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𝑥𝑦

𝑧

𝑃 𝑥, 𝑦, 𝑧
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Definition:

It is a geometric setting, in which three different parameters (dimensions) 𝑥, 𝑦, 𝑧 are 
required to determine position of a point.

Three Dimensional Geometry:
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Coordinate and Position Vector of a point: 

𝑋′𝑋, 𝑌′𝑌, 𝑍′𝑍 are the three coordinate axes.

Points 𝐴, 𝐵, 𝐶 are orthogonal projections of 
𝑃 on the 𝑋, 𝑌 & 𝑍 axes.

Note : 

Here,

Point 𝑀 is in 𝑥𝑦 plane

Point 𝑁 is in 𝑦𝑧 plane

Point 𝐿 is in 𝑥𝑧 plane
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𝑃 𝑥, 𝑦, 𝑧

Octant

Co-ordinate
𝑂𝑋′𝑌′𝑍′
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One of the vertices of a cuboid is 0, 2, −1 and edges from this vertex are 

along positive 𝑥, 𝑦 and 𝑧 − axis respectively and are of lengths 2, 2 & 3

respectively. Then, the coordinates of other vertices are :
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𝑃 ≡ 0, 2,−1

Length of edges are 2, 2, 3

Other vertices are :

𝐴 0 + 2, 2,−1 + 3 ≡ 𝐴 2, 2, 2

𝐵 0, 2,−1 + 3 ≡ 𝐵 0 2, 2

𝐶 0,+2, 2, −1 ≡ 𝐶 2 2,−1

𝐷 0,2 + 2,−1 + 3 ≡ 𝐷 0 4, 2

𝐸 0,2 + 2,−1 ≡ 𝐸 0 4,−1

𝐹 0 + 2,2 + 2,−1 ≡ 𝐹 2 4,−1

𝑄 ≡ 2 4, 2

One of the vertices of a cuboid is 0, 2, −1 and edges from this vertex are 

along positive 𝑥, 𝑦 and 𝑧 − axis respectively and are of lengths 2, 2 & 3

respectively. Then, the coordinates of other vertices are :
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A

B

D

C

1, 2, 3

2, 2, 4

2, 2, 3

1, 2, 4

Planes are drawn parallel to the coordinate planes through the points 

1, 2, 3 and 2, 4, 7 . Find the length of edges of cuboid so formed,
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Planes are drawn parallel to the coordinate planes through the points 

1, 2, 3 and 2, 4, 7 . Find the length of edges of cuboid so formed,

𝑃 = 2 − 1 = 1

𝑃𝐸 = 4 − 2 = 2

𝑃𝐵 = 7 − 3 = 4

∴ Length of edges are 1, 2, 4
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A

B

D

C

1, 2, 3

2, 2, 4

2, 2, 3

1, 2, 4

Planes are drawn parallel to the coordinate planes through the points 

1, 2, 3 and 2, 4, 7 . Find the length of edges of cuboid so formed,
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Position Vector of a Point:

Let 𝑂 be origin, then the position vector 

of a point 𝑃 is the vector 𝑂𝑃

Ԧ𝑟 = 𝑂𝑃 = 𝑂𝐿 + 𝐿𝑃

= 𝑂𝐴 + 𝐴𝐿 + 𝐿𝑃

= 𝑂𝐴 + 𝑂𝐶 + 𝑂𝐵

= 𝑥 Ƹ𝑖 + 𝑧෠𝑘 + 𝑦 Ƹ𝑗

Ԧ𝑟 (position vector of 𝑃) = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘

𝑂𝑀 = 𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗
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Distance formula between two points :

Distance = 𝑃𝑄 = 𝑥2 − 𝑥1
2 + 𝑦2 − 𝑦1

2 + 𝑧2 − 𝑧1
2

𝑃𝑄 = 𝑥2 − 𝑥1 Ƹ𝑖 + 𝑦2 − 𝑦1 Ƹ𝑗 + 𝑧2 − 𝑧 ෠𝑘
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The locus of a point 𝑃 which moves such that 𝑃𝐴2 − 𝑃𝐵2 = 5, where 𝐴 and 𝐵

are 3, 4, 5 and −1, 3,−7 respectively, is :

A

B

D

C

8𝑥 + 2𝑦 + 24𝑧 − 9 = 0

8𝑥 − 2𝑦 − 24𝑧 + 13 = 0

8𝑥 − 2𝑦 + 24𝑧 − 5 = 0

8𝑥 + 2𝑦 + 24𝑧 + 14 = 0
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The locus of a point 𝑃 which moves such that 𝑃𝐴2 − 𝑃𝐵2 = 5, where 𝐴 and 𝐵

are 3, 4, 5 and −1, 3,−7 respectively, is :

Let 𝑃 ≡ 𝑥, 𝑦, 𝑧 , 𝑃𝐴2 − 𝑃𝐵2 = 5

𝑃𝐴2 = 𝑥 − 3 2 + 𝑦 − 4 2 + 𝑧 − 5 2

𝑃𝐵2 = 𝑥 + 1 2 + 𝑦 − 3 2 + 𝑧 + 7 2

𝑃𝐴2 − 𝑃𝐵2 = 5 ⇒ 𝑥 − 3 2 + 𝑦 − 4 2 + 𝑧 − 5 2

− 𝑥 + 1 2 + 𝑦 − 3 2 + 𝑧 + 7 2 = 5

⇒ 𝑥2 − 6𝑥 + 9 + 𝑦2 − 8𝑦 + 16 + 𝑧2 − 102 + 25

− 𝑥2 + 2𝑥 + 1 + 𝑦2 − 6𝑦 + 9 + 𝑧2 + 14𝑧 + 49 = 5

⇒ −8𝑥 − 2𝑦 − 24𝑧 − 9 = 5

∴ Locus of 𝑃 : 8𝑥 + 2𝑦 + 24𝑧 + 14 = 0



Return to Top

The locus of a point 𝑃 which moves such that 𝑃𝐴2 − 𝑃𝐵2 = 5, where 𝐴 and 𝐵

are 3, 4, 5 and −1, 3,−7 respectively, is :

A

B

D

C

8𝑥 + 2𝑦 + 24𝑧 − 9 = 0

8𝑥 − 2𝑦 − 24𝑧 + 13 = 0

8𝑥 − 2𝑦 + 24𝑧 − 5 = 0

8𝑥 + 2𝑦 + 24𝑧 + 14 = 0
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Distance of a Point from Co-ordinate Axis:

Distance of 𝑃 from 𝑥 −axis = 𝑃𝐴

Distance of 𝑃 from 𝑦 − axis = 𝑃𝐵

𝑃𝐵 = 𝑥2 + 𝑦 − 𝑦 2 + 𝑧2

𝑃𝐴 = 𝑥 − 𝑥 2 + 𝑦2 + 𝑧2 = 𝑦2 + 𝑧2

= 𝑥2 + 𝑧2

Distance of 𝑃 from z − axis = 𝑃𝐶

𝑃𝐶 = 𝑥2 + 𝑦2 + 𝑧 − 𝑧 2 = 𝑥2 + 𝑦2

Projection of point on 𝑥 − axis ≡ 𝐴

Projection of point on y − axis ≡ 𝐵

Projection of point on z − axis ≡ 𝐶
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If the sum of the squares of the distances of a point from the three 

coordinate axes be 36, then its distance from origin is :

A 6 B 3 2 C 6 2 D 2 3

Let 𝑃 ≡ 𝑥, 𝑦, 𝑧

𝑃𝐴2 + 𝑃𝐵2 + 𝑃𝐶2 = 36

𝑦2 + 𝑧2 + 𝑥2 + 𝑧2 + 𝑥2 + 𝑦2 = 36

⇒ 2 𝑥2 + 𝑦2 + 𝑧2 = 36

⇒ 𝑥2 + 𝑦2 + 𝑧2 = 18

⇒ 𝑂𝑃 = 𝑥2 + 𝑦2 + 𝑧2 = 18

= 3 2
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If the sum of the squares of the distances of a point from the three 

coordinate axes be 36, then its distance from origin is :

A 6 B 3 2 C 6 2 D 2 3B 3 2B
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A point moves so that the sum of the 

squares of its distances from the six faces of 

a cube given by 𝑥 = ±1, 𝑦 = ±1, 𝑧 = ±1 is 10

units. Then the locus of the point is :

