Welcome to

Statistics

Table of contents

Session 01	03
Statistics	04
Measures of Central Tendency	06
Mean	07
Meatiamd Median	10
Mode	15
Empirical Relation	18
Measure of Dispersion	20
Range	22
Mean Deviation	23

Session 02	29
Property Of Mean Deviation	30
Variance	32
Standard Deviation	36
Properties of Variance	40
Combined Variance/ Standard	44
Deviation	

Session 01

Introduction to

Statistics

Statistics:

Statistics is the branch of mathematics which deals with collection, organisation, analysis, interpretation and presentation of numerical data.

An average value or central value of a distribution is the value of a variable which is representative of the entire distribution, this representative value is called the measure of central tendency.

It can be of following types:
> Mean
> Median
> Mode
(i) Measures of Central Tendency:

For Ungrouped data:

Mean: It is the average value of all the observations.

$$
\bar{x}=\frac{x_{1}+x_{2}+x_{3}+\cdots+x_{n}}{n}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

Example :
Data of marks of a student in 10 different tests:
$61,48,54,49,61,61,61,49,54,52$
$\bar{x}=\frac{61+48+54+49+61+61+61+49+54+52}{10}=55$
(i) Measures of Central Tendency:

For Discrete Frequency Distributions:
Mean: $\bar{x}=\frac{f_{1} x_{1}+f_{2} x_{2}+f_{3} x_{3}+\cdots+f_{n} x_{n}}{f_{1}+f_{2}+f_{3}+\cdots+f_{n}}=\frac{\sum_{i=1}^{n} f_{i} x_{i}}{\sum_{i=1}^{n} f_{i}}$
Example :

x_{i}	f_{i}	$f_{i} x_{i}$
2	1	2
3	2	6
5	3	15
7	4	28
9	5	45
	15	96

$$
\bar{x}=\frac{96}{15}=6.4
$$

If for some $x \in \mathbb{R}$, the frequency distribution of the marks obtained by 20 students in a test is:

Marks	2	3	5	7
Frequency	$(x+1)^{2}$	$2 x-5$	$x^{2}-3 x$	x

then the mean of the marks is:
JEE Main 2019

Solution:

Given there are 20 students.
$\therefore \sum f_{i}=(x+1)^{2}+(2 x-5)+x^{2}-3 x+x=20$

$$
\begin{aligned}
& \Rightarrow 2 x^{2}+2 x-24=0 \\
& \Rightarrow x^{2}+x-12=0 \Rightarrow x=3,-4 \text { (rejected) }
\end{aligned}
$$

$\because \operatorname{Mean}(\bar{x})=\frac{\sum f_{i} x_{i}}{\Sigma f_{i}}=\frac{2 \cdot(x+1)^{2}+3 \cdot(2 x-5)+5 \cdot\left(x^{2}-3 x\right)+7 \cdot x}{20}=\frac{2 \cdot(4)^{2}+3 \cdot 1+5 \cdot 0+7 \cdot 3}{20}=\frac{56}{20}=2.8$

Measures of Central Tendency:

For Ungrouped data:

Median: It is the middle value when the observations are arranged in increasing or decreasing order.

Case 1: When n is odd
$M=\left(\frac{n+1}{2}\right)^{t h}$ term

Case 2: When n is even

$$
M=\text { Average of }\left(\frac{n}{2}\right)^{t h} \text { term \& }\left(\frac{n}{2}+1\right)^{\text {th }} \text { term }
$$

Measures of Central Tendency:

For Ungrouped data:
Example:
Given: Data of marks of a student in 10 different tests:
$61,48,54,49,61,61,61,49,54,52$
After arranging in ascending order,
$48,49,49,52,54,54,61,61,61,61$

$$
M=\frac{\left(\frac{n}{2}\right)^{t h} \text { term }+\left(\frac{n}{2}+1\right)^{t h} \text { term }}{2}=\frac{5^{t h} \text { term }+6^{\text {th }} \text { term }}{2}=\frac{54+54}{2}=54
$$

Measures of Central Tendency:
For Discrete Frequency Distributions:
Median:

Case 1: When n is odd
$M=\left(\frac{n+1}{2}\right)^{\text {th }}$ term

Case 2: When n is even

$$
M=\text { Average of }\left(\frac{n}{2}\right)^{\text {th }} \text { term \& }\left(\frac{n}{2}+1\right)^{\text {th }} \text { term }
$$

Where n is the Cumulative frequency.

