Welcome to

Thermal properties of matter

Energy in transit by virtue of temperature difference

Heat becomes a cause of motion and does mechanical work

Temperature may be defined as the degree of hotness or coldness of a body

Thermometer

A device used to measure the temperature of an object.

Lord Kelvin (William Thomson)

Kelvin Scale
Boiling point of water: 373 K
Freezing point of water: 273 K

Carolus Linnaeus

Celsius Scale
Boiling point of water: $100^{\circ} \mathrm{C}$ Freezing point of water: $0^{\circ} \mathrm{C}$

Daniel Gabriel Fahrenheit

Fahrenheit Scale
Boiling point of water: $212{ }^{\circ} \mathrm{F}$ Freezing point of water: $32^{\circ} \mathrm{F}$

艮
 Comparing Scales

Why only two values are important?

Comparing Scales

Reading on scale - Lower fixed point
Upper fixed point - Lower fixed point
$\frac{K-273}{100}=\frac{C}{100}=\frac{F-32}{180}=$ Constant

For relating $F \& C$,

$$
\begin{aligned}
& \frac{F-32}{180}=\frac{C}{100} \\
& F=\frac{9 C}{5}+32 \quad \text { or } \quad C=\frac{5}{9}(F-32)
\end{aligned}
$$

For relating $K \& C$,

$$
\frac{K-273}{100}=\frac{C}{100}
$$

$$
K=C+273
$$

For relating $F \& K$,

$$
K=\frac{5}{9}(F-32)+273
$$

The tendency of matter to change in shape, volume, area, and configuration in response to a change in temperature.

Real-Life Examples

- Expansion of Mercury
- Railway buckling

Thermal Expansion

E
 Linear Expansion

The change in one-dimension (length) measurement of an object due to thermal expansion.
$\Delta L \propto \Delta T$
$\Delta L \propto L_{0}$
$\Delta L \propto L_{0} \Delta T$
$\Delta L=\alpha L_{0} \Delta T \quad(\alpha-$ coefficient of linear expansion $)$
$L=L_{0}(1+\alpha \Delta T)$

厚 Coefficient of linear expansion

The ratio of increase in length to original length for 1° rise in temperature is defined as the coefficient of linear expansion.
$\alpha=\frac{\Delta L}{L_{0} \Delta T}$
Unit of α is ${ }^{\circ} \mathrm{C}^{-1}$ or ${ }^{\circ} \mathrm{K}^{-1}$
? What is the percentage change in length of 1 m iron rod, if its temperature changes by $100^{\circ} \mathrm{C}$? $\left(\alpha_{\text {Iron }}=2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\right)$

Given:

$$
L_{0}=1 \mathrm{~m}, \Delta T=100^{\circ} \mathrm{C}, \alpha_{\text {Iron }}=2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}
$$

To find: Percentage change in length
Solution: Percentage change in length is given by

$$
\begin{aligned}
& =\frac{\Delta \mathrm{L}}{L_{0}} 100 \% \\
& =\frac{\alpha L_{0} \Delta T}{L_{0}} 100 \% \\
& =2 \times 10^{-5} \times 10^{2} \times 100 \\
& =2 \times 10^{-1}
\end{aligned}
$$

The percentage change in L_{0} is 0.2%

An isosceles triangle is formed with a thin rod of length l_{1} and coefficient of linear expansion α_{1} as the base and two thin rods each of length l_{2} and
? coefficient of linear expansion α_{2} as the two sides. If the distance between the apex and the midpoint of the base remains unchanged as the temperature is varied, show that $\frac{l_{1}}{l_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}$.

Solution:

$$
\begin{aligned}
& A D^{2}=l^{2}=l_{2}^{2}-\frac{l_{1}^{2}}{4} \quad \text { and } \quad A D^{2}=l^{2}=l_{2}^{2}-\frac{l_{1}^{\prime 2}}{4} \\
& l_{1}^{\prime}=l_{1}\left(1+\alpha_{1} \Delta T\right) \quad \text { and } \quad l_{2}^{\prime}=l_{2}\left(1+\alpha_{2} \Delta T\right) \\
& l_{2}^{2}-\frac{l_{1}^{2}}{4}=l_{2}^{2}\left(1+\alpha_{2} \Delta\right)^{2}-\frac{l_{1}^{2}}{4}\left(1+\alpha_{1} \Delta T\right)^{2}
\end{aligned}
$$

$$
(1+x)^{n}=1+n x \text { if } \bmod x \ll 1
$$

$$
l_{2}^{2}-\frac{l_{1}^{2}}{4}=l_{2}^{2}\left(1+2 \alpha_{2} \Delta T\right)-\frac{l_{1}^{2}}{4}\left(1+2 \alpha_{1} \Delta T\right)
$$

$$
\frac{l_{1}}{l_{2}}=2 \sqrt{\frac{\alpha_{2}}{\alpha_{1}}}
$$

Areal Expansion

The expansion in the area of an object due to the increase in temperature.
$\Delta A=\beta A_{0} \Delta T \quad$ (β-coefficient of areal expansion)

Final Area,
$A=A_{0}+\Delta A$
$A=A_{0}+A_{0} \beta \Delta T$
$A=A_{0}(1+\beta \Delta T)$
$A=L_{0}^{2}(1+\alpha \Delta T)^{2}$
$(1+x)^{n}=1+n x$ if $\bmod x \ll 1$
$A=A_{0}(1+2 \alpha \Delta T)$
$\beta=2 \alpha$

Change in Area

Final Area of plate

Coefficient of areal expansion

Relation $\mathrm{b} / \mathrm{w} \alpha \& \beta$

$$
\Delta A=A_{0} \beta \Delta T
$$

$$
\mathrm{A}=A_{0}(1+\beta \Delta T)
$$

$$
\beta=\frac{\Delta A}{\left(A_{0} \Delta T\right)}
$$

$$
\beta=2 \alpha
$$ temperature, then

Solution:
a, b, d increases because of expansion, c decreases because of expansion in all direction.

Distance between any two points will increase.
So, all the shown length should increase.

> a, b, c and d will increase

Only a and b increases

Only a,b and d increases

All a, b, c and d increases

The increase in volume of a solid/liquid due to rise in temperature.

