant)
$\mathbf{k}_{\mathbf{2}}$ depends on the amount \& P of the gas
$v=k_{2} T$

$$
\begin{aligned}
& \frac{V}{T}=k_{2} \\
& \frac{V_{2}}{V_{1}}=\frac{T_{2}}{T_{1}}
\end{aligned}
$$

Charles' Law

For each degree rise in temperature, the volume of a gas increases by 1 /273.15 of the original volume of the gas at $0^{\circ} \mathrm{C}$.

Charles' Law

Absolute Scale of Temperature

$$
\mathrm{V}_{\mathrm{t}}=\mathrm{V}_{0}\left(\frac{\mathrm{~T}_{\mathrm{t}}}{T_{0}}\right)
$$

| Absolute scale or Kelvin scale or |
| :--- | :---: |
| thermodynamic scale of temperature |

$$
\mathrm{t}^{\circ} \mathrm{C} \Rightarrow \mathrm{~T}_{\mathrm{t}}=(273.15+\mathrm{t}) \mathrm{K}
$$

Charles' Law

Volume vs Temperature (K)

Volume vs Temperature $\left({ }^{\circ} \mathrm{C}\right)$

Charles' Law

T - V Isobars $---\rightarrow$ Constant pressure curves

(-273.15)

What Happens at Absolute Zero?

Let value of $\mathrm{t}=\mathbf{- 2 7 3 . 1 5}$
$V_{t}=V_{0}\left[\frac{-273.15+273.15}{273.15}\right]=0$

Volume of Gas is Zero!

Absolute zero
Lowest hypothetical or imaginary T at which gases supposedly occupy zero volume

Gas will not exist

All the gases get liquified before this temperature is reached

Gay-Lussac's Law

- V = Constant
- Amount of gas = Constant

At constant volume

The pressure of a fixed amount of a gas is directly proportional to the temperature.

Gay-Lussac's Law

$P=k_{3} T \quad-\cdots \quad \frac{P}{T}=k_{3}$

$$
\frac{P_{1}}{T_{1}}=\frac{P_{2}}{T_{2}}=k_{3}
$$

$\mathbf{k}_{\mathbf{3}}$ depends on amount $\& \mathbf{V}$ of gas

Gay-Lussac's Law

P - T Isochores $--\rightarrow$ Constant volume curves

$$
V_{1}<V_{2}<V_{3}<V_{4}
$$

Gay-Lussac's Law

Avogadro's Law

- Same conditions of P \& T

Same conditions of P \& T

Equal volume of all gases contains equal number of molecules

Avogadro's Law

Combining Different Gas Laws

Combining Different Gas Laws

Values of R

Ideal Gas Equation in Terms of Density

Density of Gases on Compression

Gauge Pressure (P_{g})

The difference of the actual pressure (P) \& the atmospheric pressure $\left(\mathrm{P}_{\mathrm{a}}\right)$

Measurement of Pressure: Barometer

Measures atmospheric pressure by

Determining the height of a mercury column supported in a sealed glass tube

Mercury Barometer

Downward pressure of mercury in the column

Outside atmospheric pressure

Mercury Barometer

Mercury column inside the capillary comes to rest

Net forces are balanced

Applying force balance

$$
P_{\mathrm{atm}} \times A=M \times g
$$

$$
\begin{gathered}
M=\rho \times V \& \\
V=A \times h
\end{gathered}
$$

$$
\Rightarrow P_{\mathrm{atm}} \times A=(\rho \times \mathrm{g} \times \mathrm{h}) \times \mathrm{A}
$$

$$
\Rightarrow P_{\mathrm{atm}}=\rho \mathrm{gh}
$$

Faulty Barometer

In a faulty barometer, the region above the mercury column is not completely a vacuum and contains trapped air that creates some additional pressure.

Actual Pressure if some gas is trapped instead of vacuum?