Measures of Central Tendency:

For Discrete Frequency Distributions:

Example :

x_{i}	f_{i}	$C . F$.
2	1	1
3	2	3
5	3	6
7	4	10
9	5	15

$$
M=\left(\frac{n+1}{2}\right)^{\text {th }} \text { term }=\frac{15+1}{2}=8^{\text {th }} \text { term }
$$

The closest C.F. greater than 8 is 10 .
The term corresponding to C.F. 10 is 7.
\therefore Median $=7$

The mean and the median of the following ten numbers in increasing order $10,22,26,29,34, x, 42,67,70, y$ are 42 and 35 respectively, then $\frac{y}{x}$ is equal to:

Solution:
Mean $=42$
$\Rightarrow \frac{10+22+26+29+34+x+42+67+70+y}{10}=42$
$\Rightarrow x+y=120$
Since there are 10 terms, median will be mean of middle two terms.
Median $=\frac{34+x}{2}=35 \Rightarrow x=36$
$\therefore y=84$

Hence, $\frac{y}{x}=\frac{7}{3}$

$$
\text { Mean }=A+\frac{1}{N} \sum f_{i} d_{i}
$$

$$
\operatorname{Median}(M)=l+\left[\frac{\left(\frac{N}{2}\right)-c}{f}\right] \times h
$$

Where $N=$ total frequency $=\sum f$
$A=$ assumed mean
$d_{i}=$ deviation of A from each of x_{i} i.e. $d_{i}=x_{i}-A$
$l=$ lower limit of median class
$f=$ frequency of the median class
$c=$ cumulative frequency of the class preceding the median class
$h=$ class interval (width) of the median class

Let the assumed mean $A=15$

Class Interval	x_{i}	f_{i}	$x_{i} f_{i}$	d_{i}	$f_{i} d_{i}$	C.F.
$0-6$	3	a	$3 a$	-12	$-12 a$	a
$6-12$	9	b	$9 b$	-6	$-6 b$	$a+b$
$12-18$	15	12	180	0	0	$12+a+b$
$18-24$	21	9	189	6	54	$21+a+b$
$24-30$	27	5	135	12	60	$26+a+b$
	$a+b+26$	$3 a+9 b$ +504		$114-12 a$ $-6 b$		

Mean $=15+\frac{114-12 a-6 b}{a+b+26}=\frac{309}{22}$
Mean $=A+\frac{1}{N} \sum f_{i} d_{i}$

$$
\Rightarrow 81 a+37 b=1018 \cdots(i)
$$

Let the assumed mean $A=15$

Class Interval	x_{i}	f_{i}	$x_{i} f_{i}$	d_{i}	$f_{i} d_{i}$	C.F.		
$0-6$	3	a	$3 a$	-12	$-12 a$	a		
$6-12$	9	b	$9 b$	-6	$-6 b$	$a+b$		
$12-18$	15	12	180	0	0	$12+a+b$	\rightarrow	Median
:---:								
Class								

$\Rightarrow 81 a+37 b=1018 \cdots(i)$
Median $=12+\frac{13+\frac{a+b}{2}-(a+b)}{12} \times 6=14 \Rightarrow a+b=18 \cdots$ (ii)
From (i) and (ii), $a=8$ and $b=10$

$$
\operatorname{Median}(M)=l+\left[\frac{\left(\frac{N}{2}\right)-c}{f}\right] \times h
$$

$\therefore(a-b)^{2}=4$

Key Takeaways

Measures of Central Tendency:

For Ungrouped data:
Mode: It is the observation with maximum frequency.
Example :
Given: Marks of a student in 10 different tests are
$61,48,54,49,61,61,61,49,54,52$
Mode of the given data is 61 since it has maximum frequency.

Measures of Central Tendency:

For Discrete Frequency Distributions:
For discrete frequency distributions, mode is simply the distribution with highest frequency.
Example:

x_{i}	f_{i}
2	1
3	2
5	3
7	4
9	5

Mode : 9

Measures of Central Tendency:

Empirical Relationship between Mean, Median and Mode

The formula to define the relation between mean, median and mode in a moderately skewed distribution is

$$
\text { Mode }=3 \text { Median }-2 \text { Mean }
$$

Mean

Negatively skewed

Normal Distribution

In a frequency distribution, the mean and median are 21 \& 22 respectively, then its mode is approximately.

