

Table of contents

A	
	N
	ひ

<u>Session 01</u>	03
<u>Statistics</u>	04
Measures of Central Tendency	06
<u>Mean</u>	07
Meahand Median	10
Mode	15
	18
Empirical Relation	20
Measure of Dispersion	22
Range	23
Mean Deviation	24

Session 02	29
Property Of Mean Deviation	30
<u>Variance</u>	32
Standard Deviation	36
Properties of Variance	40
Combined Variance/ Standard Deviation	44

Statistics:

Statistics is the branch of mathematics which deals with collection, organisation, analysis, interpretation and presentation of numerical data.

Types of Data:

Ungrouped Data (Raw data)

Example:

Data of marks of a student in 10

different tests:

Grouped Data

61, 48, 54, 49, 61, 61, 61, 49, 54, 52

Discrete Frequency Distribution

Continuous Frequency Distribution

Marks	f
49	2
52	1
54	2
61	4
48	1

Class	f_i
45 – 50	3
50 – 55	3
55 – 60	0
60 – 65	4

An average value or central value of a distribution is the value of a variable which is representative of the entire distribution, this representative value is called the measure of central tendency.

It can be of following types:

- Mean
- Median
- Mode

For Ungrouped data:

Mean: It is the average value of all the observations.

$$\bar{x} = \frac{x_1 + x_2 + x_3 + \dots + x_n}{n} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Example:

Data of marks of a student in 10 different tests:

$$\bar{x} = \frac{61 + 48 + 54 + 49 + 61 + 61 + 61 + 49 + 54 + 52}{10} = 55$$

For Discrete Frequency Distributions:

Mean:
$$\bar{x} = \frac{f_1 x_1 + f_2 x_2 + f_3 x_3 + \dots + f_n x_n}{f_1 + f_2 + f_3 + \dots + f_n} = \frac{\sum_{i=1}^n f_i x_i}{\sum_{i=1}^n f_i}$$

Example:

x_i	f_i	$f_i x_i$
2	1	2
3	2	6
5	3	15
7	4 28	
9	5	45
	15	96

$$\bar{x} = \frac{96}{15} = 6.4$$

If for some $x \in \mathbb{R}$, the frequency distribution of the marks obtained by 20 students in a test is:

Marks	2	3	5	7
Frequency	$(x+1)^2$	2x - 5	x^2-3x	x

then the mean of the marks is:

JEE Main 2019

Solution:

Given there are 20 students.

$$\text{:: Mean } (\overline{x}) = \frac{\sum f_i x_i}{\sum f_i} = \frac{2 \cdot (x+1)^2 + 3 \cdot (2x-5) + 5 \cdot (x^2 - 3x) + 7 \cdot x}{20} = \frac{2 \cdot (4)^2 + 3 \cdot 1 + 5 \cdot 0 + 7 \cdot 3}{20} = \frac{56}{20} = 2.8$$

For Ungrouped data:

Median: It is the middle value when the observations are arranged in increasing or decreasing order.

Case 1: When *n* is odd

$$M = \left(\frac{n+1}{2}\right)^{th}$$
 term

Case 2: When *n* is even

$$M = \text{Average of } \left(\frac{n}{2}\right)^{th} \text{term } \& \left(\frac{n}{2} + 1\right)^{th} \text{ term}$$

For Ungrouped data:

Example:

Given: Data of marks of a student in 10 different tests:

61, 48, 54, 49, 61, 61, 61, 49, 54, 52

After arranging in ascending order,

48, 49, 49, 52, **54,54**, 61, 61, 61, 61

$$M = \frac{\left(\frac{n}{2}\right)^{th} \text{term} + \left(\frac{n}{2} + 1\right)^{th} \text{term}}{2} = \frac{5^{th} \text{term} + 6^{th} \text{term}}{2} = \frac{54 + 54}{2} = 54$$

For Discrete Frequency Distributions:

Median:

Case 1: When *n* is odd

$$M = \left(\frac{n+1}{2}\right)^{th}$$
 term

Case 2: When *n* is even

$$M = \text{Average of } \left(\frac{n}{2}\right)^{th} \text{term } \& \left(\frac{n}{2} + 1\right)^{th} \text{term}$$

Where *n* is the Cumulative frequency.