Manometer

Instrument used for measurement of pressure of gas

Manometer

$\left|P_{\text {External }}-P_{\text {Gas }}\right|$
$\propto \quad \Delta$ Height of mercury column

Partial Pressure of a Gas Component

The pressure that a component of gas would exert if it
occupies the same volume as the mixture at the same temperature

Mixture of non reacting gases

Dalton's Law of Partial Pressures

For a non reacting gaseous mixture total pressure of the mixture is the summation of partial pressure of the different component gases.

Partial Pressure in Terms of Mole Fraction

- Suppose at temperature T , three gases enclosed in volume V , exert partial pressures $\mathrm{P}_{1}, \mathrm{P}_{2}$ and P_{3}

Partial Pressure in Terms of Mole Fraction

Partial Pressure in Terms of Mole Fraction

On dividing $\mathbf{P}_{\mathbf{1}}$ by $\mathbf{P}_{\text {Total }}$,

$\chi_{1} \quad$ Mole fraction of gas 1

Partial Pressure in Terms of Mole Fraction

Similarly,

Average Molar Mass of Gaseous Mixture

- $M_{1}=$ Molar mass of first gas
- $M_{2}=$ Molar mass of second gas
- $n_{1}=$ Moles of first gas
- $n_{2}=$ Moles of second gas

Vapour Pressure

Pressure exerted by the

vapour in equilibrium with liquid, at a given temperature

Vapour pressure doesn't change if the temperature remains constant

Utility of Dalton's Law

Gases are generally collected over water and thus, become moist. In such cases, Dalton's law is useful in calculating the pressure of gas.

Pressure exerted by saturated water vapour is called Aqueous tension

Connecting Vessels

$n_{1} \& n_{2}$ are moles of two non-reacting gases $X \& Y$

Container 1
Container 2

Connecting Vessels

Before opening valve;

$$
\left(n_{1}+n_{2}\right)=\frac{P_{1} V_{1}}{R T}+\frac{P_{2} V_{2}}{R T}
$$

After opening valve;

$$
P_{\text {final }}\left(V_{1}+V_{2}\right)=\left(n_{1}+n_{2}\right) R T
$$

Partial pressure becomes equal in both container

Connecting Vessels

To calculate moles of gas ' X ' in each container

$$
\left.\left(P_{X}\right)_{1}\right)=\left(P_{X}\right)_{2}
$$

- P_{x} : Partial pressure of X

Let 'a' moles of gas ' X ' flow from container 1 to 2

$$
\left(n_{1}-a\right) \frac{R T_{1}}{V_{1}}=\frac{a R T_{2}}{V_{2}}
$$

Remember!!

Open rigid container:

P \& V are constant

Closed rigid container: $\frac{n_{1} R T_{1}}{P_{1}}=\frac{n_{2} R T_{2}}{P_{2}} \quad V$ is constant

For Ballon:

Diffusion

Net spontaneous flow of gaseous molecules from a region of higher concentration (higher partial pressure) to a region of lower concentration (lower partial pressure)

Diffusion

Graham's Law of Diffusion

Under similar conditions of pressure \& temperature, the rate of diffusion of gases are inversely proportional to the square roots of their densities (d)

Graham's Law of Diffusion

General form of Graham's law

P Partial pressure of gas

A Area of orifice

Molar mass of gas

Graham's Law of Diffusion

P and T constant

$$
\frac{r_{A}}{r_{B}}=\sqrt{\frac{d_{B}}{d_{A}}}=\sqrt{\frac{M_{B}}{M_{A}}}=\sqrt{\frac{(V . D .)_{B}}{(\text { V.D. })_{A}}}
$$

Vapour density

Importance of Graham's Law

Postulates / Assumptions of KTG

A gas consists of tiny spherical particles called atoms/molecules of the gas which are identical in shape \& size (mass)

The volume occupied by the particles is negligible in comparison to the total volume of the gas

Gaseous molecules are always in random motion and collide with each other and with the walls of the container

Postulates / Assumptions of KTG

Pressure is due to the collisions of the Elastic collisions particles with the walls of the container

Newton's laws of motion are applicable on the motion of the gaseous particles

For an Ideal gas;
Attractive or repulsive forces

Postulates / Assumptions of KTG

Effect of gravity is negligible on the molecular motion

The average K.E. of the gaseous molecules

Absolute temperature of the gas

Postulates / Assumptions of KTG

Boltzmann constant

Temperature (K)