Solution:

Mode $=3$ median -2 mean

It is measure of deviation of its value about their central values. It gives an idea of scatteredness of different values from the central values.

It has four types:
> Range
> Mean deviation
> Variance
> Standard deviation

Measure of Dispersion

Range

Consider $x_{1}, x_{2}, x_{3}, \cdots, x_{n}$ be data, then

$$
\text { Coefficient of Range }=\frac{x_{\max }-x_{\min }}{x_{\max }+x_{\min }}
$$

Example/,

Let $20,15,12,11,10$ \& 9 be data,
Range $=20-9=11$
Coefficient of Range $=\frac{20-9}{20+9}=\frac{11}{29}$

Mean Deviation:

Mean deviation of a distribution is the mean of absolute value of deviation of variate from their statistical average (median, mean or mode).

If A is any statistical average the mean deviation about A is defined as
Mean deviation $=\frac{1}{N} \sum_{i=1}^{n}\left|x_{i}-A\right|$

Mean Deviation:

If A is any statistical average the mean deviation about A is defined as
Mean deviation $=\frac{1}{N} \sum_{i=1}^{n}\left|x_{i}-A\right|$

Example :

Given a data set $\{5,3,7,8,4,9\}$, what is the mean deviation about the mean?
Solution: Mean $=\frac{5+3+7+8+4+9}{6}=\frac{36}{6}=6$
Mean Deviation $=\frac{|5-6|+|3-6|+|7-6|+|8-6|+|4-6|+|9-6|}{6}=\frac{1+3+1+2+2+3}{6}$

$$
=\frac{12}{6}=2
$$

Mean Deviation:

If A is any statistical average the mean deviation about A is defined as
Mean deviation $=\frac{1}{N} \sum_{i=1}^{n}\left|x_{i}-A\right|$
For frequency distributions,
Mean deviation $=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left|x_{i}-A\right|$

If the mean deviation about the median of the numbers $a, 2 a, \cdots, 50 a$ is 50 , then $|a|$ equals:

Solution:
$a, 2 a, \cdots, 50 a \longrightarrow 50$ terms
When n is even, Median $=\frac{\left(\frac{n}{2}\right)^{\text {th }} \text { term }+\left(\frac{n}{2}+1\right)^{\text {th }} \text { term }}{2}$
Median: $M=\frac{25 a+26 a}{2}=(25.5) a$

If the mean deviation about the median of the numbers $a, 2 a, \cdots, 50 a$ is 50 , then $|a|$ equals:

AIEEE 2011

Solution:

Median: $M=(25.5) a$

$$
\text { Mean deviation }=\frac{1}{N} \sum_{i=1}^{n}\left|x_{i}-A\right|
$$

Mean deviation $=\frac{\sum_{i=1}^{50}\left|x_{i}-M\right|}{50}=50$

$$
\frac{|a-(25.5) a|+|2 a-(25.5) a|+\cdots+|50 a-(25.5) a|}{50}=50
$$

$$
2 \times \frac{|(0.5) a|+|(1.5) a|+\cdots+|(24.5) a|}{50}=50
$$

$$
\frac{2}{50} \times \frac{25}{2}(0.5|a|+24.5|a|)=50
$$

$$
\Rightarrow 625|a|=2500 \quad \Rightarrow|a|=4
$$

Session 02

Variance and its
Properties

Mean deviation is independent of change of origin, but dependent on change of scale.
If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X
Mean deviation(M.D.) $=\frac{1}{N} \sum_{i=1}^{n}\left|x_{i}-A\right|$
After multiplying with constant a and adding another constant b in each observation,
i.e. $a x_{1}+b, a x_{2}+b, \cdots \cdots, a x_{n}+b$

New Mean deviation $=a \times$ M.D.

The mean deviation of an ungrouped data is 50 . If each observation is increased by 2%, then the new mean deviation is:

Solution:
$x^{\prime}{ }_{i}=\left(1+\frac{2}{100}\right) x_{i}=1.02 x_{i}$
M.D. $\rightarrow a \times$ M.D.