A

B

D

C

𝑥2 + 𝑦2 + 𝑧2 = 1

𝑥 + 𝑦 + 𝑧 = 2

𝑥2 + 𝑦2 + 𝑧2 = 2

𝑥 + 𝑦 + 𝑧 = 1
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A point moves so that the sum of the squares of its distances from the six 

faces of a cube given by 𝑥 = ±1, 𝑦 = ±1, 𝑧 = ±1 is 10 units. Then the locus of 

the point is :

Let 𝑃 ≡ 𝑙,𝑚, 𝑛

Distance of 𝑃 from 𝑥 = 1 ⇒ 𝑙 − 1

⇒ 𝑙 + 1 2 + 𝑚+ 1 2 + 𝑛 + 1 2

+ 𝑙 − 1 2 + 𝑚− 1 2 + 𝑛 − 1 2

→ 𝑥 = −1, 𝑦 = −1, 𝑧 = −1

→ 𝑥 = 1, 𝑦 = 1, 𝑧 = 1

= 10
⇒ 𝑙2 + 2𝑙 + 1 +𝑚2 + 2𝑚 + 1 + 𝑛2 + 2𝑛 + 1 + 𝑙2 − 2𝑙 + 1

+𝑚2 − 2𝑚 + 1 + 𝑛2 − 2𝑛 + 1 = 10

⇒ 2 𝑙2 +𝑚2 + 𝑛2 + 6 = 10 ⇒ 2 𝑙2 +𝑚2 + 𝑛2 = 4

Generalise, 𝑙 → 𝑥,𝑚 → 𝑦, 𝑛 → 𝑧

𝑥2 + 𝑦2 + 𝑧2 = 2
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A point moves so that the sum of the squares of its distances from the six 

faces of a cube given by 𝑥 = ±1, 𝑦 = ±1, 𝑧 = ±1 is 10 units. Then the locus of 

the point is :

A

B

D

C

𝑥2 + 𝑦2 + 𝑧2 = 1

𝑥 + 𝑦 + 𝑧 = 2

𝑥2 + 𝑦2 + 𝑧2 = 2

𝑥 + 𝑦 + 𝑧 = 1
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Section Formula :

Coordinate of a point 𝑀 which divides the line 

segment joining points 𝑃 & 𝑄 in 𝑚 ∶ 𝑛, is :

𝑀 ≡ 𝑥, 𝑦, 𝑧

𝑀 ≡
𝑚𝑥2+𝑛𝑥1

𝑚+𝑛
,
𝑚𝑦2+𝑛𝑦1

𝑚+𝑛
,
𝑚𝑧1+𝑛𝑧1

𝑚+𝑛
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If a point 𝑅 4, 𝑦, 𝑧 lies on the line segment joining the points 𝑃 2,−3, 4

and 𝑄 8, 0, 10 , then the distance of 𝑅 from origin is :

A 6 B 53 C 2 14 D 2 21

Let 𝑃𝑅
𝑅𝑄

=
𝜆

1
(internally)

JEE MAINS APR 2019

𝑃(2,−3, 4)

𝑅(4, 𝑦, 𝑧)

𝑄(8, 0, 10)Section Formula 𝑅 ≡
8𝜆+2

𝜆+1
,
0+ −3

𝜆+1
,
10𝜆+4

𝜆+1
≡ 4, 𝑦, 𝑧

∴
8𝜆+2

𝜆+1
= 4 ⇒ 8𝜆 + 2 = 4𝜆 + 4

4𝜆 = 2 ⇒ 𝜆 =
1

2

Put 𝜆 in 𝑅 4,−2, 6

𝑂𝑅 = 16 + 4 + 36 = 56 = 2 14
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If a point 𝑅 4, 𝑦, 𝑧 lies on the line segment joining the points 𝑃 2,−3, 4

and 𝑄 8, 0, 10 , then the distance of 𝑅 from origin is :

A 6 B 53 C 2 14 D 2 21

JEE MAINS APR 2019

𝑃(2,−3, 4)

𝑅(4, 𝑦, 𝑧)

𝑄(8, 0, 10)

C
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Coordinate of centroid 𝐺 is :

𝐺 ≡
𝑥1+𝑥2+𝑥3

3
,
𝑦1+𝑦2+𝑦3

3
,
𝑧1+𝑧2+𝑧3

3

Centroid of a Triangle
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Let 𝐴 3, 0,−1 ,𝐵 2, 10, 6 & 𝐶 1, 2, 1 be the vertices of a triangle and 𝑀 be 

the midpoint of 𝐴𝐶. If 𝐺 divides 𝐵𝑀 in the ratio 2 ∶ 1, then 

cos ∠𝐺𝑂𝐴 , where 𝑂 is the origin, is equal to

A
1

15
B

1

6 10
C

1

30
D 1

2 15

JEE MAINS APR 2019

𝐺 is the centroid

𝐺 ≡
3+2+1

3
,
10+0+2

3
,
−1+6+1

3

𝐺 ≡
𝑥1+𝑥2+𝑥3

3
,
𝑦1+𝑦2+𝑦3

3
,
𝑧1+𝑧2+𝑧3

3

⇒ 𝐺 ≡ 2,4,2

cos𝜃 = ෢𝑂𝐴 ⋅ ෢𝑂𝐺 =
𝐵𝐴⋅𝑂𝐺

𝑂𝐴 ⋅ 𝑂𝐺

𝑂𝐴 = 3 Ƹ𝑖 − ෠𝑘, 𝑂𝐺 = 2 Ƹ𝑖 + 4 Ƹ𝑗 + 2෠𝑘

cos𝜃 =
6−2

10⋅ 24
=

4

4 15
∴ cos𝜃 =

1

15



Return to Top

Let 𝐴 3, 0,−1 ,𝐵 2, 10, 6 & 𝐶 1, 2, 1 be the vertices of a triangle and 𝑀 be 

the midpoint of 𝐴𝐶. If 𝐺 divides 𝐵𝑀 in the ratio 2 ∶ 1, then 

cos ∠𝐺𝑂𝐴 , where 𝑂 is the origin, is equal to

A
1

15
B

1

6 10
C

1

30
D 1

2 15

JEE MAINS APR 2019

A
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Coordinate of incentre 𝐼 is :

𝐺 ≡
𝑎𝑥1+𝑏𝑥2+𝑐𝑥3

𝑎+𝑏+𝑐
,
𝑎𝑦1+𝑏𝑦2+𝑐𝑦3

𝑎+𝑏+𝑐
,
𝑎𝑧1+𝑏𝑧2+𝑐𝑧3

𝑎+𝑏+𝑐

Incentre of a Triangle



Return to Top

The vertices of a triangle are 𝐴 1, 1, 2 , 𝐵 4, 3, 1 and 𝐶 2, 3, 5 . Then 

vector representing internal bisector of the angle 𝐴 is :

A

B

D

C

Ƹ𝑖 + Ƹ𝑗 + 2෠𝑘

2 Ƹ𝑖 + 2 Ƹ𝑗 + ෠𝑘

2 Ƹ𝑖 + 2 Ƹ𝑗 − ෠𝑘

2 Ƹ𝑖 − 2 Ƹ𝑗 + ෠𝑘
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The vertices of a triangle are 𝐴 1, 1, 2 , 𝐵 4, 3, 1 and 𝐶 2, 3, 5 . Then 

vector representing internal bisector of the angle 𝐴 is :

𝐴𝐵 = 32 + 22 + 12 = 14

⇒ 𝐴𝐵𝐶 is an isosceles triangle. 

𝐴𝐶 = 12 + 22 + 32 = 14

∴ Median acts as an angle bisector 
for angle 𝐴.