Measures of Central Tendency:

For Discrete Frequency Distributions:

Example:

x_i	f_i	C.F.	
2	1	1	
3	2	3	
5	3	6	
7	4	10	
9	5	15	

$$M = \left(\frac{n+1}{2}\right)^{th} \text{ term} = \frac{15+1}{2} = 8^{th} \text{ term}$$

The closest C.F. greater than 8 is 10.

The term corresponding to C.F. 10 is 7.

∴ Median =
$$7$$

The mean and the median of the following ten numbers in increasing order 10, 22, 26, 29, 34, x, 42, 67, 70, y are 42 and 35 respectively, then $\frac{y}{x}$ is equal to:

Solution:

$$Mean = 42$$

$$\Rightarrow \frac{10+22+26+29+34+x+42+67+70+y}{10} = 42$$

$$\Rightarrow x + y = 120$$

Since there are 10 terms, median will be mean of middle two terms.

$$Median = \frac{34+x}{2} = 35 \Rightarrow x = 36$$

$$\therefore y = 84$$

Hence,
$$\frac{y}{x} = \frac{7}{3}$$

JEE Main 2019

Mean & Median for Continuous Frequency Distribution

$$Mean = A + \frac{1}{N} \sum f_i d_i$$

$$Median(M) = l + \left[\frac{\left(\frac{N}{2}\right) - c}{f}\right] \times h$$

Where $N = \text{total frequency} = \sum f$

A =assumed mean

 d_i = deviation of A from each of x_i i.e. $d_i = x_i - A$

l = lower limit of median class

f =frequency of the median class

c = cumulative frequency of the class preceding the median class

h = class interval (width) of the median class

Let the assumed mean A = 15

Class Interval	x_i	f_i	$x_i f_i$	d_i	$f_i d_i$	C.F.
0 – 6	3	а	3 <i>a</i>	-12	-12a	а
6 – 12	9	b	9 <i>b</i>	-6	-6 <i>b</i>	a+b
12 – 18	15	12	180	0	0	12 + a + b
18 - 24	21	9	189	6	54	21 + a + b
24 - 30	27	5	135	12	60	26 + a + b
		a + b + 26	3a + 9b + 504		114 — 12a — 6b	

Mean =
$$15 + \frac{114 - 12a - 6b}{a + b + 26} = \frac{309}{22}$$

$$\Rightarrow 81a + 37b = 1018 \cdots (i)$$

$$Mean = A + \frac{1}{N} \sum f_i d_i$$

Let the assumed mean A = 15

▶ Median Class

Class Interval	x_i	f_i	$x_i f_i$	d_i	$f_i d_i$	C.F.
0 – 6	3	а	3a	-12	-12a	а
6 – 12	9	b	9 <i>b</i>	-6	-6b	(a+b)
12 – 18	15	12	180	0	0	12 + a + b
18 – 24	21	9	189	6	54	21 + a + b
24 – 30	27	5	135	12	60	26 + a + b
		a + b + 26	3a + 9b + 504		114 — 12a — 6b	

$$\Rightarrow 81a + 37b = 1018 \cdots (i)$$

Median =
$$12 + \frac{13 + \frac{a+b}{2} - (a+b)}{12} \times 6 = 14 \Rightarrow a+b = 18 \cdots (ii)$$

From (i) and (ii), a = 8 and b = 10

$$\therefore (a-b)^2 = 4$$

$$Median(M) = l + \left[\frac{\left(\frac{N}{2}\right) - c}{f}\right] \times h$$

Measures of Central Tendency:

For Ungrouped data:

Mode: It is the observation with maximum frequency.

Example:

Given: Marks of a student in 10 different tests are

61, 48, 54, 49, **61**, **61**, **61**, 49, 54, 52

Mode of the given data is 61 since it has maximum frequency.

For Discrete Frequency Distributions:

For discrete frequency distributions, mode is simply the distribution with highest frequency.

Example:

x_i	f_i
2	1
3	2
5	3
7	4
9	5

Mode: 9

Empirical Relationship between Mean, Median and Mode

The formula to define the relation between mean, median and mode in a moderately skewed distribution is

In a frequency distribution, the mean and median are 21 & 22 respectively, then its mode is approximately.

Solution:

Mode = 3 median - 2 mean

$$= 3 \times 22 - 2 \times 21$$

$$=3(22-14)$$

$$= 3 \times 8$$

$$= 24$$

Measure of Dispersion

It is measure of deviation of its value about their central values. It gives an idea of scatteredness of different values from the central values.