Change in volume

$$
\Delta V=\gamma V_{0} \Delta T
$$

Final volume

Coefficient of volume expansion

Relation $\mathrm{b} / \mathrm{w} \alpha \& \gamma$

$$
\gamma=3 \alpha
$$

Linear Expansion

$$
\Delta L=L_{0} \alpha \Delta T
$$

$L=L_{0}(1+\alpha \Delta T)$

$$
\alpha=\frac{\Delta L}{A_{0} \Delta T}
$$

Areal Expansion

$$
\Delta A=A_{0} \beta \Delta T
$$

$$
\mathrm{A}=A_{0}(1+\beta \Delta T)
$$

$$
\beta=\frac{\Delta A}{A_{0} \Delta T}
$$

$$
\beta=2 \alpha
$$

Volume Expansion

$$
\Delta V=\gamma V_{0} \Delta T
$$

$$
V=V_{0}(1+\gamma \Delta T)
$$

$$
\gamma=\frac{\Delta V}{V_{0} \Delta T}
$$

$$
\gamma=3 \alpha
$$

E
 Negative Thermal coefficient

Negative thermal coefficient of expansion.
Material will contract on an increase in temperature i. e supply of heat

$$
L=L_{0}(1+\alpha \Delta T)
$$

$$
\mathrm{A}=A_{0}(1+\beta \Delta T)
$$

$$
V=\mathrm{V}_{\mathrm{o}}(1+\gamma \Delta T)
$$

If α, β, γ are negative

$$
A<A_{0}
$$

$$
V<V_{0}
$$

Isotropic materials: The materials whose physical properties are independent of the orientation of the system.

$$
\begin{aligned}
& \beta=\alpha+\alpha=2 \alpha \\
& \gamma=\alpha+\alpha+\alpha=3 \alpha
\end{aligned}
$$

Anisotropic materials: The materials whose physical properties are dependent on the orientation of the system.
$\beta=\alpha_{\mathrm{x}}+\alpha_{y}$
$\gamma=\alpha_{x}+\alpha_{y}+\alpha_{z}$

団 Apparent Expansion of Liquid in a Container

Before Heating

Volume of container $\left(V_{c}\right)=$ Volume of $\operatorname{liquid}\left(V_{L}\right)$
After Heating:
$V_{L}^{\prime}=V_{0}\left(1+\gamma_{L} \Delta T\right), \quad V_{C}^{\prime}=V_{0}\left(1+\gamma_{C} \Delta T\right)$

Overflow volume of liquid relative to container:

$$
\Delta V=V_{0}\left(\gamma_{L}-\gamma_{C}\right) \Delta T
$$

$\gamma_{\text {apparent }}=\gamma_{L}-\gamma_{C}$

The volume of a glass vessel is $1000 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}$. What volume of
? mercury should be poured into it at this temperature so that the volume of the remaining space does not change with temperature? $\gamma_{\text {mercury }}=1.8 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}$ and $\gamma_{\text {glass }}=9.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$

Given: $\quad\left(V_{0}\right)_{\text {glass }}=1000 \mathrm{~cm}^{3}$ at $20^{\circ} \mathrm{C}, \gamma_{\text {mercury }}=1.8 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}, \gamma_{\text {glass }}=9.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$
To find: $\quad\left(V_{o}\right)_{H g}$
Solution: - The volume of mercury to be poured into the vessel should be such that the change in the volume of mercury and that of the glass vessel with temperature are equal.
$(\Delta V)_{H g}=(\Delta V)_{g l a s s}$
$\Rightarrow\left(V_{0}\right)_{H g} \gamma_{H g} \Delta T=\left(V_{0}\right)_{\text {glass }} \gamma_{\text {glass }} \Delta T$
$V_{\text {mercury }}$
$V_{\text {glass }}=1000 \mathrm{~cm}^{3}$
$\Rightarrow\left(V_{0}\right)_{H g}=\frac{\left(V_{0}\right)_{\text {glass }} \gamma_{\text {glass }}}{\gamma_{H g}}=50 \mathrm{~cm}^{3}$
$\left(\gamma_{\text {mercury }}=1.8 \times 10^{-4}{ }^{\circ} \mathrm{C}^{-1}\right.$ and $\left.\gamma_{\text {glass }}=9.0 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)$

艮
 Bimetallic strip

- Two strips of different materials welded together.

At temperature T :

$$
R=\frac{d}{\left(\alpha_{1}-\alpha_{2}\right) \Delta T}
$$

$$
\begin{aligned}
& \mathrm{T}>\mathrm{T}_{0} \\
& l_{1}=l_{0}\left(1+\alpha_{1} \Delta T\right) \\
& l_{2}=l_{0}\left(1+\alpha_{2} \Delta T\right) \\
& \text { If } \alpha_{1}>\alpha_{2} \\
& \Rightarrow l_{1}>l_{2}
\end{aligned}
$$

- Density before heating (at T_{0}): $\rho_{0}=\frac{m}{V_{0}}$
- Density after heating:

$$
\begin{aligned}
& \left(\rho_{f}\right)=\frac{m}{V_{f}}=\frac{m}{V_{0}(1+\gamma \Delta T)} \\
& \rho_{f}=\frac{\rho_{0}}{(1+\gamma \Delta T)}
\end{aligned}
$$

- For solids, $\gamma \ll 1$

$$
\rho_{f}=\rho_{0}(1-\gamma \Delta T)
$$

The densities of wood and benzene at $0^{\circ} \mathrm{C}$ are $880 \mathrm{~kg} / \mathrm{m}^{3}$ and
? $900 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. $\gamma_{w}=1.2 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$ and $\gamma_{b}=1.5 \times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}$. At what temperature will a piece of wood just sink in benzene?

Given:

Parameter	Wood	Benzene
ρ at $0^{\circ} \mathrm{C}\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	880	900
$\gamma\left(\times 10^{-3}{ }^{\circ} \mathrm{C}^{-1}\right)$	1.2	1.5

To find: $\quad T$ at which the wood just sink

$\Rightarrow \Delta T=\frac{2}{88 \gamma_{b}-90 \gamma_{w}}=83.3^{\circ} \mathrm{C}$
$\Delta T=T-0=83.3^{\circ} \mathrm{C}$

$$
T=83.3^{\circ} \mathrm{C}
$$

Heating

Cooling

Thermal Strain $=\frac{\text { Prevented Change in Dimension }}{}$
Original Dimension
$\left.\begin{array}{|c|c|c|c|}\hline \text { Case } & \text { No Free expansion } \\ \text { prevented }\end{array} \quad \begin{array}{c}\text { Entire free expansion } \\ \text { prevented }\end{array} \quad \begin{array}{c}\text { Partial expansion } \\ \text { prevented }\end{array}\right]$

A steel rod is clamped at its two ends and rests on a fixed horizontal
? surface. The rod is in natural length at $20^{\circ} \mathrm{C}$. Find the longitudinal strain developed in the rod if the temperature rises to $50^{\circ} \mathrm{C}$.

$$
\left(\alpha_{\text {steel }}=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}\right)
$$

Given: $\quad T_{0}=20^{\circ} \mathrm{C}, T=50^{\circ} \mathrm{C}, \alpha_{\text {steel }}=1.2 \times 10^{-5}{ }^{\circ} \mathrm{C}^{-1}$

$$
\text { To find: } \quad \epsilon
$$

Solution:

Thermal Strain, $\quad|\epsilon| \approx|\alpha \Delta T|$
$|\epsilon| \approx 1.2 \times 10^{-5} \times(50-20)$
a $\quad 3.6 \times 10^{-3}$

$$
|\epsilon| \approx 3.6 \times 10^{-4}
$$

(Q) Time Period of Simple Pendulum

$$
t_{0}=2 \pi \sqrt{\frac{L_{0}}{g}}
$$

$$
t=2 \pi \sqrt{\frac{L_{0}(1+\alpha \Delta T)}{g}}
$$

$$
\frac{t}{t_{0}}=\sqrt{\frac{L}{L_{0}}}=\sqrt{\frac{L_{0}[1+\alpha \Delta T]}{L_{0}}} \approx 1+\frac{1}{2} \alpha \Delta T
$$

- Change in time per unit time lapsed: $\frac{t-t_{0}}{t_{0}} \approx \frac{1}{2} \alpha \Delta T$

Gain and Loss in Time

Clock becomes fast and gains time

Clock becomes slow
and looses time

A pendulum clock consists of an iron rod connected to a small heavy bob. If it is designed to keep correct time at $20^{\circ} \mathrm{C}$, how fast or slow will it go in 24 hours at $40^{\circ} \mathrm{C}$? $\left(\alpha_{\text {iron }}=1.2 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}\right)$

Given: $\quad T_{0}=20^{\circ} \mathrm{C}, \quad T=40^{\circ} \mathrm{C}, \quad \alpha_{\text {iron }}=1.2 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}, \quad t^{\prime}=24 \mathrm{hr}$

To find: Gain or loss in time

Solution:
Gain/Loss in time:

$$
\begin{aligned}
& \Delta t \approx \frac{1}{2} \alpha \Delta T t^{\prime} \\
& \Delta t \approx \frac{1}{2} \times 1.2 \times 10^{-6} \times 20 \times 24 \times 60 \times 60
\end{aligned}
$$

$$
\Delta t \approx 1.04 \mathrm{~s}
$$

- Energy transfer due to temperature difference
- Transfer from high to low temperature object
- Unit: joule (J), calorie (Cal)
- 1 calorie $=4.18$ joule

Results of Heating

(Q) Mechanical Equivalent of Heat

- (Heat produced in system) \propto (Mechanical work done on it)
- If W produces same temperature change as H,

$$
W=J H
$$

- J: Mechanical equivalent of heat
- J represents the amount of work required to raise temperature of 1 g of water by $1^{\circ} \mathrm{C}$
- Heat and work are equivalent

Specific Heat

- The amount of heat (ΔQ) required by a unit mass of substance to raise its temperature by $1^{\circ} \mathrm{C}$
- $\Delta Q \propto m$
- $\Delta Q \propto \Delta T$

$$
Q=m s \Delta T
$$

$$
Q=\int m s d T
$$

$$
s \equiv \text { specific heat constant }
$$

SI Unit: Jkg ${ }^{-1} K^{-1}$
CGS Unit: calg $^{-1} K^{-1}$
For Isothermal Process ($\Delta T=0$),

$$
s=\frac{1}{m} \frac{\Delta Q}{\Delta T}=0
$$

- For Adiabatic Process ($\Delta Q=0$),

$$
s=\frac{1}{m} \frac{\Delta Q}{\Delta T}=\infty
$$

Find the heat required to increase the temperature of 1 kg water by $20^{\circ} \mathrm{C}$ (in kcal)

Given: $\quad m=1 \mathrm{~kg}, \Delta T=20^{\circ} \mathrm{C}, s_{w}=1 \mathrm{calg}^{-1} \mathrm{~K}^{-1}$

To find: ΔQ

Solution:

Heat Required,
$\Delta Q=m s \Delta T$

$\Delta Q=1000 \mathrm{~g} \times 1 \mathrm{calg}^{-1} \mathrm{~K}^{-1} \times 20^{\circ} \mathrm{C}$

$$
\Delta Q=20 \mathrm{kcal}
$$

Heat Capacity

- The quantity of heat necessary to produce a unit change in temperature for the given mass of a material.

```
Heat capacity (C) = ms
```

S.I unit: joule/kelvin (J/K)
C.G.S unit: cal/ ${ }^{\circ} \mathrm{C}$

Water Equivalent

- Amount of water that is required to consume the same quantity of heat as the substance does for a unit rise in temperature

$$
m s \Delta T=m_{w} s_{w} \Delta T
$$

$$
m_{w}=\frac{m s}{s_{w}}
$$

- m_{w} is the water equivalent of the substance

θ Phase Change

- Latent Heat: Changes the phase of substance at constant temperature

(Q) Temperature-Heat curve for Water

Constant rate of heat supply

- Specific heat

$$
\begin{gathered}
C_{w}>C_{i}>C_{s} \\
\theta_{s}>\theta_{i}>\theta_{w}
\end{gathered}
$$

- Latent heat:

$$
L_{V}>L_{F}
$$

Calorimetry

- The science associated with determining the changes in energy of a system by measuring the heat exchanged with the surroundings.

- For an insulated system,

```
Heat Lost by = Heat Gain by
hotter substance = cooler substance
```


Law of Mixture

- Assumptions: i) No phase change is involved.
ii) there is no heat lost to the surroundings.
- The exchange of heat continues to take place till the temperature of substances become equal.

Heat Lost by hotter substance $=$ Heat Gain by cooler substance

$$
m_{1} s_{1}\left(T_{1}-T_{m}\right)=m_{2} s_{2}\left(T_{m}-T_{2}\right) \quad \Rightarrow \quad T_{1}>T_{m}>T_{2}
$$

The temperature of three different liquids A, B and C of equal masses are $10^{\circ} \mathrm{C}, 15^{\circ} \mathrm{C}$ and $20^{\circ} \mathrm{C}$ respectively. The temperature when A and B are mixed is $13^{\circ} \mathrm{C}$ and when B and C are mixed is $16^{\circ} \mathrm{C}$. What will be the temperature when A and C are mixed?

Solution:

B, C are mixed

$$
\begin{aligned}
& m S_{B} \Delta T=m S_{C} \Delta T \\
& m S_{B}(16-15)=m S_{C}(20-16) \\
& S_{B}=4 S_{C} \Rightarrow S_{C}=\frac{1}{4} S_{B}
\end{aligned}
$$

A, C are mixed
$m S_{A} \Delta T=m S_{C} \Delta T$
$m S_{A}\left(T_{m}-10\right)=m S_{C}\left(20-T_{m}\right)$
$m S_{A} \Delta T=m S_{B} \Delta T$
$m S_{A}(13-10)=m S_{B}(15-13)$
$3 S_{A}=2 S_{B} \quad \Rightarrow \quad S_{A}=\frac{2}{3} S_{B}$

$$
\Rightarrow T_{m}=\frac{140}{11} \approx 12.72^{\circ} \mathrm{C}
$$

? 1 kg ice at $-20^{\circ} \mathrm{C}$ is converted to 1 kg water at $100^{\circ} \mathrm{C}$. Find the heat Q required to change the state of the substance?