𝐷 divides 𝐵𝐶 in ratio of 𝐴𝐵 ∶ 𝐴𝐶

⇒ 𝐷 is mid point

𝐷 ≡ 3, 3, 3 ⇒ 𝐴𝐷 = 𝑂𝐷 − 𝑂𝐴

= 3 Ƹ𝑖 + 3 Ƹ𝑗 + 3෠𝑘 − Ƹ𝑖 + Ƹ𝑗 + 2෠𝑘

∴ 𝐴𝐷 = 2 Ƹ𝑖 + 2 Ƹ𝑗 + ෠𝑘
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A

B

D

C

The vertices of a triangle are 𝐴 1, 1, 2 , 𝐵 4, 3, 1 and 𝐶 2, 3, 5 . Then 

vector representing internal bisector of the angle 𝐴 is :

Ƹ𝑖 + Ƹ𝑗 + 2෠𝑘

2 Ƹ𝑖 + 2 Ƹ𝑗 + ෠𝑘

2 Ƹ𝑖 + 2 Ƹ𝑗 − ෠𝑘

2 Ƹ𝑖 − 2 Ƹ𝑗 + ෠𝑘
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Direction ratios and 

direction cosines of a line

Session 02

Return to Top
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Area of a triangle 

Let 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 and 𝐶 𝑥3, 𝑦3, 𝑧3 be 

vertices of a triangle, then 

Area = 1
2
𝐴𝐵 × 𝐴𝐶

Area = 
1

2

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐵(𝑥2, 𝑦2, 𝑧2) 𝐶(𝑥3, 𝑦3, 𝑧3)
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∆𝑥=
1

2

𝑦1 𝑧1 1
𝑦2 𝑧2 1
𝑦3 𝑧3 1

∆𝑧=
1

2

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

Area of triangle ∆ = ∆𝑥
2 + ∆𝑦

2 + ∆𝑧
2

𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2 𝐶 𝑥3, 𝑦3, 𝑧3

Let ∆𝑥, ∆𝑦 and ∆𝑧 be the area of the projections of the triangle to the 𝑌𝑍, 𝑋𝑍, 𝑋𝑌 planes
respectively.

, ∆𝑦=
1

2

𝑧1 𝑥1 1
𝑧2 𝑥2 1
𝑧3 𝑥3 1

Area of a triangle 
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The area of triangle formed by joining points 2,−1,1 , 1, −3,−5

& (3,−4,−4) is : 
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The area of triangle formed by joining points 2,−1,1 , 1, −3,−5

& (3,−4,−4) is : 

Area = 1
2
𝐴𝐵 × 𝐴𝐶

Area = 1

2

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1

Area = 1

2

Ƹ𝑖 Ƹ𝑗 ෠𝑘
−1 −2 −6
1 −3 −5

=
210

2
square unit

𝐴 2, , −1,1

𝐵 1,−3,−5 𝐶 3, −4,−4

Solution:
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Condition of collinearity 

The points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 and 𝐶 𝑥3, 𝑦3, 𝑧3 are collinear if :

Using Distance formula : 

i.e. 𝐴𝐵 + 𝐵𝐶 = 𝐴𝐶

𝐴 𝑥1, 𝑦1, 𝑧1 𝐵 𝑥2, 𝑦2, 𝑧2
𝐶 𝑥3, 𝑦3, 𝑧3 𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2𝐶 𝑥3, 𝑦3, 𝑧3

i.e. 𝐴𝐵 − 𝐵𝐶 = 𝐴𝐶

𝐴𝐵 ± 𝐵𝐶 = 𝐴𝐶
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Condition of collinearity 

The points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 and 𝐶 𝑥3, 𝑦3, 𝑧3 are collinear if :

Using section formula : 

𝑥2 =
𝑚𝑥3 + 𝑛𝑥1
𝑚 + 𝑛

, 𝑦2 =
𝑚𝑦3 + 𝑛𝑦1
𝑚 + 𝑛

,

Point 𝐵 divides 𝐴 & 𝐶 in ration 𝑚: 𝑛

𝑧2 =
𝑚𝑧3 + 𝑛𝑧1
𝑚+ 𝑛

𝐴 𝑥1, 𝑦1, 𝑧1 𝐵 𝑥2, 𝑦2, 𝑧2
𝐶 𝑥3, 𝑦3, 𝑧3
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Condition of collinearity 

The points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 and 𝐶 𝑥3, 𝑦3, 𝑧3 are collinear if :

Using area of triangle : 

Area = 1

2

Ƹ𝑖 Ƹ𝑗 ෠𝑘
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1

= 0

𝐴 𝑥1, 𝑦1, 𝑧1 𝐵 𝑥2, 𝑦2, 𝑧2
𝐶 𝑥3, 𝑦3, 𝑧3
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Condition of collinearity 

The points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 and 𝐶 𝑥3, 𝑦3, 𝑧3 are collinear if :

Using vectors : 

𝐴𝐶 = 𝜆𝐴𝐵

𝑥3 − 𝑥1
𝑥2 − 𝑥1

=
𝑦3 − 𝑦1
𝑦2 − 𝑦1

=
𝑧3 − 𝑧1
𝑧2 − 𝑧1

𝐴 𝑥1, 𝑦1, 𝑧1 𝐵 𝑥2, 𝑦2, 𝑧2
𝐶 𝑥3, 𝑦3, 𝑧3

𝐴𝐶 ∥ 𝐴𝐵
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If the points 4 , 5 , 1 , 3 , 2 , 4 & (−1 ,−10 , 𝑝) are collinear , then value 

of 𝑝 is: 

A

B

D

C

14

17

16

15
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𝑥3 − 𝑥1
𝑥2 − 𝑥1

=
𝑦3 − 𝑦1
𝑦2 − 𝑦1

=
𝑧3 − 𝑧1
𝑧2 − 𝑧1

−1 − 4

3 − 4
=
−10 − 5

2 − 5
=
𝑝 − 1

4 − 1

⇒ 𝑝 = 16

⇒ 5 = 5 =
𝑝 − 1

3

⇒ 𝑝 − 1 = 3 × 5

If the points 4 , 5 , 1 , 3 , 2 , 4 & (−1 ,−10 , 𝑝) are collinear , then value 

of 𝑝 is: 

Solution:
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If the points 4 , 5 , 1 , 3 , 2 , 4 & (−1 ,−10 , 𝑝) are collinear , then value 

of 𝑝 is: 

A

B

D

C

14

17

16

15
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Volume of Tetrahedron 

Let 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 , 𝐶 𝑥3, 𝑦3, 𝑧3 and 𝐷 𝑥4, 𝑦4, 𝑧4 be vertices of a tetrahedron, then

𝑉 =
1

6

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1
𝑥4 − 𝑥1 𝑦4 − 𝑦1 𝑧4 − 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2𝐴 𝑥1, 𝑦1, 𝑧1

𝐶 𝑥3, 𝑦3, 𝑧3

𝑏

𝐷 𝑥4, 𝑦4, 𝑧4

Ԧ𝑐

Ԧ𝑎

𝑉 =
1

6
Ԧ𝑎 Ԧ𝑏 Ԧ𝑐
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Direction Cosines of a line 

Let 𝛼, 𝛽, 𝛾 be the angles which the directed line makes with the positive directions 

of the axes of 𝑥, 𝑦 & 𝑧 respectively, then cos𝛼 , cos𝛽 & cos 𝛾 are called the direction 

cosines of the line (D.C.’s). 

cos 𝛼

cos 𝛽

cos 𝛾

𝛼 + 𝛽 + 𝛾 ≠ 2𝜋

They are usually denoted by 𝑙 ,𝑚 , 𝑛 .

Note

=
𝑎

𝑟
=

𝑎

𝑎2+𝑏2+𝑐2

=
𝑏

𝑎2+𝑏2+𝑐2
=

𝑏

𝑟

=
𝑐

𝑟
=

𝑐

𝑎2+𝑏2+𝑐2

𝑂

𝑌

𝑋

𝑍

𝛼

𝑃(𝑎, 𝑏, 𝑐)

𝛽

𝛾

𝑂𝑃 = 𝑟𝑟
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Direction Cosines of a line 

The D.C.’s are usually denoted by 𝑙 , 𝑚 , 𝑛 .

𝑙 = cos𝛼 =
𝑎

𝑎2+𝑏2+𝑐2

𝑚 = cos𝛽 =
𝑏

𝑎2+𝑏2+𝑐2

𝑛 = cos𝛾 =
𝑐

𝑎2+𝑏2+𝑐2

∴ 𝑙2 +𝑚2 + 𝑛2 = 1

𝑙2 +𝑚2 + 𝑛2

=
𝑎2+𝑏2+𝑐2

𝑎2+𝑏2+𝑐2

=
𝑎2

𝑎2+𝑏2+𝑐2
+

𝑏2

𝑎2+𝑏2+𝑐2
+ 𝑐2

𝑎2+𝑏2+𝑐2
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Direction Cosines of a line 

The D.C.’s are usually denoted by 𝑙 , 𝑚 , 𝑛 .