Boltzmann Constant

R Universal gas constant

Avogadro number

Molecular Speed

Gas molecules are always in continuous motion

They collide with each other and with the walls of the container

Change in their speed \& redistribution of energy

Speed \& energy of all the molecules at any instant are not the same

Measuring speed of an individual molecule is not possible

Molecular Speeds

Types of molecular speeds

Average Speed

Arithmetic mean of the speeds of different molecules of the gas

N Total number of

Most Probable Speed

Speed possessed by the maximum number of gas molecules

Root Mean Square Speed

Square root of the mean of the squares of the speeds possessed by the gas molecules

$$
\mathbf{u}_{\mathrm{rms}}=\left[\frac{3 R T}{M}\right]^{\frac{1}{2}}
$$

Root of mean of square of speeds

Relationship Between the Different Types of Speeds

For a particular gas at the same temperature (T),

$$
\begin{gathered}
{\left[\frac{3 R T}{M}\right]^{\frac{1}{2}}:\left[\frac{8 R T}{\pi M}\right]^{\frac{1}{2}}:\left[\frac{2 R T}{M}\right]^{\frac{1}{2}}} \\
\sqrt{3} \\
1.224 \\
\left.:\left[\frac{8}{\pi}\right]^{\frac{1}{2}}\right): \sqrt{2} \\
1.128 \\
1
\end{gathered}
$$

- T = Temperature in Kelvin
- $\mathbf{M}=$ Molar mass in kg
- $\mathrm{R}=8.314 \mathrm{~J} / \mathrm{mol} \mathrm{K}$

Conclusion:
$\mathbf{U}_{\mathrm{rms}}>\mathbf{U}_{\mathrm{avg}}>\mathbf{U}_{\mathrm{mp}}$

Maxwell-Boltzmann Distribution of Speeds

Based on the theory of probability

Gives the statistical average of the speeds of the whole collection of the gas molecules

Maxwell's Distribution of Molecular Speeds

N Total number of gas molecules

Molar mass

Maxwell-Boltzmann Distribution of Speeds

Maxwell-Boltzmann Distribution of Speeds

At a particular temperature,

Maxwell-Boltzmann Distribution of Speeds

Maximum fraction of molecules possess a speed corresponding to the peak of this curve referred to as \mathbf{u}_{mp}

Maxwell-Boltzmann Distribution of Speeds

Distribution of Speeds for Different Molar Masses

Maxwell's Distribution of Molecular Speeds

Most probable speed ($\mathbf{u m p}_{\mathrm{mp}}$)

Why Average Velocity is Towards the Right?

$$
\vec{x}
$$

Abbreviation / Symbol Used

Length of an edge of the cube \square

Number of molecules

Mass of a molecule

$$
=\quad \mathrm{m}
$$

Consider Collision with Face ABCD

$\mid \Delta \mathrm{pl} \quad=\quad 2 \mathrm{mu} \mathrm{u}_{\mathrm{i}} \hat{\mathrm{i}}$

Derivation of Equation

$$
F=\frac{\Delta p}{\Delta t}--->2 m u_{x} \frac{u_{x}}{2 l} \rightarrow-\rightarrow \frac{m u_{x}^{2}}{l}
$$

$$
\mathrm{F}_{\mathrm{x}, \text { Total }}=\frac{\mathrm{m}}{l}\left\{\mathrm{u}_{\mathrm{x}_{1}}^{2}+\mathrm{u}_{\mathrm{x}_{2}}{ }^{2}+\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . \mathrm{u}_{\mathrm{x}_{\mathrm{N}}}{ }^{2}\right\}
$$

Derivation of Equation

Average value of $u_{x}{ }^{2}$

Force due to all the molecules $\left(F_{x}\right)$

$$
=\quad \frac{m}{l}\left\{N \overline{u_{x}{ }^{2}}\right\}
$$

Derivation of Equation

Average of all three components of velocity are equal as the motion is totally random in all directions

$$
\overline{\mathbf{u}_{\mathrm{x}}{ }^{2}}=\overline{\mathbf{u}_{\mathrm{y}}^{2}}=\overline{\mathbf{u}_{\mathrm{z}}{ }^{2}}
$$