Solution:

$Q=Q_{1}+Q_{2}+Q_{3}$
$L_{f}=80 \mathrm{kcal}$
$S_{w}=1 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$
$Q_{1}=m_{i c e} S_{i c e} \Delta T=1000 \times 0.5 \times[0-(-20)]$
$Q_{1}=10 \mathrm{kcal}$
$Q_{2}=m_{\text {ice }} L_{f}=1000 \times 80$
$Q_{2}=80 \mathrm{kcal}$
$Q_{3}=m_{w} S_{w} \Delta T=1000 \times 1 \times(100-0)$
$Q_{3}=100 \mathrm{kcal}$

Total heat required:
$Q=Q_{1}+Q_{2}+Q_{3}$
$Q=(10+80+100) k c a l$
$Q=190 \mathrm{kcal}$

300 g of water at $25^{\circ} \mathrm{C}$ is added to 100 g of ice at $0^{\circ} \mathrm{C}$. The final temperature of the mixture is

Solution:

Heat required for melting ice $=H_{\text {required }}$

$$
H_{\text {required }}=m L=100 \times 80 \mathrm{cal}=8 \mathrm{kcal}
$$

Assumption: final temperature $=0^{\circ} \mathrm{C}$

$$
s_{\mathrm{H}_{2} \mathrm{O}}=1 \frac{\mathrm{cal}}{g^{\circ} \mathrm{C}} \quad L_{\text {fusion }}=80 \frac{\mathrm{cal}}{\mathrm{~g}}
$$

And water and ice co-exist at only one temperature i.e. at $0^{\circ} \mathrm{C}$.

[^0]- Heat transfer refers to the flow of heat(thermal energy) due to temperature differences and the subsequent temperature changes.

- Heat conduction is the flow of internal energy from a region of higher temperature to one at lower temperature by the interaction of adjacent particles in the intervening space without the actual transfer of particles.
- Conduction involves heat transfer but not mass transfer.

$$
\mathrm{T}_{1}>\mathrm{T}_{2}
$$

- Heat transfer due to molecular collisions.
- Kinetic energy gained is shared between adjacent molecules.
- Average position of a molecule does not change.
- Steady state: If the temperature of a cross-section at any position x in the slab remains constant with time. It is different from thermal equilibrium.

$\mathrm{T}_{1}=$ constant $\quad \mathrm{T}_{2}=$ constant
- Consider a slab of face area A, Lateral thickness L, whose faces have temperatures T_{1} and T_{2}.
- For Steady state conduction, rate of heat transfer,
$H=\frac{d Q}{d t} \propto \frac{A d T}{d x}$
Where, dQ is the amount of heat transferred through any cross section in time dt.

$$
\frac{d Q}{d t}=-K A \frac{d T}{d x} \quad \rightarrow \text { Fourier's law }
$$

0 Thermal Conductivity(K)

$$
\frac{d Q}{d t}=-K A \frac{d T}{d x}
$$

- $\frac{d Q}{d t}$ is called the Rate of heat flow.
- $\frac{d T}{d x}$ is called the temperature gradient.
- K is a constant for the material of the slab and is called Thermal Conductivity of material.
- Thermal conductivity refers to the ability of a given material to conduct/transfer heat.
- The greater the value of K for a material, the more rapidly will it conduct heat.

A hollow tube has a length l, inner radius r_{1} and outer radius r_{2}. The material has a thermal conductivity K. Find the rate of heat flow through the walls of the tube if the flat ends are maintained at temperature T_{1} and $T_{2}\left(T_{2}>T_{1}\right)$.

Solution:

Steady state has been maintained i.e. T_{1}, T_{2} are constant.
$\frac{\Delta Q}{\Delta t}=\frac{-K A(\Delta T)}{l}$
$\frac{\Delta Q}{\Delta t}=-\frac{K}{l}\left(\pi r_{2}^{2}-\pi r_{1}^{2}\right)\left(T_{1}-T_{2}\right)$

(8) Analogy b/w Fourier's law and Ohm's law

Fourier's Law:

- Rate of Heat transfer: $\quad H=\frac{\Delta T}{R_{t h}}$
- Rate of Charge transfer:

$$
I=\frac{\Delta V}{R}
$$

- Thermal Resistance:

$$
R_{t h}=\frac{L}{K A}
$$

- Resistance: R

Consider the situation shown in the figure. The frame is made of the same material and has a uniform cross-sectional area everywhere. Calculate the amount of heat flowing per second through a cross section of the bent part if the total heat taken out per second from the end at $100^{\circ} \mathrm{C}$ is 130 J .

Given: $\quad H=130 \mathrm{~J} / \mathrm{s}$

$$
\text { Solution: } \quad H=H_{1}+H_{2}
$$

$$
H_{1}=\frac{\Delta T}{14 R}, \quad H_{2}=\frac{\Delta T}{12 R}
$$

$$
\frac{H_{1}}{H_{2}}=\frac{12}{14}=\frac{6}{7}
$$

$$
H_{2}=\frac{7 H_{1}}{6}
$$

$$
H=H_{1}+\frac{7 H_{1}}{6}
$$

$$
H_{1}=60 \mathrm{~J} / \mathrm{s}
$$

A composite slab is prepared by pasting two plates of thicknesses L_{1} and
? L_{2} and thermal conductivities K_{1} and K_{2}. The slabs have equal crosssectional area. Find the equivalent conductivity of the composite slab.

To find: $\quad K_{e q}$

Solution:

$$
\begin{aligned}
& R_{e q}=R_{1}+R_{2} \\
& \frac{\left(L_{1}+L_{2}\right)}{K_{e q} A}=\frac{L_{1}}{K_{1} A}+\frac{L_{2}}{K_{2} A} \\
& K_{e q}=\frac{K_{1} K_{2}\left(L_{1}+L_{2}\right)}{K_{1} L_{2}+K_{2} L_{1}}
\end{aligned}
$$

- For n identical slabs,

$$
A_{1}=A_{2}=\cdots A_{n} \& L_{1}=L_{2}=\cdots L_{n}
$$

- The equivalent thermal conductivity is,
$K_{e f f}=\frac{n}{\frac{1}{K_{1}}+\frac{1}{K_{2}}+\frac{1}{K_{3}}+\cdots \frac{1}{K_{n}}}$

n identical slabs in parallel

- The net heat current for parallel combination of slabs,

$$
q_{e f f}=q_{1}+q_{2}+q_{3}+\cdots q_{n}
$$

- For n identical slabs,

$$
A_{1}=A_{2}=\cdots A_{n}
$$

$q_{e f f}=\frac{K_{e f f} A\left(T_{1}-T_{2}\right)}{L}$

$$
K_{e f f}=\frac{K_{1}+K_{2}+K_{3}+\cdots K_{n}}{n}
$$

$$
\frac{K_{e f f} A\left(T_{1}-T_{2}\right)}{L}=\frac{K_{1} A_{1}\left(T_{1}-T_{2}\right)}{L}+\frac{K_{2} A_{2}\left(T_{1}-T_{2}\right)}{L}+\cdots \frac{K_{n} A_{n}\left(T_{1}-T_{2}\right)}{L}
$$

Two thin metallic spherical shells of radii r_{1} and $r_{2}\left(r_{1}<r_{2}\right)$ are placed with their centres coinciding. A material of thermal conductivity K is filled in
? the space between the shells. The inner shell is maintained at temperature θ_{1} and the outer shell at temperature $\theta_{2}\left(\theta_{1}<\theta_{2}\right)$. Calculate the rate at which heat flows radially through the material.