𝑄 ≡ 𝑥1 + 𝑙𝑟 , 𝑦1 +𝑚𝑟 , 𝑧1 + 𝑛𝑟

⇒ 𝑃 ≡ 𝑙𝑟 ,𝑚𝑟 , 𝑛𝑟

D.C.’s = 𝑙,𝑚, 𝑛

D.C.’s = 𝑙,𝑚, 𝑛

𝑃(𝑥1, 𝑦1, 𝑧1)

➢ 𝑂𝑃 = 𝑟

➢ 𝑃𝑄 = 𝑟



Return to Top

Direction cosines (D.C.’s ) of a line equally inclined with the positive 

direction of the coordinate axes, is ____.

A

B

D

C

1

3
, −

1

3
,
1

3

1 , 1 , 1

1

2
,
1

2
,
1

2

1

3
,
1

3
,
1

3
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Direction cosines (D.C.’s ) of a line equally inclined with the positive 

direction of the coordinate axes, is ____.

A

B

D

C

1

3
, −

1

3
,
1

3

1 , 1 , 1

1

3
,
1

3
,
1

3

1

2
,
1

2
,
1

2

𝑙2 +𝑚2 + 𝑛2 = 1

𝑙 = cos𝛼

Thus , direction cosines : 1
3
,
1

3
,
1

3

, 𝑚 = cos𝛽 , 𝑛 = cos 𝛾𝛼 = 𝛽 = 𝛾

Solution:

𝑙 = cos 𝛼 = 𝑚 = 𝑛

⇒ cos2 𝛼 + cos2 𝛼 + cos2 𝛼 = 1

⇒ 3 cos2 𝛼 = 1 ⇒ cos𝛼 = ±
1

3

⇒ cos𝛼 =
1

3
= 𝑙
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Direction cosines (D.C.’s ) of a line equally inclined with coordinate axes, 

is ____.

A

B

D

C

1

3
, −

1

3
,
1

3

1 , 1 , 1

1

2
,
1

2
,
1

2

1

3
,
1

3
,
1

3
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If a line makes angles 𝛼, 𝛽, 𝛾 with positive 𝑥, 𝑦, 𝑧 axes respectively, 

then the value of sin2𝛼 + sin2𝛽 + sin2𝛾 is : 

A

B

D

C

4

1

3

2
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If a line makes angles 𝛼, 𝛽, 𝛾 with positive 𝑥, 𝑦, 𝑧 axes respectively, 

then the value of sin2𝛼 + sin2𝛽 + sin2𝛾 is : 

𝑙2 +𝑚2 + 𝑛2 = 1

⇒ 1 − sin2𝛼 + 1 − sin2𝛽 + 1 − sin2𝛾 = 1

⇒ cos2𝛼 + cos2𝛽 + cos2𝛾 = 1

⇒ sin2𝛼 + sin2𝛽 + sin2𝛾 = 2

Solution:
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If a line makes angles 𝛼, 𝛽, 𝛾 with positive 𝑥, 𝑦, 𝑧 axes respectively, 

then the value of sin2𝛼 + sin2𝛽 + sin2𝛾 is : 

A

B

D

C

4

1

3

2
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Direction Ratios of a line 

If 𝑎, 𝑏, 𝑐 be proportional to the direction cosines (D.C.’s ) 𝑙, 𝑚, 𝑛 , then 𝑎, 𝑏, 𝑐 are 

called direction ratios (D.R.’s).  

DRs can be :

Let the D.C.’s of a line be : 2
3
, −

2

3
,
1

3
, thenExample

or  −6 , 6 ,−3

or  2 7 ,−2 7 , 7

2 ,−2 , 1
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𝑙, 𝑚, 𝑛 ≡
𝑎

𝑎2+𝑏2+𝑐2
,

𝑏

𝑎2+𝑏2+𝑐2
,

𝑐

𝑎2+𝑏2+𝑐2

or

𝑙, 𝑚, 𝑛 ≡ −
𝑎

𝑎2+𝑏2+𝑐2
, −

𝑏

𝑎2+𝑏2+𝑐2
, −

𝑐

𝑎2+𝑏2+𝑐2

Direction Ratios of a line 

Let 𝑎, 𝑏, 𝑐 be the D.R.’s and 𝑙, 𝑚, 𝑛 be the D.C’s

of a line, then

𝑎

𝑙
=

𝑏

𝑚
=

𝑐

𝑛
= 𝜆 ⇒ 𝑙 =

𝑎

𝜆
, 𝑚 =

𝑏

𝜆

𝑙2 +𝑚2 + 𝑛2 ⇒
𝑎2

𝜆2
+

𝑏2

𝜆2
+

𝑐2

𝜆2
= 1 ⇒ 𝜆2 = 𝑎2 + 𝑏2 + 𝑐2

⇒ 𝜆 = ± 𝑎2 + 𝑏2 + 𝑐2
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Direction Ratios and Direction Cosines of a line 

➢ If 𝑎, 𝑏, 𝑐 be the D.R.’s of any line 𝐿, then

➢ If 𝑙,𝑚, 𝑛 be the D.C.’s of any line 𝐿, then

𝑎 Ƹ𝑖 + 𝑏 Ƹ𝑗 + 𝑐 ෠𝑘 will be a vector parallel to the line .

𝑙 Ƹ𝑖 + 𝑚 Ƹ𝑗 + 𝑛෠𝑘 will be a unit vector parallel to the line .
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➢ The D.R.’s of line 𝑃𝑄 will be

𝑃(𝑥1, 𝑦1, 𝑧1)

𝑄 𝑥2 , 𝑦2 , 𝑧2

If 𝑃 ≡ 𝑥1, 𝑦1, 𝑧1 & 𝑄 ≡ 𝑥2, 𝑦2, 𝑧2 , then

➢ The D.C.’s of line 𝑃𝑄 will be

𝑎 = 𝑥2 − 𝑥1 , 𝑐 = 𝑧2 − 𝑧1𝑏 = 𝑦2 − 𝑦1 ,

𝑙 =
𝑥2−𝑥1

𝑃𝑄
, 𝑚 =

𝑦2−𝑦1

𝑃𝑄
, 𝑛 =

𝑧2−𝑧1

𝑃𝑄

Direction Ratios and Direction Cosines of a line 
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Consider a cube whose edges are parallel to coordinate axes. Then the 

direction ratios (D.R.’s) and direction cosines (D.C.’s ) of its body diagonals, is :
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Consider a cube whose edges are parallel to coordinate axes. Then the 

direction ratios (D.R.’s) and direction cosines (D.C.’s ) of its body diagonals, is :

Let side of cube be 𝑎

𝑂𝑃 ∶ D.R.’s ∶ (1,1,1)

D.C.’s :

D.C.’s :
1

3
,
1

3
,
1

3
or − 1

3
, −

1

3
, −

1

3

𝐵𝐿 ∶ D.R.’s ∶ (1, −1,1)

1

3
, −

1

3
,
1

3
or − 1

3
,
1

3
, −

1

3

𝑋

𝑍

𝑌

𝑂

𝑃(𝑎, 𝑎, 𝑎)

𝐿(𝑎, 0, 𝑎)

𝐴(𝑎, 0,0)

𝐵(0, 𝑎, 0)

𝐶(0,0, 𝑎)

𝑀(𝑎, 𝑎, 0)
𝑁(0, 𝑎, 𝑎)

Solution:
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Consider a cube whose edges are parallel to coordinate axes. Then the 

direction ratios (D.R.’s) and direction cosines (D.C.’s ) of its body diagonals, is :

𝐴𝑁 ∶ D.R.’s ∶ (−1,1,1)

D.C.’s :

D.C.’s : −
1

3
,
1

3
,
1

3
or 1

3
, −

1

3
, −

1

3

𝐶𝑀 ∶ D.R.’s ∶ (1,1, −1)

1

3
,
1

3
, −

1

3
or − 1

3
, −

1

3
,
1

3

𝑋

𝑍

𝑌

𝑂

𝑃(𝑎, 𝑎, 𝑎)

𝐿(𝑎, 0, 𝑎)

𝐴(𝑎, 0,0)

𝐵(0, 𝑎, 0)

𝐶(0,0, 𝑎)

𝑀(𝑎, 𝑎, 0)
𝑁(0, 𝑎, 𝑎)

Solution:
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Equation of a straight line in 

3 −D form

Session 03

Return to Top
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The direction cosines (D.C.’s) 𝑙,𝑚, 𝑛 of a line which are connected 
by the relations 𝑙 + 𝑚 + 𝑛 = 0; 2𝑙𝑚 + 2𝑚𝑛 − 𝑛𝑙 = 0, is:  