Derivation of Equation

$$
F=\quad \frac{m}{l} N \frac{1}{3} \overline{u^{2}}
$$

$$
P=\frac{\mathrm{F}}{l^{2}}=\frac{1}{3} \frac{\mathrm{mN}}{l^{3}} \overline{\mathrm{u}^{2}}
$$

Volume of the

$$
\text { container }{ }^{\prime} V \text { ' }=\boldsymbol{l}^{3}
$$

$$
P V=\frac{1}{3} m N \overline{u^{2}}
$$

Derivation of Equation

Root mean square speed

$$
\mathbf{u}_{\mathrm{rms}} \quad=\sqrt{\overline{u^{2}}}
$$

$$
\sqrt{5} \cdot
$$

Deriving $u_{\text {rms }}$ from Kinetic Gas Equation

$$
\mathrm{PV} \quad=\frac{1}{3} \mathrm{mNu}_{\mathrm{rms}}{ }^{2}
$$

$$
\mathrm{u}_{\mathrm{rms}}^{2}=\frac{3 \mathrm{RT}}{\mathrm{mN}}
$$

Deriving $\mathrm{u}_{\mathrm{rms}}$ from Kinetic Gas Equation

Deriving $u_{\text {rms }}$ from Kinetic Gas Equation

Collision Frequency (Z)

Collision

cross-section is an area of an imaginary sphere of radius ' σ ' around the molecule within which the center of another molecule cannot penetrate.

The volume swept by a single molecule in unit time is

Collision Frequency (Z)

If N^{*} is the number of molecules per unit volume, then the number of molecules within the volume V is:

The number of collision made by a single molecule in unit time will be

Collision Frequency (Z)

In order to account for the movements of all molecules, we must consider the average velocity along the line of centers of two colliding molecules instead of the average velocity of a single molecule.

On an average, molecules collide while approaching each other perpendicularly then the average velocity along their centers is $\sqrt{2} \overline{\mathbf{u}}$

Collision Frequency (Z)

Number of collision made by a single molecule with other molecules per unit time is:

Collision Frequency (Z)

Mean Free Path

Average distance travelled by a particle between two successive collision

Between two collisions, particles travel in linear path

Mean Free Path

Average distance travelled per unit time
Number of collisions made by a single molecule per unit time

Mean Free Path

No effect of T or P variation on λ at constant V

Real Gas

Gases which do not obey Ideal gas law under all conditions of T \& P

What is Compressibility Factor (Z)?

A measure of the deviation of real gases from ideal behaviour

Measured at the same T \& P

Compressibility Factor

Since, $V_{m, \text { ideal }}=\frac{R T}{P}=\frac{V_{m, \text { real }}}{V_{m, \text { deal }}}=\frac{P V_{m}}{R T}$

Compressibility Factor (Z)

At very low pressure

Attractive forces $=$ Repulsive forces

At intermediate pressure
$\mathrm{Z}<$ 1

Negative deviation

Gas easy to compress

Compressibility Factor (Z)

At high pressure

Attractive forces

 Repulsive forces

Gas difficult to compress

Different T, Same Gas

Boyle Temperature (T_{b})

Boyle point or temperature

Temperature at which a real gas behaves like an ideal gas at low pressure

Boyle Temperature

$$
\left(\mathrm{T}_{\mathrm{b}}\right)_{\mathrm{CO}, \mathrm{CH}} \begin{array}{lll}
& >273 \mathrm{~K} & \left(\mathrm{~T}_{\mathrm{b}}\right)_{\mathrm{H}_{2}, \mathrm{He}}
\end{array} \ll 273 \mathrm{~K}
$$