It has four types:

- Range
- Mean deviation
- Variance
- Standard deviation

Measure of Dispersion

<u>Range</u>

Consider x_1 , x_2 , x_3 , ..., x_n be data, then

Range =
$$x_{max} - x_{min}$$

Coefficient of Range =
$$\frac{x_{max} - x_{min}}{x_{max} + x_{min}}$$

Example J

Let 20, 15, 12, 11, 10 & 9 be data,

Range = 20 - 9 = 11

Coefficient of Range
$$=$$
 $\frac{20-9}{20+9} = \frac{11}{29}$

Mean Deviation:

Mean deviation of a distribution is the mean of absolute value of deviation of variate from their statistical average (median, mean or mode).

If A is any statistical average the mean deviation about A is defined as

Mean deviation =
$$\frac{1}{N} \sum_{i=1}^{n} |x_i - A|$$

Mean Deviation:

If A is any statistical average the mean deviation about A is defined as

Mean deviation =
$$\frac{1}{N} \sum_{i=1}^{n} |x_i - A|$$

Example:

Given a data set {5, 3, 7, 8, 4, 9}, what is the mean deviation about the mean?

Solution: Mean =
$$\frac{5+3+7+8+4+9}{6} = \frac{36}{6} = 6$$

Mean Deviation
$$= \frac{|5-6|+|3-6|+|7-6|+|8-6|+|4-6|+|9-6|}{6} = \frac{1+3+1+2+2+3}{6}$$
$$= \frac{12}{6} = 2$$

Mean Deviation:

If A is any statistical average the mean deviation about A is defined as

Mean deviation =
$$\frac{1}{N} \sum_{i=1}^{n} |x_i - A|$$

For frequency distributions,

Mean deviation =
$$\frac{1}{N} \sum_{i=1}^{n} f_i |x_i - A|$$

If the mean deviation about the median of the numbers $a, 2a, \dots, 50a$ is 50, then |a| equals:

Solution:

$$a, 2a, \cdots, 50a \longrightarrow 50 \text{ terms}$$

When
$$n$$
 is even, Median $=\frac{\left(\frac{n}{2}\right)^{th} \operatorname{term} + \left(\frac{n}{2}+1\right)^{th} \operatorname{term}}{2}$

Median:
$$M = \frac{25a + 26a}{2} = (25.5)a$$

AIEEE 2011

If the mean deviation about the median of the numbers $a, 2a, \dots, 50a$ is 50, then |a| equals:

Solution:

Median:
$$M = (25.5)a$$

Mean deviation =
$$\frac{1}{N} \sum_{i=1}^{n} |x_i - A|$$

AIEEE 2011

Mean deviation =
$$\frac{\sum_{i=1}^{50} |x_i - M|}{50} = 50$$

$$\frac{|a - (25.5)a| + |2a - (25.5)a| + \dots + |50a - (25.5)a|}{50} = 50$$

$$2 \times \frac{|(0.5)a| + |(1.5)a| + \dots + |(24.5)a|}{50} = 50$$

$$\frac{2}{50} \times \frac{25}{2} (0.5|a| + 24.5|a|) = 50$$

$$\Rightarrow 625|a| = 2500 \qquad \Rightarrow |a| = 4$$

Session 02

Variance and its

Properties

Property of Mean deviation

Mean deviation is independent of change of origin, but dependent on change of scale.

If x_1, x_2, \dots, x_n are n values of a variable X

Mean deviation(M.D.) =
$$\frac{1}{N} \sum_{i=1}^{n} |x_i - A|$$

After multiplying with constant a and adding another constant b in each observation,

i.e.
$$ax_1 + b$$
, $ax_2 + b$, \cdots , $ax_n + b$

New Mean deviation = $a \times M.D.$

The mean deviation of an ungrouped data is 50. If each observation is increased by 2%, then the new mean deviation is:

Solution:

$$x'_i = \left(1 + \frac{2}{100}\right)x_i = 1.02x_i$$

 $M.D. \rightarrow a \times M.D.$

Thus, new mean deviation = $1.02 \times 50 = 51$

Variance

It is the mean of squares of deviation of variate from their mean. It is denoted by σ^2 or var (x).

If x_1, x_2, \dots, x_n are n values of a variable X, then

$$\sigma^2 = \frac{1}{n} \cdot \sum (x_i - \overline{x})^2$$

$$\sigma^2 = \frac{1}{n} \cdot \sum (x_i^2 + (\overline{x})^2 - 2 \cdot x_i \cdot \overline{x})$$

$$\sigma^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} + \frac{(\overline{x})^{2}}{n} \cdot \sum_{i=1}^{n} 1 - \frac{2}{n} \cdot \overline{x} \sum_{i=1}^{n} x_{i}$$

Variance

It is the mean of squares of deviation of variate from their mean. It is denoted by σ^2 or var (x).