Thus, new mean deviation $=1.02 \times 50=51$

Key Takeaways

Variance

It is the mean of squares of deviation of variate from their mean.
It is denoted by σ^{2} or $\operatorname{var}(x)$.
If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X, then

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \cdot \sum\left(x_{i}-\bar{x}\right)^{2} \\
& \sigma^{2}=\frac{1}{n} \cdot \sum\left(x_{i}^{2}+(\bar{x})^{2}-2 \cdot x_{i} \cdot \bar{x}\right) \\
& \sigma^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}+\frac{(\bar{x})^{2}}{n} \cdot \sum_{i=1}^{n} 1-\frac{2}{n} \cdot \bar{x} \sum_{i=1}^{n} x_{i}
\end{aligned}
$$

Variance

It is the mean of squares of deviation of variate from their mean.
It is denoted by σ^{2} or $\operatorname{var}(x)$.
If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X, then

$$
\begin{aligned}
& \sigma^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}+\frac{(\bar{x})^{2}}{n} \cdot \sum_{i=1}^{n} 1-\frac{2}{n} \cdot \bar{x} \sum_{i=1}^{n} x_{i} \\
& \sigma^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}+(\bar{x})^{2}-2(\bar{x})^{2}{ }^{2} \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}(\bar{x})^{2} \\
& \text { Mean Square of } \\
& \text { of Squares Mean }
\end{aligned}
$$

Key Takeaways

Variance

$$
\sigma^{2}=\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}-(\bar{x})^{2}
$$

Note

Variance of discrete frequency distribution:
If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X and corresponding frequencies of them are $f_{1}, f_{2} \cdots \cdots, f_{n}$.

$$
\operatorname{Var}(X)=\frac{1}{N}\left(\sum f_{i}\left(x_{i}-\bar{x}\right)^{2}\right)=\frac{1}{N} \sum f_{i} x_{i}^{2}-\left(\frac{1}{N} \sum f_{i} x_{i}\right)^{2}
$$

The variance of first n natural numbers is \qquad .

Solution:

$=\frac{n^{2}-1}{12}$

Standard deviation

The standard deviation(s OR σ) is defined as the positive square root of the variance.

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5 . Then, the correct variance is equal to \qquad .

JEE Main 2022
Solution: Let the observations be $x_{1}, x_{2}, \ldots, x_{15}$
$\frac{\sum_{i=1}^{14} x_{i}+5}{15}=8 \quad \Rightarrow \sum_{i=1}^{14} x_{i}=115$
Corrected Mean : $\overline{X_{c}}=\frac{\sum_{i=1}^{14} x_{i}+20}{15}=\frac{115+20}{15}=9$
Variance $=(S . D .)^{2}=9$

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5 . Then, the correct variance is equal to \qquad .

Solution: Let the observations be $x_{1}, x_{2}, \ldots, x_{15}$
Corrected Mean : $\overline{X_{c}}=9$
Variance $=(S . D .)^{2}=9$

$$
\sum_{i=1}^{14} x_{i}^{2}+5^{2}-8^{2}=9
$$

15

$$
\sum_{i=1}^{14} x_{i}^{2}=1070
$$

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5 . Then, the correct variance is equal to \qquad .

JEE Main 2022
Solution: Let the observations be $x_{1}, x_{2}, \ldots, x_{15}$
Corrected Mean: $\overline{X_{c}}=9$
Variance $=(S . D .)^{2}=9 \quad \sum_{i=1}^{14} x_{i}^{2}=1070$
Correct Variance:

$$
\sigma^{2}=\frac{\sum_{i=1}^{14} x_{i}^{2}+20^{2}}{15}-9^{2}=\frac{1070+400}{15}-81=98-81=17
$$

Key Takeaways

Variance

Property: Variance is independent of change of origin, but dependent on change of scale.

If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X,

$$
\operatorname{var}\left(x_{i}+b\right)=\left(\operatorname{var} x_{i}\right)
$$

Example : Variance of $(1,2,3,4)=\frac{4^{2}-1}{12}$
On adding 3 to each term,
Variance of $(4,5,6,7)=\frac{4^{2}+5^{2}+6^{2}+7^{2}}{4}-\left(\frac{4+5+6+7}{4}\right)^{2}=\frac{126-121}{4}=\frac{5}{4}$

Key Takeaways

Variance

Property: Variance is independent of change of origin, but dependent on change of scale.