Given: $\quad \theta_{2}>\theta_{1}$

Solution:

$$
\mathrm{H}=K\left(4 \pi r^{2}\right)\left(\frac{\mathrm{d} \theta}{\mathrm{dr}}\right)=\mathrm{constant}
$$

$\mathrm{H} \frac{\mathrm{dr}}{r^{2}}=4 \pi K \mathrm{~d} \theta$
$\mathrm{H} \int_{\mathrm{r}_{1}}^{\mathrm{r}_{2}} \frac{\mathrm{dr}}{r^{2}}=4 \pi K \int_{\theta_{1}}^{\theta_{2}} \mathrm{~d} \theta$

$$
\mathrm{H}=\frac{4 \pi \mathrm{~K} r_{1} r_{2}\left(\theta_{2}-\theta_{1}\right)}{r_{2}-r_{1}}
$$

The atmospheric temperature is $-\theta^{\circ} \mathrm{C}$. A cylindrical drum of height h made of a bad conductor is completely filled with water at $0^{\circ} \mathrm{C}$ and is kept outside without a lid. Calculate the time taken for the whole mass of water to freeze. Thermal conductivity of ice is K and its latent heat of fusion is L. Neglect expansion of water on freezing. (ρ is the density of water)

Given: $T_{\text {atm }}=-\theta^{\circ} \mathrm{C}, T_{\text {water }}=0^{\circ} \mathrm{C}$

Solution: $\quad H_{\text {instantaneous }}=\frac{d Q}{d t}=\frac{K A(0-(-\theta))}{x} \ldots \ldots$

$$
\begin{equation*}
\frac{d Q}{d t}=L \frac{d m}{d t}=L \frac{\rho A d x}{d t} . \tag{T}
\end{equation*}
$$

From equations $(T) \&(A)$,

$$
\begin{aligned}
L \rho \frac{d x}{d t} & =\frac{K \theta}{x} \\
L \rho \int_{0}^{h} x d x & =K \theta \int_{0}^{t_{0}} d t
\end{aligned}
$$

$$
t_{0}=\frac{\rho L h^{2}}{2 K \theta}
$$

Ratio of time taken for the thickness of the ice to grow from 0 to 1 cm , 1 to $2 \mathrm{~cm}, 2$ to 3 cm and so on.

To find: $\Delta t_{1}: \Delta t_{2}: \Delta t_{3}: \ldots \ldots \Delta t_{n}$
Solution: Time taken by the ice to grow a thickness of y is $t=\frac{\rho L y^{2}}{2 K \theta}$
The time intervals to change the thickness from 0 to y, y to $2 y$ and so on will be in the ratio:

$$
\begin{aligned}
& \Delta t_{1}: \Delta t_{2}: \Delta t_{3}=\left(1^{2}-0^{2}\right):\left(2^{2}-1^{2}\right):\left(3^{2}-2^{2}\right) \\
& \Delta t_{1}: \Delta t_{2}: \Delta t_{3}=1: 3: 5 \\
& \Delta t_{1}: \Delta t_{2}: \Delta t_{3}: \ldots \ldots \Delta t_{n}=1: 3: 5: \ldots \ldots .
\end{aligned}
$$

Figure shows two adiabatic vessels, each containing mass m of water at different temperatures. The ends of metal rod of length L, area of cross section A and thermal conductivity K, are inserted in water as shown in the figure. Find the time taken for the difference between the temperature in vessels to become half of the original value. The heat capacity of the water is s. Neglect the heat capacity of rod and the container and any loss of heat to the atmosphere.

To find: $\quad t$ for $\Delta T=\frac{\Delta T_{0}}{2}$
Solution: $\quad H_{\text {instantaneous }}=\frac{d Q}{d t}=\frac{K A\left(T_{A}-T_{B}\right)}{L}$.

$$
\begin{gathered}
\left(-\frac{d Q}{d t}\right)_{A}=\left(\frac{d Q}{d t}\right)_{B} \\
m s\left(-\frac{d T_{A}}{d t}\right)=m s\left(\frac{d T_{B}}{d t}\right) \ldots \ldots(A) \\
\frac{d T_{A}}{d t}-\frac{d T_{B}}{d t}=\frac{d \Delta T}{d t} \\
-\frac{\left(\frac{d Q}{d t}\right)}{m s}-\frac{\left(\frac{d Q}{d t}\right)}{m s}=\frac{d \Delta T}{d t} \\
-\frac{2}{m s}\left(\frac{d Q}{d t}\right)=\frac{d \Delta T}{d t}
\end{gathered}
$$

$$
-\frac{2}{m s}\left(\frac{K A}{L} \Delta T\right)=\frac{d \Delta T}{d t}
$$

$$
\int_{\Delta T_{0}}^{\frac{\Delta T_{0}}{2}}-\frac{d \Delta T}{\Delta T}=\frac{2 K A}{m s L} \int_{0}^{t} d t
$$

$$
t=\frac{m s L}{2 K A} \ln 2
$$

Convection

Convection is a mode of heat transfer by actual motion of matter.

It is possible only in fluids.

- Natural- Fluid moves due to density difference.
- Forced- Fluid is moved by means of ext. force Ex - fan, blower, etc.

Energy transfer
Mass transfer

$$
\otimes
$$

目
 Radiation

Heat transfer without the need for a material medium.

艮 Prevost Theory of Heat Exchange

It states that every material body, at any temperature above absolute zero, radiates heat to the surroundings and at the same time absorbs heat from the surroundings.

- The rate of thermal radiation emitted per unit time depends on:
a) Surface area of emitting body.
b) Nature of emitting surface.
c) Temperature of emitting surface.
- If a body radiates more amount of heat than it absorbs, its temperature falls.
- If a body absorbs more amount of heat than it radiates, its temperature rises.
- In thermal equilibrium a body absorbs and radiates the same amount of heat, its temperature remains constant.
- It is a theoretical model which is a perfect absorber of radiation over all wavelengths.

Ferry's Black Body

Room temperature

Reflects more. Absorbs little.
Emits little.

Reflects little. Absorbs more.
Emits more.