If x_1, x_2, \dots, x_n are n values of a variable X, then

$$\sigma^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} + \frac{(\overline{x})^{2}}{n} \cdot \sum_{i=1}^{n} 1 - \frac{2}{n} \cdot \overline{x} \sum_{i=1}^{n} x_{i}$$

$$\sigma^{2} = \frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2} + (\overline{x})^{2} - 2(\overline{x})^{2} = \left[\frac{1}{n} \cdot \sum_{i=1}^{n} x_{i}^{2}\right] - \left[\overline{(\overline{x})^{2}}\right]$$
Mean Square of of Squares Mean

Variance

$$\sigma^2 = \frac{1}{n} \cdot \sum_{i=1}^n x_i^2 - (\overline{x})^2$$

Note

Variance of discrete frequency distribution:

If x_1, x_2, \dots, x_n are n values of a variable X and corresponding frequencies of them are f_1, f_2, \dots, f_n .

$$Var(X) = \frac{1}{N} \left(\sum f_i (x_i - \bar{x})^2 \right) = \frac{1}{N} \sum f_i x_i^2 - \left(\frac{1}{N} \sum f_i x_i \right)^2$$

Solution:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \left[\frac{1}{n} \sum_{i=1}^{n} x_{i} \right]^{2}$$

$$= \frac{1}{n} (1^{2} + 2^{2} + \dots n^{2}) - \left[\frac{1}{n} (1 + 2 + \dots + n) \right]^{2}$$

$$= \frac{1}{n} \frac{n(n+1)(2n+1)}{6} - \left[\frac{n+1}{2} \right]^{2}$$

$$= \frac{n^{2} - 1}{12}$$

$$\frac{n^2+1}{6}$$

$$\frac{n^2+1}{12}$$

$$\frac{n^2-1}{6}$$

$$\frac{n^2-1}{12}$$

Standard deviation

The standard deviation(s OR σ) is defined as the positive square root of the variance.

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____.

JEE Main 2022

Solution:

Let the observations be $x_1, x_2, ..., x_{15}$

$$\frac{\sum_{i=1}^{2} x_i + 5}{15} = 8 \implies \sum_{i=1}^{14} x_i = 115$$
Corrected Mean:
$$\overline{X_c} = \frac{\sum_{i=1}^{14} x_i + 20}{15} = \frac{115 + 20}{15} = 9$$

 $Variance = (S.D.)^2 = 9$

JEE Main 2022

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to .

Solution:

Let the observations be $x_1, x_2, ..., x_{15}$

Corrected Mean : $\overline{X_c} = 9$

$$Variance = (S.D.)^2 = 9$$

$$\sum_{i=1}^{14} x_i^2 + 5^2$$

$$\frac{15}{15} - 8^2 = 9$$

JEE Main 2022

The mean and standard deviation of 15 observations are found to be 8 and 3 respectively. On rechecking it was found that, in the observations, 20 was misread as 5. Then, the correct variance is equal to _____.

Solution: Let the observations be $x_1, x_2, ..., x_{15}$

Corrected Mean :
$$\overline{X_c} = 9$$

Variance =
$$(S.D.)^2 = 9$$
 $\sum_{i=1}^{14} x_i^2 = 1070$

Correct Variance:

$$\sigma^{2} = \frac{\sum_{i=1}^{2} x_{i}^{2} + 20^{2}}{15} - 9^{2} = \frac{1070 + 400}{15} - 81 = 98 - 81 = 17$$

Key Takeaways

Variance

Property: Variance is independent of change of origin, but dependent on change of scale.

If x_1, x_2, \dots, x_n are n values of a variable X,

$$var(x_i + b) = (var x_i)$$

Example : Variance of $(1,2,3,4) = \frac{4^2-1}{12}$

On adding 3 to each term,

Variance of
$$(4,5,6,7) = \frac{4^2 + 5^2 + 6^2 + 7^2}{4} - \left(\frac{4+5+6+7}{4}\right)^2 = \frac{126 - 121}{4} = \frac{5}{4}$$

Key Takeaways

Variance

Property: Variance is independent of change of origin, but dependent on change of scale.