A

B

C

D

−
2

6
,
1

6
,
1

6

1

6
,
1

6
,
2

6

2

6
,
1

6
,
1

6
−

1

6
, −

1

6
,
2

6

⇒ 2𝑙𝑚 + 2𝑚 − 𝑙 𝑛 = 0

Put 𝑛 = −𝑙 − 𝑚

𝑙 + 𝑚 + 𝑛 = 0 &; 2𝑙𝑚 + 2𝑚𝑛 − 𝑛𝑙 = 0

⇒ 2𝑙𝑚 + 2𝑚 − 𝑙 −𝑙 − 𝑚 = 0

⇒ 2𝑙𝑚 − 2𝑙𝑚 − 2𝑚2 + 𝑙2 + 𝑙𝑚 = 0

⇒ 𝑙2 + 𝑙𝑚 − 2𝑚2 = 0

⇒ 𝑙 + 2𝑚 𝑙 −𝑚 = 0
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𝑙: 𝑚: 𝑛 ∷ −2𝑚:𝑚:𝑚

∴ D.C.’s can be: − 2

6
,
1

6
,
1

6
or − 1

6
, −

1

6
,
2

6

The direction cosines (D.C.’s) 𝑙,𝑚, 𝑛 of a line which are connected 
by the relations 𝑙 + 𝑚 + 𝑛 = 0; 2𝑙𝑚 + 2𝑚𝑛 − 𝑛𝑙 = 0, is:  

𝑙 + 𝑚 + 𝑛 = 0 &; 2𝑙𝑚 + 2𝑚𝑛 − 𝑛𝑙 = 0

⇒ 𝑙 + 2𝑚 𝑙 −𝑚 = 0

𝑙 = −2𝑚

⇒ 𝑛 = −𝑙 −𝑚

𝑙 = 𝑚

⇒ 𝑛 = −𝑙 −𝑚

⇒ 𝑛 = 𝑚
⇒ 𝑛 = −2𝑚

⇒
𝑙

−2
=

𝑚

1
=

𝑛

1

DRS ∝ −2, 1, 1

𝑙:𝑚: 𝑛 ∷ 𝑚:𝑚:−2𝑚

⇒
𝑙

1
=

𝑚

1
=

𝑛

−2

DRS ∝ 1, 1,−2
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Angle between two lines  

If two lines have D.R.’s 𝑎1, 𝑏1, 𝑐1 and 𝑎2, 𝑏2, 𝑐2 respectively
(parallel vectors will be 𝑎1 Ƹ𝑖 + 𝑏1 Ƹ𝑗 + 𝑐1 ෠𝑘 and 𝑎2 Ƹ𝑖 + 𝑏2 Ƹ𝑗 + 𝑐2 ෠𝑘 respectively).
Let 𝜃 is the angle between them, then 

𝜃 = cos−1
𝑎1𝑎2+𝑏1𝑏2+𝑐1𝑐2

𝑎1
2+𝑏1

2+𝑐1
2 𝑎2

2+𝑏2
2+𝑐2

2

Lines will be perpendicular, if

Lines will be parallel, if

𝑎1

𝑎2
=

𝑏1

𝑏2
=

𝑐1

𝑐2

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

cos𝜃 =
𝑎.𝑏

𝑎 𝑏

𝜃

𝐿1

𝐿2
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Angle between two lines  

cos𝜃 =
𝑎.𝑏

𝑎 𝑏

𝜃

𝐿1

𝐿2

If two lines have D.C.’s 𝑙1, 𝑚1, 𝑛1 and 𝑙2, 𝑚2, 𝑛2 respectively
(parallel unit vectors will be 𝑙1 Ƹ𝑖 + 𝑚1 Ƹ𝑗 + 𝑛1 ෠𝑘 and 𝑙2 Ƹ𝑖 + 𝑚2 Ƹ𝑗 + 𝑛2 ෠𝑘 respectively).
Let 𝜃 is the angle between them, then 

𝜃 = cos−1 𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2
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A

B

C

D

The angle between any two body diagonals of a cube, is :  

cos−1
4

9
cos−1

2

3

cos−1
1

3
cos−1

2

9

𝑂𝑃 ∶ Direction cosines :

𝐵𝐿 ∶ Direction cosines :

𝜃 = cos−1 𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2

𝜃 = cos−1
1

3

1

3
,
1

3
,
1

3

1

3
, −

1

3
,
1

3
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The angle between the lines whose direction cosines satisfy the 
equations 𝑙 + 𝑚 + 𝑛 = 0 & 𝑙2 = 𝑚2 + 𝑛2, is:  

A

B

C

D 𝜋

2

𝜋

3

𝜋

6

𝜋

4

JEE MAIN 2014
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Squaring 𝑖 ,

⇒ 𝑙2 = 𝑚2 + 𝑛2 + 2𝑚𝑛

⇒ 2𝑚𝑛 = 0

⇒ 𝑙 = − 𝑚 + 𝑛 ⋯ 𝑖

⇒ 𝑚 = 0 or  𝑛 = 0

𝑙 + 𝑚 + 𝑛 = 0 & 𝑙2 = 𝑚2 + 𝑛2

⇒ 𝑙2 = 𝑙2 + 2𝑚𝑛

For 𝑚 = 0, 𝑙 =
1

2
, 𝑛 = −

1

2

For 𝑛 = 0, 𝑙 =
1

2
, 𝑚 = −

1

2

The angle between the lines whose direction cosines satisfy the 
equations 𝑙 + 𝑚 + 𝑛 = 0 & 𝑙2 = 𝑚2 + 𝑛2, is:  

JEE MAIN 2014
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∴ D.C.’s will be : 1

2
, −

1

2
, 0

1

2
, 0, −

1

2
or

𝜃 = cos−1 𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2

⇒ 𝜃 = cos−1
1

2
=

𝜋

3

⇒ 𝑚 = 0 or  𝑛 = 0

For 𝑚 = 0, 𝑙 =
1

2
, 𝑛 = −

1

2

For 𝑛 = 0, 𝑙 =
1

2
, 𝑚 = −

1

2

The angle between the lines whose direction cosines satisfy the 
equations 𝑙 + 𝑚 + 𝑛 = 0 & 𝑙2 = 𝑚2 + 𝑛2, is:  

JEE MAIN 2014
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A

B

C

D 𝜋

2

𝜋

3

𝜋

6

𝜋

4

The angle between the lines whose direction cosines satisfy the 
equations 𝑙 + 𝑚 + 𝑛 = 0 & 𝑙2 = 𝑚2 + 𝑛2, is:  

JEE MAIN 2014
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A

B

D

C

𝛼 = −1, 𝛽 = −1

𝛼 = 2, 𝛽 = −1

𝛼 = 1, 𝛽 = 2

𝛼 = 2, 𝛽 = 2

The coordinates of points 𝐴, 𝐵, 𝐶, 𝐷 are 4, 𝛼, 2 , 5,−3, 2 , 𝛽, 1, 1 & 3, 3, −1

respectively. Line 𝐴𝐵 would be perpendicular to line 𝐶𝐷 when :  



Return to Top

Possible when, 𝛼 = −1, 𝛽 = −1

Lines will be perpendicular, if 𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

⇒ 3 − 𝛽 − 6 − 2𝛼 = 0

1 ,−3 − 𝛼 , 0

D.R.’s of line 𝐶𝐷 ∶

⇒ 2𝛼 + 𝛽 = −3

D.R.’s of line 𝐴𝐵 ∶

3 − 𝛽 , 2 ,−2

Solution:

The coordinates of points 𝐴, 𝐵, 𝐶, 𝐷 are 4, 𝛼, 2 , 5,−3, 2 , 𝛽, 1, 1 & 3, 3, −1

respectively. Line 𝐴𝐵 would be perpendicular to line 𝐶𝐷 when :  



Return to Top

Projection of a Line Segment on Coordinate Axes:

Let a line segment has length 𝑟 and has direction cosines 𝑙, 𝑚, 𝑛,
then its projection on coordinate axes will be 𝑙𝑟,𝑚𝑟, 𝑛𝑟.