Good absorbers of Radiation are also good Emitters.

Kirchhoff's Law

- Ratio of emissive power to absorptive power is same for all bodies at a given temperature and is equal to emissive power of a blackbody at that temperature.

$$
\frac{E(\text { body })}{a(\text { body })}=E(\text { blackbody })=\mathrm{constant}
$$

$E(b o d y) \propto a(b o d y)$
\Rightarrow Good absorbers are good emitters \& bad absorbers are bad emitters.

艮) Energy Spectrum of Black Body

A black body emits radiation of all possible wavelength.
At a given temperature:

- Energy is not uniformly distributed over all wavelengths.
- Intensity increases up to a certain maximum value with wavelength, then decreases.

$$
\text { Area }=E=\int E_{\lambda} d \lambda=\sigma T^{4}
$$

屏 Wien's Displacement Law

- The wavelength of highest intensity $\left(\lambda_{m}\right)$ is inversely proportional to the absolute temperature of the emitter.

Stefan's Law

- The thermal energy emitted by a body of surface area A per unit time is given by

$$
\frac{d Q}{d t}=e \sigma A T^{4}
$$

$\sigma=$ Stefan-Boltzmann constant
$\left[\sigma=5.67 \times 10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}\right]$
$T=$ Temperature on Absolute scale
$e=$ emissivity of the surface (constant $\& 0 \leq e \leq 1$)
$P_{\text {radiation }}=e \sigma A T^{4}$
$P_{\text {incident }}=a \sigma A T_{s}^{4}$

Net rate of heat loss,

$$
P_{n e t}=e \sigma A\left(T^{4}-T_{s}^{4}\right)=-m s \frac{d T}{d t}
$$

A copper sphere is kept in a chamber maintained at 300 K . The sphere is maintained at a constant temperature of 500 K by heating it electrically. A total of 210 W of electric power is needed to do it. When the surface of the copper sphere is completely blackened, 700 W is needed to maintain the same temperature of the sphere. Calculate the emissivity of copper.

Power required to maintain the temperature of copper sphere,
$P_{C u}=e_{C u} A \sigma\left(T^{4}-T_{S}^{4}\right)=210 W \ldots \ldots$ (1)

Power required to maintain the temperature of sphere after blackening it,

On dividing equation (1) by equation (2), we get,
$\Rightarrow \frac{e_{C u} A \sigma\left(T^{4}-T_{S}^{4}\right)}{A \sigma\left(T^{4}-T_{S}^{4}\right)}=\frac{210}{700}$

$$
\Rightarrow e_{C u}=0.3
$$

Rate of Cooling

- The rate of loss of heat, $\frac{-d Q}{d t}$ of the body is directly proportional to the difference of temperature $\Delta T=(T-T s)$ of the body and the surroundings.
- The law holds good only for small difference in the temperature.

$$
\begin{gathered}
\left(\frac{d Q}{d t}\right)_{1}=e \sigma A T^{4}, \\
\left(\frac{d Q}{d t}\right)_{2}=e \sigma A T_{s}^{4} \\
\text { (Emitted) } \quad \text { (Absorbed) } \\
P_{n e t}=e \sigma A\left(T^{4}-T_{s}^{4}\right)=\mathrm{ms}\left(-\frac{d T}{d t}\right)
\end{gathered}
$$

Rate of Cooling,

$$
-\frac{d T}{d t} \propto\left(T^{4}-T_{s}^{4}\right)
$$

- Rate of Cooling:

$$
-\frac{d T}{d t} \propto\left(T^{4}-T_{s}^{4}\right)
$$

- Let $\Delta T=T-T_{S}$

$$
\begin{aligned}
& \Rightarrow T^{4}=\left(T_{S}+\Delta T\right)^{4} \\
& \Rightarrow T^{4}=T_{S}^{4}\left(1+\frac{\Delta T}{T_{S}}\right)^{4} \\
& \Rightarrow T^{4} \approx T_{S}^{4}\left(1+4 \frac{\Delta T}{T_{S}}\right) \quad\left[\because \Delta T \ll T_{S}\right] \\
& \Rightarrow\left(T^{4}-T_{S}^{4}\right) \propto\left(T-T_{S}\right)
\end{aligned}
$$

- From Stephen-Boltzmann law

$$
-\frac{d T}{d t} \propto\left(T-T_{S}\right)
$$

- In integral form,

$$
-\int \frac{d T}{T-T_{S}}=\int k d t
$$

The temperature of a body falls from $40^{\circ} \mathrm{C}$ to $36^{\circ} \mathrm{C}$ in 5 minutes
? when placed in a surrounding of constant temperature $16^{\circ} \mathrm{C}$. Find the time taken for the temperature of the body to become $32^{\circ} \mathrm{C}$.

Solution:
Newton's Law of Cooling, $\quad-\frac{d T}{d t}=k\left(T-T_{S}\right)$

$$
\left.\begin{array}{c}
\text { For small temperature differences, the curve } \\
\text { can be assumed to be linear }
\end{array}\right\}\left\{\begin{array}{l}
T=T_{a v g} \\
\frac{d T}{d t}=\frac{\Delta T}{\Delta t}
\end{array}\right.
$$

Case 1:
Case 2:

$$
\frac{40-36}{5}=k\left(\frac{40+36}{2}-16\right)
$$

$$
\frac{36-32}{t}=k\left(\frac{36+32}{2}-16\right)
$$

$$
t=6.1 \mathrm{~min}
$$

A hot body placed in the air is cooled down according to Newton's law of
? cooling, the rate of decrease of temperature being k times the temperature difference from the surrounding. Starting from
$t=0$, find the time in which the body will lose half the maximum heat it can lose.

Solution: $-\ln \left|\frac{T-T_{0}}{T_{1}-T_{0}}\right|=k t$

$$
\begin{aligned}
& \Rightarrow\left|\frac{T-T_{0}}{T_{1}-T_{0}}\right|=e^{-k t} \\
& \Rightarrow \Delta T(t)=(\Delta T)_{0} e^{-k t}
\end{aligned}
$$

Heat lost by the body: $Q=m s(\Delta T)$

$$
\text { For } \begin{aligned}
& Q=\frac{Q_{\max }}{2}, \quad \Delta T=\left(\frac{\Delta T_{0}}{2}\right) \\
& \Rightarrow \frac{\Delta T_{0}}{2}=\Delta T_{0} e^{-k t} \\
& \Rightarrow t=\frac{\ln 2}{k}
\end{aligned}
$$

t	0	t
T	T_{1}	T
T_{S}	T_{0}	T_{0}

Solar Constant

- Solar electromagnetic radiation per meter square area on Earth's surface.
- Power radiated by sun:

$$
P_{S}=\sigma A T^{4}=\sigma 4 \pi R^{2} T^{4}
$$

Intensity on Earth's surface:

$$
I_{E}=\frac{\sigma 4 \pi R^{2} T^{4}}{4 \pi d^{2}}
$$

$$
\begin{aligned}
& \sigma=5.67 \times 10^{-8}, \quad d=1.5 \times 10^{11} \\
& R_{S}=7 \times 10^{8}, T=5778 \mathrm{~K} \\
& I_{E}=\frac{5.67 \times 10^{-8} \times 4 \pi \times\left(7 \times 10^{8}\right)^{2}(5778)^{4}}{4 \pi \times\left(1.5 \times 10^{11}\right)^{2}} \\
& I_{E} \approx 1400 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

The variation of temperature of a material as heat is given to it at a constant rate is shown in the figure. The material is in solid state at the point O. The state of the material at the point P is

Solution:
From Point A to point B, the sold converts into liquid. At point A, the phase is completely solid and at point B, it is completely liquid. Thus, at point P, it will be partly solid and partly liquid.