If $x_{1}, x_{2}, \cdots \cdots, x_{n}$ are n values of a variable X,

$$
\operatorname{var}\left(x_{i}+b\right)=\left(\operatorname{var} x_{i}\right)
$$

$$
\operatorname{var}\left(a x_{i}+b\right)=a^{2}\left(\operatorname{var} x_{i}\right)
$$

If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16 , then $m+n$ is equal to:

Solution:

$$
\begin{aligned}
& \frac{n^{2}-1}{12}=10 \\
& \Rightarrow n=11
\end{aligned}
$$

Variance of first n natural numbers $=\frac{n^{2}-1}{12}$

Variance of $(2,4,6 \ldots)=4 \times$ variance of $(1,2,3,4 \ldots)$
$=4 \times\left(\frac{m^{2}-1}{12}\right)$
$\Rightarrow \frac{m^{2}-1}{3}=16 \Rightarrow m=7$
$\therefore n+m=11+7=18$

$$
\operatorname{var}\left(a x_{i}+b\right)=a^{2}\left(\operatorname{var} x_{i}\right)
$$

In a series of $2 n$ observations, half of them are equal to a and remaining half are equal to $-a$. Also, by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20 , respectively. Then the value of $a^{2}+b^{2}$ is equal to:

Solution:

$$
\sqrt{\frac{n a^{2}+n a^{2}}{2 n}-0}=20 \Rightarrow a^{2}=400 \therefore a^{2}+b^{2}=425
$$

Key Takeaways

Combined Variance/Standard Deviation

If there are two sets of observations containing $n_{1} \& n_{2}$ items.

Mean: $\overline{x_{1}} \& \overline{x_{2}}$

$$
\bar{x}=\frac{n_{1} \overline{x_{1}}+n_{2} \overline{x_{2}}}{n_{1}+n_{2}}
$$

Standard deviation: $\sigma_{1} \& \sigma_{2}$

$$
\sigma^{2}=\frac{1}{n_{1}+n_{2}}\left[n_{1}\left(\sigma_{1}^{2}+d_{1}^{2}\right)+n_{2}\left(\sigma_{2}^{2}+d_{2}^{2}\right)\right]
$$

$$
\text { Where } d_{1}=\bar{x}-\overline{x_{1}}, d_{2}=\bar{x}-\overline{x_{2}}
$$

Coefficient of variation
C.V. $=\frac{\sigma}{\bar{X}} \times 100$

Co-efficient of variation of two series are 75% and 90% and their standard deviations 15 and 18. Find their mean.

Solution:

For $1^{\text {st }}$ series $75=\frac{15}{\bar{x}} \times 100 \Rightarrow \bar{x}=20$
For $2^{n d}$ series $90=\frac{18}{\bar{x}} \times 100 \quad \Rightarrow \bar{x}=20$
Thus, both the series have same mean i.e. 20

| | Size | Mean | Variance |
| :---: | :---: | :---: | :---: | :---: |
| Observation I | 10 | 2 | 2 |
| Observation $I I$ | n | 3 | 1 |

If the variance of the combined set of these two observation is $\frac{17}{9}$, then the value of n is equal to:

Solution:

For Observation I:
$\frac{\sum x_{i}}{10}=2 \Rightarrow \sum x_{i}=20$
$\Rightarrow \frac{\sum x_{i}^{2}}{10}-(2)^{2}=2$
$\Rightarrow \sum x_{i}^{2}=60$
For Observation II:
$\frac{\sum y_{i}^{2}}{n}-3^{2}=1 \Rightarrow \Sigma y_{i}^{2}=10 n$

| | Size | Mean | Variance |
| :---: | :---: | :---: | :---: | :---: |
| Observation I | 10 | 2 | 2 |
| Observation $I I$ | n | 3 | 1 |

If the variance of the combined set of these two observation is $\frac{17}{9}$, then the value of n is equal to:
Solution:

$$
\begin{aligned}
& \sigma^{2}=\frac{\sum\left(x_{i}^{2}+y_{i}^{2}\right)}{10+n}-\left(\frac{\sum\left(x_{i}+y_{i}\right)}{10+n}\right)^{2} \\
& \Rightarrow \frac{17}{9}=\frac{60+10 n}{10+n}-\frac{(20+3 n)^{2}}{(10+n)^{2}} \\
& \Rightarrow 17\left(n^{2}+20 n+100\right)=9\left(n^{2}+40 n+200\right) \\
& \Rightarrow 8 n^{2}-20 n-100=0 \\
& \Rightarrow 2 n^{2}-5 n-25=0 \\
& \Rightarrow n=5
\end{aligned}
$$