Conclusion

$$
T(273 \mathrm{~K})>\mathrm{T}_{\mathrm{b}, \text { gas }}
$$

Repulsive forces dominate

Conclusion

Z

Real Gases

Real Gases

Interparticle forces of attraction are present

van der Waals Equation of Real Gases

Pressure Correction

Intermolecular Attractive forces are present

Speed during collisions will be reduced

Momentum \downarrow Force applied \downarrow
Pressure \downarrow

$P_{\text {ideal }}$

Pressure Correction

Molecules are dragged back by other molecules due to intermolecular attractive forces

Pressure Correction

Correction term
 Number of molecules
attracting the colliding molecule

Correction term

Concentration of the colliding molecules

Pressure Correction

a van der Waals constant
'a' depends on force of attraction

Unit of "a"

- $=\frac{\mathrm{p}-\mathrm{me}}{\mathrm{m}}$

Significance of 'a'

Stronger the forces of attraction, greater will be 'a'

Value of 'a' depends on the nature of the gas

Remember!!

a

 Boiling Point

a (Polar molecules)

a (Non polar molecules)

For non polar molecules

Surface area \uparrow van der | vaals forces |
| :---: |
| Wa |

Volume Correction

$V_{\text {ideal }} \quad V \quad-\quad \begin{gathered}\text { Volume not available } \\ \text { for free movement }\end{gathered}$

Vexcluded
Volume that is not available for free movement is called excluded volume

Volume Correction

Volume Correction

b Excluded volume per mole of gas
'b' depends on size of the gas molecules
$\mathrm{b}=$
b $\quad 4 \times \frac{4}{3} \pi r^{3} \times N_{A} \quad$ b $\quad \propto$
Size of the molecules

Volume Correction and Unit of "b"

For n moles

Remember!!

If two gases have the same 'b' but different ' a ' then

Gas having the larger value of 'a' will occupy lesser volume

van der Waals Equation of Real Gases

- a \& b = van der Waals constants
- $\mathrm{n}=$ Number of moles of gas

Compressibility Factor

van der Waals Equation

$$
\left[P+\frac{a}{V_{m}^{2}}\right]\left(V_{m}-b\right)=R T
$$

$$
V_{m}=\frac{V}{n}=\text { Volume of } 1 \text { mole of gas }
$$

Verification of van der Waals Equation

1 At Low pressure (moderate temperature)

$$
\left.\left.\left[P+\frac{a}{V_{m}^{2}}\right] V_{m}\right)=\quad \mathrm{RT} \quad \mathrm{PV} \mathrm{~m}_{\mathrm{m}}+\frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}}\right)=\mathrm{RT}
$$

$$
\frac{P V_{m}}{R T}+\frac{a}{V_{m} R T}
$$

Verification of van der Waals Equation

Real gas is more compressible as compared to an Ideal gas

Verification of van der Waals Equation

2 At high pressure (moderate temperature)

b can't be neglected in comparison to V_{m}

$$
\text { Pressure }) \uparrow \quad \frac{\mathrm{a}}{\mathrm{~V}_{\mathrm{m}}{ }^{2}} \text { can be neglected }
$$

Verification of van der Waals Equation

Verification of van der Waals Equation

3 Real gas having very large molar volume

$$
\left[P+\frac{a}{V_{m}^{2}}\right]\left(V_{m}-b\right)
$$

V_{m} is very large $-----\rightarrow \quad \frac{a}{V_{m}^{2}}$ can be neglected

Verification of van der Waals Equation

Liquefaction of Gases

$$
\begin{aligned}
& \text { Phenomenon } \\
& \text { of converting a } \\
& \text { gas into liquid }
\end{aligned}
$$

Gas liquification

Andrew's Isotherm

Andrew's Isotherm

The 'Dome' of Andrew's Isotherm

Different isotherms for the same gas

Critical Isotherm

Critical Point

A point on the critical isotherm where gas \& liquid are in equilibrium

Critical Isotherm

Critical Temperature (T_{C})

Temperature above which the gas cannot be liquefied, regardless of the pressure

Two phases can be distinguished

At T_{c}

Liquid passes into the gaseous phase continuously and the boundary between the two phases disappears

Continuity of States

Density Variation with Temperature

Density Variation with Temperature

Did you know?