The Earth receives on its surface radiation from the Sun at the rate of $1400 \mathrm{~W} / \mathrm{m}^{2}$. The distance of the center of the Sun from the surface of the Earth is $1.5 \times 10^{11} \mathrm{~m}$ and the radius of the Sun is $7 \times$ $10^{8} \mathrm{~m}$. Treating Sun as a block body, it follows from the above data that its surface temperature is (JEE 1989)

Given:

$$
I_{E}=1400 \mathrm{~W} / \mathrm{m}^{2}, d=1.5 \times 10^{11}, R_{S}=7 \times 10^{8}
$$

To find: $\quad T$

Solution:

Intensity at Earth's Surface, $I_{E}=\frac{\text { Power radiated by Sun }}{4 \pi d^{2}}$

$$
\begin{aligned}
& I_{E}=\frac{\sigma 4 \pi R^{2} T^{4}}{4 \pi d^{2}} \\
& \Rightarrow T=\left[\frac{1400 \times\left(1.5 \times 10^{11}\right)^{2}}{\left(5.67 \times 10^{-8}\right)^{2}\left(7 \times 10^{8}\right)^{2}}\right]^{1 / 4}
\end{aligned}
$$

NEPTUNE

$$
T=5801 \mathrm{~K}
$$

Earth receives $1400 \mathrm{~W} / \mathrm{m}^{2}$ of solar power. If all the solar energy falling on a lens of area $0.2 \mathrm{~m}^{2}$ is focused onto a block of ice of mass 280 g , the time taken to melt the ice will be \qquad minutes. (Latent heat of fusion of ice $=3.3 \times 10^{5} \mathrm{~J} / \mathrm{kg}$). (JEE 1997)

Given:

$$
\begin{aligned}
& I_{E}=1400 \mathrm{~W} / \mathrm{m}^{2}, \quad A=0.2 \mathrm{~m}^{2} \\
& m=280 \mathrm{~g}, \quad L_{F}=3.3 \times 10^{5} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Solution:
Solar power concentrated by the lens melts the ice.
Heat required for melting:
$Q=m \times L_{F}$

Energy from the Sun in time t :
$Q=I_{E} \times A \times t$
$0.28 \times 3.3 \times 10^{5}=1400 \times 0.2 \times t$

$$
t=330 \mathrm{~s}=5.5 \mathrm{~min}
$$

Three rods of Copper, Brass and Steel are welded together to form a Y shaped structure. Area of cross section of each rod is $4 \mathrm{~cm}^{2}$. End of copper rod is maintained at $100^{\circ} \mathrm{C}$ whereas the ends of brass and steel are kept at $0^{\circ} \mathrm{C}$.
? Lengths of the copper, brass and steel rods are $46 \mathrm{~cm}, 13 \mathrm{~cm}$ and 12 cm respectively. The rods are thermally insulated from surrounding except at ends. Thermal conductivities of copper brass and steel are $0.92,0.26$ and 0.12 CGS units respectively. Find the rate of heat flow through copper rod.
(JEE Main 2014)

Given:

Parameter	Copper	Brass	Steel
$L\left(\mathrm{~cm}^{2}\right)$	46	13	12
$A\left(\mathrm{~cm}^{2}\right)$	4	4	4
$T\left({ }^{\circ} \mathrm{C}\right)$	100	0	0
$k($ CGS unit $)$	0.92	0.26	0.12

Solution:

Rate of Heat Flow: $Q=K A \frac{T_{1}-T_{2}}{L}$
If the junction temperature is T,

Conservation of energy:
$Q_{\text {copper }}=Q_{\text {brass }}+Q_{\text {steel }}$
$0.92 \times 4 \times \frac{100-T}{46}=0.26 \times 4 \times \frac{T-0}{13}+0.12 \times 4 \times \frac{T-0}{12}$
$\Rightarrow T=40^{\circ} \mathrm{C}$

A vessel of volume V_{0} contains an ideal gas at pressure P_{0} and temperature T. Gas is contiy pumped out of this vessel at a constant volume-rate $\frac{d V}{d t}=r$ keeping the temperature constant. The pressure of the gas being taken out equals the pressure inside the vessel. Find
(a) The pressure of the gas as a function of time.
(b) The time taken before half of the original gas is pumped out.

Given:
$\frac{d V}{d t}=r$
Solution: $\quad m_{t}=m_{t+d t}$

$$
\rho V_{0}=(\rho+d \rho)\left(V_{0}+d V\right)
$$

$$
\rho(r d t)=-d \rho V_{0}
$$

$$
P=P_{0} e^{-\frac{r t}{V_{0}}}
$$

Solution:

$$
\begin{array}{cc}
t=0 & \\
n_{0} & \\
& \\
\hline
\end{array}
$$

$$
\begin{gathered}
t=t_{0} \\
P_{0} \longrightarrow \\
\hline
\end{gathered}
$$

$$
\frac{d \rho}{\rho}=-\frac{r d t}{V_{0}} \quad \frac{d \rho}{\rho}=\frac{d P}{P} \ldots \ldots \ldots\left(\rho=\frac{P M}{R T}\right)
$$

$$
P=P_{0} e^{-\frac{r t}{V_{0}}}
$$

$$
\int_{P_{0}}^{P} \frac{d P}{P}=\int_{0}^{t}-\frac{r d t}{V_{0}}
$$

$$
\frac{P_{0}}{2}=P_{0} e^{-\frac{r t}{V_{0}}}
$$

$$
t=\frac{v_{0} \ln 2}{r}
$$

The temperature difference of $120^{\circ} \mathrm{C}$ is maintained between two ends of a uniform rod $A B$ of length $2 L$. Another bent rod $P Q$, of same cross-section as $A B$ and length $\frac{3 L}{2}$, is connected across $A B$. In steady-state, the temperature difference between P and Q will be close to:

Solution:

$$
\begin{aligned}
& \left(R_{e q}\right)_{P Q}=\frac{3 R / 2 \times \mathrm{R}}{\frac{3 \mathrm{R}}{2}+\mathrm{R}}=\frac{3}{5} \mathrm{R} \\
& R_{e q}=\frac{8}{5} \mathrm{R} \\
& \because H_{P Q}=H A B \\
& \left(\frac{\Delta T}{R_{e q}}\right)_{P Q}=\left(\frac{\Delta T}{R_{e q}}\right)_{A B} \\
& \left(\frac{\Delta T P Q}{\frac{3}{5} \mathrm{R}}\right)=\left(\frac{120}{\frac{8}{5} \mathrm{R}}\right) \quad \Delta T_{P Q}=\frac{120}{\frac{8}{5} \mathrm{R}} \times \frac{3}{5} \mathrm{R}
\end{aligned}
$$

A bullet of mass 10 g moving with a speed of $20 \mathrm{~m} / \mathrm{s}$ hits an ice block of mass 990 g kept on a frictionless floor and gets stuck in it. How much ice will melt if 50% of the lost KE goes to ice?