𝑚𝑟

𝑛𝑟

𝑙𝑟 𝑂

𝑟



Return to Top

A

B

C

D

The projection of a vector on three coordinate axes are 6,−3 & 2

respectively. The direction cosines of the vector are :

−
6

7
, −

3

7
,
2

7

6,−3, 2

6

5
, −

3

5
,
2

5

6

7
, −

3

7
,
2

7
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The projection of a vector on three coordinate axes are 6,−3 & 2

respectively. The direction cosines of the vector are :

𝑙2 +𝑚2 + 𝑛2 = 1

Thus, direction cosines : 6
7
, −

3

7
,
2

7

𝑙𝑟 = 6

⇒ 𝑟 = 7

;𝑚𝑟 = −3 ; 𝑛𝑟 = 2

𝑙2𝑟2 +𝑚2𝑟2 + 𝑛2𝑟2 = 62 + 32 + 22

𝑟2 𝑙2 +𝑚2 + 𝑛2 = 49

𝑙 ⋅ 7 = 6 ⇒
6

7 ; 𝑚 = −
3

7
; 𝑛 =

2

7

AIEEE 2009
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A

B

C

D

The projection of a vector on three coordinate axes are 6,−3 & 2

respectively. The direction cosines of the vector are :

−
6

7
, −

3

7
,
2

7

6,−3, 2

6

5
, −

3

5
,
2

5

6

7
, −

3

7
,
2

7

AIEEE 2009
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Projection of a Line Segment on Another Line

Projection of a line segment joining points 

𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 on a line 𝐿 having direction cosines 𝑙,𝑚, 𝑛, 

is :

𝐴′𝐵′ = 𝑥2 − 𝑥1 𝑙 + 𝑦2 − 𝑦1 𝑚+ 𝑧2 − 𝑧1 𝑛

Projection of Ԧ𝑎 on Ԧ𝑏 is : Ԧ𝑎 ⋅ 𝑏

𝑏

𝐴 𝑥1, 𝑦1, 𝑧1 𝐵 𝑥2, 𝑦2, 𝑧2

𝑙,𝑚, 𝑛𝐴′ 𝐵′

𝐿



Return to Top

The projection of a line segment joining the points 1,−1, 3 and 2,−4, 11

on the line joining the points −1, 2, 3 and 3,−2, 10 is: 

Solution:
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Return to Top

The projection of a line segment joining the points 1,−1, 3 and 2,−4, 11

on the line joining the points −1, 2, 3 and 3,−2, 10 is: 

The DRs of line L with points −1, 2, 3 & 3,−2, 10 :

𝐴 1, −1, 3
𝐵 2, −4, 11

𝑙,𝑚, 𝑛𝐴′ 𝐵′

𝐿

4,−4, 7

∴ 𝑙 =
4

9
; 𝑚 = −

4

9
; 𝑛 =

7

9

−1, 2, 3 3,− 2, 10

Solution:
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Return to Top

∴ Projection = 8

𝐴′𝐵′ = 𝑥2 − 𝑥1 𝑙 + 𝑦2 − 𝑦1 𝑚+ 𝑧2 − 𝑧1 𝑛

=
4

9
2 − 1 −

4

9
−4 + 1 +

7

9
11 − 3

=
4

9
+

12

9
+

56

9

= 8

∴ 𝑙 =
4

9
; 𝑚 = −

4

9
; 𝑛 =

7

9

The projection of a line segment joining the points 1,−1, 3 and 2,−4, 11

on the line joining the points −1, 2, 3 and 3,−2, 10 is: 
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Equation of a Straight Line

𝑖 Equation of a line passing through a point 𝐴 𝑥1, 𝑦1, 𝑧1 and having     

direction ratios 𝑎, 𝑏, 𝑐, is :

𝐴 𝑥1, 𝑦1, 𝑧1
𝑃 𝑥, 𝑦, 𝑧

𝑎 Ƹ𝑖 + 𝑏 Ƹ𝑗 + 𝑐෠𝑘



Return to Top

Ԧ𝑟 = Ԧ𝑎 + 𝜆 Ԧ𝑏

Vector equation of a straight line passing through a given point 

𝐴( Ԧ𝑎) and parallel to a given vector 𝐵( Ԧ𝑏)

Parametric Vector Equation of a Straight Line

where 𝜆 is a scalar and for different values of 𝜆, we get 
different positions of point 𝑅.

𝐴( Ԧ𝑎) 𝐵(𝑏)

𝑅(Ԧ𝑟)



Return to Top

𝑖 Equation of a line passing through a point 𝐴 𝑥1, 𝑦1, 𝑧1 and 

having direction ratios 𝑎, 𝑏, 𝑐, is:
𝐴 𝑥1, 𝑦1, 𝑧1

𝑃 𝑥, 𝑦, 𝑧

𝑎 Ƹ𝑖 + 𝑏 Ƹ𝑗 + 𝑐෠𝑘

𝑥 − 𝑥1
𝑎

=
𝑦 − 𝑦1
𝑏

=
𝑧 − 𝑧1
𝑐

= 𝜆

General point 𝑃 on this line can be taken as : 

symmetric form of line

𝑥 = 𝑥1 + 𝑎𝜆

𝑦 = 𝑦1 + 𝑏𝜆

𝑧 = 𝑧1 + 𝑐𝜆

General point on a line: 

Equation of a Straight Line



Return to Top

:
𝑥−𝑥1

𝑎
=

𝑦−𝑦1

𝑏
=

𝑧−𝑧1

𝑐

Cartesian form

Ԧ𝑟 = 𝑥1 ƶ𝑖 + 𝑦1 ƶ𝑗 + 𝑧1 ƶ𝑘 + 𝜆 𝑎ƶ𝑖 + 𝑏 ƶ𝑗 + 𝑐 ƶ𝑘Vector  form :

Symmetric form

or
𝐴 𝑥1, 𝑦1, 𝑧1

𝑃 𝑥, 𝑦, 𝑧

𝑎 Ƹ𝑖 + 𝑏 Ƹ𝑗 + 𝑐෠𝑘

Equation of a Straight Line



Return to Top

:
𝑥 − 𝑥1
𝑎

=
𝑦 − 𝑦1
𝑏

=
𝑧 − 𝑧1
𝑐

Ԧ𝑟 = 𝑥1 ƶ𝑖 + 𝑦1 ƶ𝑗 + 𝑧1 ƶ𝑘

+ 𝜆 𝑎ƶ𝑖 + 𝑏 ƶ𝑗 + 𝑐 ƶ𝑘

Equation of a Straight Line

Straight line Equation

(𝑖) Through origin

𝑖𝑖 𝑥−axis

𝑖𝑖𝑖 𝑦−axis

𝑖𝑣 𝑧−axis

𝑣 Parallel to 𝑥−axis

𝑣𝑖 Parallel to 𝑦−axis

𝑣𝑖𝑖 Parallel to 𝑧−axis

𝑦 = 𝑚𝑥, 𝑧 = 𝑛𝑥

𝑦 = 0 & 𝑧 = 0

𝑥 = 0 & 𝑧 = 0

𝑥 = 0 & 𝑦 = 0

𝑦 = 𝑝 , 𝑧 = 𝑞

𝑥 = ℎ , 𝑧 = 𝑞

𝑥 = ℎ, 𝑦 = 𝑝



Return to Top

The equation of a straight line passing through the point 3,−6, 8 and 

parallel to the line 𝑥−2
1

=
𝑦+12

4
=

−𝑧−7

5
, is : 

Solution:



Return to Top

𝑥−3

1
=

𝑦+6

4
=

𝑧−8

−5
Thus, equation of the line:

Given line : 𝑥−2
1

=
𝑦+12

4
=

𝑧+7

−5

DRs of required line will be : 1,4, −5

Solution:

The equation of a straight line passing through the point 3,−6, 8 and 

parallel to the line 𝑥−2
1

=
𝑦+12

4
=

−𝑧−7

5
, is : 



Return to Top

A

B

D

C

The equation of a straight line passing through the point −5, 2, 4

and parallel to vector 2ƶ𝑖 − 3ƶ𝑗 + ෠𝑘, is :

𝑥+5

2
=

𝑦−2

−3
=

𝑧−4

1

𝑥−5

2
=

𝑦+2

3
=

𝑧−4

1

𝑥−5

2
=

𝑦+2

−3
=

𝑧−4

2

𝑥+5

1
=

𝑦−2

−3
=

𝑧−4

2



Return to Top

A

B

D

C

𝑥+5

2
=

𝑦−2

−3
=

𝑧−4

1

𝑥−5

2
=

𝑦+2

3
=

𝑧−4

1

𝑥−5

2
=

𝑦+2

−3
=

𝑧−4

2

𝑥+5

1
=

𝑦−2

−3
=

𝑧−4

2

The equation of a straight line passing through the point −5, 2, 4

and parallel to vector 2ƶ𝑖 − 3ƶ𝑗 + ෠𝑘, is :