If x_1, x_2, \dots, x_n are n values of a variable X,

$$var(x_i + b) = (var x_i)$$

$$var(ax_i + b) = a^2(var x_i)$$

If variance of first n natural numbers is 10 and variance of first m even natural numbers is 16, then m + n is equal to:

JEE Main 2020

Solution:

$$\frac{n^2 - 1}{12} = 10$$

$$\Rightarrow n = 11$$

Variance of first
$$n$$
 natural numbers $=\frac{n^2-1}{12}$

$$var(ax_i + b) = a^2(var x_i)$$

Variance of $(2,4,6...) = 4 \times \text{variance of } (1,2,3,4...)$

$$=4\times\left(\frac{m^2-1}{12}\right)$$

$$\Rightarrow \frac{m^2 - 1}{3} = 16 \Rightarrow m = 7$$

$$n + m = 11 + 7 = 18$$

In a series of 2n observations, half of them are equal to a and remaining half are equal to -a. Also, by adding a constant b in each of these observations, the mean and standard deviation of new set become 5 and 20, respectively. Then the value of $a^2 + b^2$ is equal to:

Solution:

Given series is a(n times), -a(n times)

$$\overline{x} = 0$$

If *b* is added to each of them, then the new mean is

$$\overline{x'} = \overline{x} + b \implies b = 5$$

Standard deviation doesn't change when same number is added to all, so

$$\int \frac{na^2 + na^2}{2n} - 0 = 20 \implies a^2 = 400 : a^2 + b^2 = 425$$

Combined Variance/Standard Deviation

If there are two sets of observations containing $n_1 \& n_2$ items.

Mean: $\overline{x_1} \& \overline{x_2}$

$$\overline{x} = \frac{n_1 \overline{x_1} + n_2 \overline{x_2}}{n_1 + n_2}$$

Standard deviation: $\sigma_1 \& \sigma_2$

$$\sigma^2 = \frac{1}{n_1 + n_2} \left[n_1 (\sigma_1^2 + d_1^2) + n_2 (\sigma_2^2 + d_2^2) \right]$$

Where
$$d_1 = \bar{x} - \overline{x_1}$$
 , $d_2 = \bar{x} - \overline{x_2}$

Coefficient of variation

$$C.V. = \frac{\sigma}{\overline{X}} \times 100$$

Co-efficient of variation of two series are 75 % and 90 % and their standard deviations 15 and 18. Find their mean.

Solution:

For
$$1^{st}$$
 series $75 = \frac{15}{\overline{x}} \times 100 \implies \overline{x} = 20$

For
$$2^{nd}$$
 series $90 = \frac{18}{\overline{x}} \times 100 \implies \overline{x} = 20$

Thus, both the series have same mean i.e. 20

	Size	Mean	Variance
Observation <i>I</i>	10	2	2
Observation <i>II</i>	n	3	1

If the variance of the combined set of these two observation is $\frac{17}{9}$, then the value of n is equal to:

Solution:

For Observation *I*:

$$\frac{\sum x_i}{10} = 2 \Rightarrow \sum x_i = 20$$

$$\Rightarrow \frac{\sum x_i^2}{10} - (2)^2 = 2$$

$$\Rightarrow \sum x_i^2 = 60$$

For Observation *II*:

$$\frac{\sum y_i^2}{n} - 3^2 = 1 \Rightarrow \sum y_i^2 = 10n$$

	Size	Mean	Variance
Observation <i>I</i>	10	2	2
Observation <i>II</i>	n	3	1

If the variance of the combined set of these two observation is $\frac{17}{9}$, then the value of n is equal to:

Solution:

Solution:

$$\sigma^{2} = \frac{\sum (x_{i}^{2} + y_{i}^{2})}{10 + n} - \left(\frac{\sum (x_{i} + y_{i})}{10 + n}\right)^{2} \qquad \sum x_{i}^{2} = 60$$

$$\Rightarrow \frac{17}{9} = \frac{60 + 10n}{10 + n} - \frac{(20 + 3n)^{2}}{(10 + n)^{2}} \qquad \sum y_{i}^{2} = 10n$$

$$\Rightarrow 17(n^{2} + 20n + 100) = 9(n^{2} + 40n + 200)$$

$$\Rightarrow 8n^{2} - 20n - 100 = 0$$

$$\Rightarrow 2n^2 - 5n - 25 = 0$$

$$\Rightarrow n = 5$$

Return To Top