Solution: Since No $F_{e x t}$
Using Momentum Conservation,

$$
\begin{aligned}
m_{B} v & =\left(m_{\text {ice }}+m B\right) V \\
V & =0.2 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

initial $K . E . \quad K E_{i}=\frac{1}{2} m_{B} v^{2}=2 J$
Final $K . E . \quad K E_{i}=\frac{1}{2}\left(m_{B}+m_{i c e}\right) V^{2}=0.02 J$

Loss of Kinetic Energy,

$$
\Delta K E=1.98 \mathrm{~J}
$$

50% of Loss of Kinetic Energy is absorbed by the ice for melting,

$$
\begin{aligned}
& 50 \% \text { of } K E=m_{\text {ice }} L \\
& \frac{50}{100} \times 1.98 \mathrm{~J}=m_{\text {ice }- \text { melted }} \times 80 \times 4.2 \\
& m_{\text {ice-melted }}=0.003 \mathrm{~g}
\end{aligned}
$$

Two stars A and B of same size, have thermal emissivity of 0.2 and 0.64 respectively. Both stars emit total radiant power at same rate. If the temperature of A is 5000 K and the wavelength λ_{A} corresponding to maximum spectral radiancy in the radiation from B is shifted from the wavelength corresponding to maximum spectral radiancy in radiations from A by $2.0 \mu \mathrm{~m}$, then find the temperature of star B and wavelength λ_{B}.

Here, $\quad \epsilon_{A}<\epsilon_{B}$
But $\quad P_{A}=P_{B}, \& A_{A}=A_{B}$
$\therefore T_{A}>T B$ (Stefan's Law)
$\therefore \lambda_{A}<\lambda_{B} \quad$ (Wien's Displacement Law)
$\therefore \lambda_{B}-\lambda_{A}=2.0 \mu m$

Solution:

$$
\begin{aligned}
& P=\epsilon \sigma A T^{4} \\
& \varepsilon_{A} T_{A}^{4}=\varepsilon_{B} T_{B}^{4} \ldots \ldots\left(P_{A}=P_{B}, A_{A}=A_{B}\right) \\
& T_{B}^{4}=\frac{0.2}{0.64}\left(5000^{4}\right)
\end{aligned}
$$

$$
T_{B}=3738 K
$$

According to Wien's displacement law,

$$
\left.\begin{array}{rl}
\lambda_{A} T_{A} & =\lambda_{B} T_{B} \\
\lambda_{B} & =\frac{5000}{3740} \times \lambda_{A} \\
\lambda_{B} & =\lambda_{A}=2.0 \mu \mathrm{~m}
\end{array}\right\} \lambda_{B}=7.93 \mu \mathrm{~m}
$$

$$
\lambda_{B}-\lambda_{A}=2.0 \mu m
$$

The plots of intensity versus wavelength for three black bodies at temperatures T_{1}, T_{2} and T_{3} respectively are shown in figure. Their temperatures are such that:

Solution:

According to Wein's displacement law,

$$
\begin{gathered}
\lambda_{m} T=\text { constant } \\
\lambda_{2}>\lambda_{3}>\lambda_{1} \\
\Rightarrow T_{1}>T_{3}>T_{2}
\end{gathered}
$$

a $T_{1}>T_{2}>T_{3}$
b $T_{1}>T_{3}>T_{2}$
C $T_{2}>T_{3}>T_{1}$
d $\quad T_{3}>T_{2}>T_{1}$

Two conducting cylinders of equal length but different radii are connected in series between two heat baths kept at temperatures $T_{1}=300 \mathrm{~K}$ and $T_{2}=100 \mathrm{~K}$ as shown in the figure. The radius of the bigger cylinder is twice that of the smaller one and the thermal conductivities of the materials of the smaller and the larger cylinders are K_{1} and K_{2} respectively. If the
$?$ temperature at the junction of the two cylinders in the steady state is 200 K , then $\frac{K_{1}}{K_{2}}=$

Given: $T_{1}=300 \mathrm{~K}, \quad T_{2}=100 \mathrm{~K}$

$$
r_{2}=2 r_{1}
$$

To find: $\frac{K_{1}}{K_{2}}$

Solution:

In steady-state heat flow across the two cylinders will be same,

$$
H_{1}=H_{2}
$$

$$
\begin{aligned}
\left(\frac{\Delta T_{1}}{\frac{L}{K_{1} A_{1}}}\right) & =\left(\frac{\Delta T_{2}}{\frac{L}{K_{1} A_{2}}}\right) \\
\left(\frac{300-200}{\frac{L}{K_{1} \pi r_{1}^{2}}}\right) & =\left(\frac{200-100}{\frac{L}{K_{1} \pi\left(2 r_{1}\right)^{2}}}\right) \\
\frac{K_{1}}{K_{2}} & =4
\end{aligned}
$$

A solid copper sphere of density ρ and specific capacity C has radius R. If it is heated to a temperature of 400 K is suspended inside a chamber whose walls are at almost 0 K . The time required for the temperature of the sphere to drop to 200 K is

Given: $\quad T_{1}=400 \mathrm{~K}, \quad T_{2}=0 \mathrm{~K}$

To find: t

Solution:

Assuming, Heat loss from the sphere is only due to radiation

$$
\begin{gathered}
\epsilon \sigma A T^{4}=-m C \frac{d T}{d t} \\
\epsilon \sigma \times 4 \pi R^{2} \times T^{4}=-\left(\frac{4}{3} \pi R^{3} \times \rho\right) C \frac{d T}{d t} \\
\frac{R \rho C}{3 \epsilon \sigma} \int_{400}^{200} \frac{d T}{T^{4}}=-\int_{0}^{t} d t
\end{gathered}
$$

$$
t=\frac{7 R \rho C}{576 \epsilon \sigma} \times 10^{-6} s
$$

[^0]: \therefore final temperature $=0{ }^{\circ} \mathrm{C}$