Return to Top

𝑥+5

2
=

𝑦−2

−3
=

𝑧−4

1
Equation of the line :

𝑥−𝑥1

𝑎
=

𝑦−𝑦1

𝑏
=

𝑧−𝑧1

𝑐

Equation of the line in vector form:

OR

Ԧ𝑟 = −5ƶ𝑖 + 2 ƶ𝑗 + 4 ƶ𝑘 + 𝜆 2ƶ𝑖 − 3 ƶ𝑗 + ƶ𝑘

Solution:

The equation of a straight line passing through the point −5, 2, 4

and parallel to vector 2ƶ𝑖 − 3ƶ𝑗 + ෠𝑘, is :



Return to Top

A

B

C

D

If the lines 𝑥 = 𝑎𝑦 + 𝑏, 𝑧 = 𝑐𝑦 + 𝑑 and 𝑥 = 𝑎′𝑧 + 𝑏′, 𝑦 = 𝑐′𝑧 + 𝑑′ are 

perpendicular, then:

𝑎𝑎′ + 𝑐 + 𝑐′ = 0

𝑎𝑏′ + 𝑏𝑐′ + 1 = 0

𝑐𝑐′ + 𝑎 + 𝑎′ = 0

𝑏𝑏′ + 𝑐𝑐′ + 1 = 0

JEE MAIN JAN 2019
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Lines can be written as : 

𝑥−𝑏

𝑎
=

𝑦

1
=

𝑧−𝑑

𝑐
⋯ 𝑖

𝑥−𝑏′

𝑎′
=

𝑦−𝑑′

𝑐′
=

𝑧

1
⋯ 𝑖𝑖

For perpendicular lines 

⇒ 𝑎𝑎′ + 𝑐′ + 𝑐 = 0

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

If the lines 𝑥 = 𝑎𝑦 + 𝑏, 𝑧 = 𝑐𝑦 + 𝑑 and 𝑥 = 𝑎′𝑧 + 𝑏′, 𝑦 = 𝑐′𝑧 + 𝑑′ are 

perpendicular, then:

Solution:
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A

B

C

D 𝑎𝑎′ + 𝑐 + 𝑐′ = 0

𝑎𝑏′ + 𝑏𝑐′ + 1 = 0

𝑐𝑐′ + 𝑎 + 𝑎′ = 0

𝑏𝑏′ + 𝑐𝑐′ + 1 = 0

If the lines 𝑥 = 𝑎𝑦 + 𝑏, 𝑧 = 𝑐𝑦 + 𝑑 and 𝑥 = 𝑎′𝑧 + 𝑏′, 𝑦 = 𝑐′𝑧 + 𝑑′ are 

perpendicular, then:
JEE MAIN JAN 2019
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Straight Line

(𝑖𝑖) Equation of a line passing through points  𝐴 𝑥1, 𝑦1, 𝑧1 and 𝐵 𝑥2, 𝑦2, 𝑧2

𝑥−𝑥1

𝑥2−𝑥1
=

𝑦−𝑦1

𝑦2−𝑦1
=

𝑧−𝑧1

𝑧2−𝑧1

DRs of the line will be :

𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2

𝑥2 − 𝑥1 , 𝑦2 − 𝑦1 , 𝑧2 − 𝑧1

Equation of the line :

𝑥 − 𝑥1
𝑎

=
𝑦 − 𝑦1
𝑏

=
𝑧 − 𝑧1
𝑐
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Straight Line

The equation of a straight line passing through the 
points (1,−2, 7) and (5, 3, −1) , is :

𝑥−1

4
=

𝑦+2

5
=

𝑧−7

−8
Equation of the line :

Example:



Return to Top

Which of the following does not represent equation of line passing 

through the points 2, 1, 3 & −1, 3, 1 ?

A

B

D

C

𝑥−5

−3
=

𝑦+3

2
=

𝑧−5

−2

𝑥−2

3
=

𝑦−1

−2
=

𝑧−3

2

Ԧ𝑟 = 8ƶ𝑖 − 3 ƶ𝑗 + 7෠𝑘 + 𝜆(3ƶ𝑖 − 2 ƶ𝑗 + 2෠𝑘)

Ԧ𝑟 = −ƶ𝑖 + 3 ƶ𝑗 + ෠𝑘 + 𝜆(3ƶ𝑖 − 2 ƶ𝑗 + 2෠𝑘)



Return to Top

𝑥−2

3
=

𝑦−1

−2
=

𝑧−3

2
Cartesian equation :

General point on this line is : 2 + 3𝜆 , 1 − 2𝜆 , 3 + 2𝜆

Vector form: Ԧ𝑟 = −ƶ𝑖 + 3 ƶ𝑗 + ෠𝑘 + 𝜆(3ƶ𝑖 − 2ƶ𝑗 + 2෠𝑘)

2 + 3𝜆 = 5

Thus, another point will be: 5,−1, 5

Thus , equation can also be written as: 𝑥−5
−3

=
𝑦+1

2
=

𝑧−5

−2

Which of the following does not represent equation of line passing 

through the points 2, 1, 3 & −1, 3, 1 ?

𝑥−𝑥1

𝑥2−𝑥1
=

𝑦−𝑦1

𝑦2−𝑦1
=

𝑧−𝑧1

𝑧2−𝑧1Vector form : Ԧ𝑟 = Ԧ𝑎 + 𝜆 Ԧ𝑏 − Ԧ𝑎
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𝑥−𝑥1

𝑥2−𝑥1
=

𝑦−𝑦1

𝑦2−𝑦1
=

𝑧−𝑧1

𝑧2−𝑧1Vector form : Ԧ𝑟 = Ԧ𝑎 + 𝜆 Ԧ𝑏 − Ԧ𝑎

Point on this line is 8,−3, 7

∴ Equation can also be : Ԧ𝑟 = 8ƶ𝑖 − 3 ƶ𝑗 + 7෠𝑘 + 𝜆(3ƶ𝑖 − 2 ƶ𝑗 + 2෠𝑘)

2 + 3𝜆 = 8 ⇒ 𝜆 = 2

Which of the following does not represent equation of line passing 

through the points 2, 1, 3 & −1, 3, 1 ?

𝑥−2

3
=

𝑦−1

−2
=

𝑧−3

2
Cartesian equation :

Vector form: Ԧ𝑟 = −ƶ𝑖 + 3 ƶ𝑗 + ෠𝑘 + 𝜆(3ƶ𝑖 − 2ƶ𝑗 + 2෠𝑘)

General point on this line is : 2 + 3𝜆 , 1 − 2𝜆 , 3 + 2𝜆
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A

B

D

C

𝑥−5

−3
=

𝑦+3

2
=

𝑧−5

−2

𝑥−2

3
=

𝑦−1

−2
=

𝑧−3

2

Ԧ𝑟 = 8ƶ𝑖 − 3 ƶ𝑗 + 7෠𝑘 + 𝜆(3ƶ𝑖 − 2 ƶ𝑗 + 2෠𝑘)

Ԧ𝑟 = −ƶ𝑖 + 3 ƶ𝑗 + ෠𝑘 + 𝜆(3ƶ𝑖 − 2 ƶ𝑗 + 2෠𝑘)

Which of the following does not represent equation of line passing 

through the points 2, 1, 3 & −1, 3, 1 ?
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The line passing through the points 5, 1, 𝑎 & 3, 𝑏, 1 crosses the 𝑦
− 𝑧 plane at point 0, 17

2
, −

13

2
, then:

A

B

D

C

𝑎 = 8, 𝑏 = 2

𝑎 = 2, 𝑏 = 8

𝑎 = 6, 𝑏 = 4

𝑎 = 4, 𝑏 = 6

AIEEE 2008
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𝑥−5

2
=

𝑦−1

1−𝑏
=

𝑧−𝑎

𝑎−1
Cartesian equation :

𝑟 = −
5

2

2𝑟 + 5, 1 + 𝑟 1 − 𝑏 , 𝑎 + 𝑟 𝑎 − 1

The line passing through the points 5, 1, 𝑎 & 3, 𝑏, 1 crosses the 𝑦
− 𝑧 plane at point 0, 17