Term vapour is used when

Term gas is
used when

Critical Temperature (T_{C})

Significance of Critical Temperature

As intermolecular forces
increase, T_{c} also increases

Critical Pressure $\left(\mathrm{P}_{\mathrm{C}}\right)$ and Critical Volume $\left(\mathrm{V}_{\mathrm{C}}\right)$

Critical Constants

Critical Constants in Terms of van der Waals Constants

Value of V_{C} is not reliable as it can't be measured properly

Determine van der Waals constants ('a' \& 'b') using $T_{C} \& P_{C}$

Compressibility Factor \& Critical Constants

For every gas,

Virial Equation of State

Virial Equation of State

$$
Z=\frac{P V_{m}}{R T}=1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\frac{D}{V_{m}^{3}}+\ldots \ldots \ldots \ldots . .
$$

- $1 \Rightarrow$ First virial coefficient
- $B \Rightarrow$ Second virial coefficient
- $C \Rightarrow$ Third virial coefficient
- $\mathrm{D} \Rightarrow$ Fourth virial coefficient

van der Waals Equation in Virial Form

$$
\left[P+\frac{n^{2} a}{V^{2}}\right][V-n b]=n R T
$$

For 1 mol,

$$
\left[P+\frac{a}{V_{m}^{2}}\right]\left[V_{m}-b\right]=R T
$$

van der Waals Equation in Virial Form

$$
P=\frac{R T}{V_{m}-b}-\frac{a}{V_{m}{ }^{2}}
$$

Multiplying both sides by $\frac{\mathrm{V}_{\mathrm{m}}}{\mathrm{RT}}$

$$
\frac{P V_{m}}{R T}=\frac{V_{m}}{V_{m}-b}-\frac{a}{V_{m} R T}
$$

Also,

$$
Z=\frac{V_{m}}{V_{m}-b}-\frac{a}{V_{m} R T}
$$

van der Waals Equation in Virial Form

$$
\frac{1}{1-\left[\frac{b}{V_{m}}\right]}-\frac{a}{V_{m} R T}
$$

Using binomial expansion formula,

$$
\frac{1}{1-x}=(1-x)^{-1}=1+x+x^{2}+x^{3}+\ldots
$$

van der Waals Equation in Virial Form

$$
z]=\left[\left[1+\frac{b}{V_{m}}+\frac{b^{2}}{V_{m}{ }^{2}}+\frac{b^{3}}{V_{m}{ }^{3}}+\ldots . .\right] \cdot \frac{a}{V_{m} R T}\right.
$$

$$
1+\frac{1}{V_{m}}\left[b-\frac{a}{R T}\right]+\frac{b^{2}}{V_{m}{ }^{2}}+\frac{b^{3}}{V_{m}{ }^{3}}+\ldots . .
$$

van der Waals Equation in Virial Form

$Z=1+\frac{1}{V_{m}}\left[b-\frac{a}{R T}\right]+\frac{b^{2}}{V_{m}{ }^{2}}+\frac{b^{3}}{V_{m}{ }^{3}}+\ldots .$.
Comparing van der Waals equation with Virial equation

$$
Z=1+\frac{B}{V_{m}}+\frac{C}{V_{m}^{2}}+\frac{D}{V_{m}{ }^{3}}+\ldots . .
$$

van der Waals Equation in Virial Form

Hence, $\frac{1}{V_{m}{ }^{2}}, \frac{1}{V_{m}{ }^{3}}$
, ... and higher terms can be
neglected.

Only ' B ' is temperature dependent, all other virial coefficients are independent of temperature

van der Waals Equation in Virial Form

At low pressure, \mathbf{V}_{m} will be very large.
Hence, $\frac{1}{\mathbf{V}_{\mathrm{m}}{ }^{2}}, \frac{1}{\mathbf{V}_{\mathrm{m}}{ }^{3}} \quad, \ldots$ and higher terms can be neglected.

$$
z=1+\left[b-\frac{a}{R T}\right] \frac{1}{V_{m}}
$$

van der Waals Equation in Virial Form

Gas will behave as an ideal gas

This temperature is known as the Boyle temperature (T_{b})