2
, −

13

2
, then:

AIEEE 2008

Line passing through 5, 1, 𝑎 & 3, 𝑏, 1

≡ 0,
17

2
, −

13

2

0, 1 −
5

2
1 − 𝑏 , 𝑎 −

5

2
𝑎 − 1

1 −
5

2
1 − 𝑏 =

17

2
& 𝑎 −

5

2
𝑎 − 1 = −

13

2

5𝑏

2
=

17

2
+

3

2
& 

−3𝑎

2
= −

18

2

5𝑏

2
= 10 & −3𝑎

2
= −

18

2

𝑏 = 4 & 𝑎 = 6
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C

The line passing through the points 5, 1, 𝑎 & 3, 𝑏, 1 crosses the 𝑦
− 𝑧 plane at point 0, 17

2
, −

13

2
, then:

A

B

D 𝑎 = 8, 𝑏 = 2

𝑎 = 2, 𝑏 = 8

𝑎 = 4, 𝑏 = 6

AIEEE 2008

𝑎 = 6, 𝑏 = 4
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Equation of angular 

bisectors of lines

Session 04

Return to Top
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Angle 𝜃 between the lines  𝑥
1
=

𝑦

2
=

𝑧

3
and 𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
is : 

Direction ratios of lines are: 1, 2, 3 & 3,−1, 4

𝜃 = cos−1
𝑎1𝑎2+𝑏1𝑏2+𝑐1𝑐2

𝑎1
2+𝑏1

2+𝑐1
2 𝑎2

2+𝑏2
2+𝑐2

2

∴ 𝜃 = cos−1
3−2+12

14 26

⇒ 𝜃 = cos−1
13

14 26

⇒ 𝜃 = cos−1
13

2 7

𝑎1, 𝑏1, 𝑐1 𝑎2, 𝑏2, 𝑐2

A

B

C

D

cos−1
2 3

26

cos−1
13

2 7

cos−1
6

2 7

cos−1
21

2 29

Solution:
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Equation of Angle Bisector of Two Lines :

Let the lines be :

𝐿2 ∶
𝑥−𝑥1

𝑙2
=

𝑦−𝑦1

𝑚2
=

𝑧−𝑧1

𝑛2

𝐿1 ∶
𝑥−𝑥1

𝑙1
=

𝑦−𝑦1

𝑚1
=

𝑧−𝑧1

𝑛1

where 𝑙1 , 𝑚1, 𝑛1 and 𝑙2,𝑚2, 𝑛2 are direction cosines

𝜃

𝐿1

𝐿2

𝐿1 = 𝑙1𝑖 + 𝑚1𝑗 + 𝑛1𝑘

𝐿1 = 𝑙2𝑖 + 𝑚2𝑗 + 𝑛2𝑘

→ Through 𝑥1, 𝑦1, 𝑧1

→ Through 𝑥2, 𝑦2, 𝑧3

𝐵1

𝐵2
𝐿2 − 𝐿1

𝐿1 + 𝐿2
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Line 2: Ԧ𝑟= Ԧ𝑎 + 𝜇 Ԧ𝑐⋯ (𝑖𝑖)Line 1: Ԧ𝑟= Ԧ𝑎 + 𝜆 Ԧ𝑏⋯ (𝑖)

Ԧ𝑏

𝑃(෠𝑏)

Ԧ𝑐

𝑄( Ƹ𝑐)

𝑀

𝐴( Ԧ𝑎)

Internal angle bisector :

Ԧ𝑟 = Ԧ𝑎 + 𝑠 ෠𝑏+ Ƹ𝑐

External angle bisector :

Ԧ𝑟 = Ԧ𝑎 + 𝑠 ෠𝑏− Ƹ𝑐

Vector Equation of Angle Bisector Between Two Straight Lines :

Ԧ𝑏

𝑃( Ԧ𝑏)

Ԧ𝑐

𝑄( Ԧ𝑐)

𝑁

𝐴( Ԧ𝛼)

𝑅 −Ԧ𝑐

− Ԧ𝑐
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Equation of Angle Bisector of Two Straight Lines :

Let the lines be :

𝐿2 ∶
𝑥−𝑥1

𝑙2
=

𝑦−𝑦1

𝑚2
=

𝑧−𝑧1

𝑛2

𝜃

𝐿1

𝐿2
𝐴 𝑥1, 𝑦1, 𝑧1

𝐿1 ∶
𝑥−𝑥1

𝑙1
=

𝑦−𝑦1

𝑚1
=

𝑧−𝑧1

𝑛1

where 𝑙1 , 𝑚1, 𝑛1 and 𝑙2,𝑚2, 𝑛2 are direction cosines 

∴ Equation of bisectors will be : 

𝑥 − 𝑥1
𝑙1 + 𝑙2

=
𝑦 − 𝑦1
𝑚1 +𝑚2

=
𝑧 − 𝑧1
𝑛1 + 𝑛2

𝑥 − 𝑥1
𝑙1 − 𝑙2

=
𝑦 − 𝑦1
𝑚1 −𝑚2

=
𝑧 − 𝑧1
𝑛1 − 𝑛2

&

𝐵1

𝐵2

𝐿1 + 𝐿2 = 𝑙1 + 𝑙2 𝑖 + 𝑚1 +𝑚2 𝑗 + 𝑛1 + 𝑛2 𝑘

𝐿1 + 𝐿2

𝐿1 − 𝐿2

→ 𝐷𝑅′𝑠 𝑜𝑓 𝐵1 𝛼 𝑙1 + 𝑙2 , 𝑚1 +𝑚2 , 𝑛1 + 𝑛2

𝐵2𝐵1

→ 𝐿1 = 𝑙1𝑖 + 𝑚1𝑗 + 𝑛1𝑘

→ 𝐿2 = 𝑙2𝑖 + 𝑚2𝑗 + 𝑛2𝑘
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Equation of Angle Bisector of Two Straight Lines :

𝐿1

𝐿2

𝐵1

𝐵2

𝜃

𝐴 𝑥1, 𝑦1, 𝑧1

Acute and obtuse angle bisectors : 

𝐵1 ∶
𝑥−𝑥1

𝑙1+𝑙2
=

𝑦−𝑦1

𝑚1+𝑚2
=

𝑧−𝑧1

𝑛1+𝑛2

𝐵2 ∶
𝑥−𝑥1

𝑙1−𝑙2
=

𝑦−𝑦1

𝑚1−𝑚2
=

𝑧−𝑧1

𝑛1−𝑛2

cos𝜃 = 𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2

If cos𝜃 > 0

If cos𝜃 < 0

⇒ 𝐵2 is acute angle bisector and 𝐵1 is obtuse bisector.

⇒ 𝐵1 is acute angle bisector and 𝐵2 is obtuse bisector.
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Equation of the angle bisector of the angle between the lines

is :
𝑥−1

1
=

𝑦−2

1
=

𝑧−3

1
and 𝑥−1

1
=

𝑦−2

1
=

𝑧−3

−1

A

B

C

D

𝑥 = 1;
𝑦−2

1
=

𝑧−3

1

𝑥−1

2
=

𝑦−2

3
; 𝑧 = 3

𝑥−1

2
=

𝑦−2

2
; 𝑧 = 3

𝑥−1

1
=

𝑦−2

2
=

𝑧−3

3
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Solution:

Equation of the angle bisector of the angle between the lines

is :
𝑥−1

1
=

𝑦−2

1
=

𝑧−3

1
and 𝑥−1

1
=

𝑦−2

1
=

𝑧−3

−1

The equation of bisector is :

⇒
𝑥−1

2
=

𝑦−2

2
; 𝑧 = 3

𝑥−1

1
=

𝑦−2

1
=

𝑧−3

1
and 𝑥−1

1
=

𝑦−2

1
=

𝑧−3

−1

𝐿1 = 𝑖 + 𝑗 + 𝑘 , 𝐿2 = 𝑖 + 𝑗 − 𝑘

෠𝐿1 =
𝑖+𝑗+𝑘

3
෠𝐿2 =

𝑖+𝑗−𝑘

3

→ DR′s of bisector 𝐵1 𝛼 ෠𝐿1 + ෠𝐿2 𝛼
2

3
,
2

3
, 0

→ DR′s of bisector 𝐵2 𝛼 ෠𝐿1 − ෠𝐿2 𝛼 0, 0,
2

3

→ DR′s of bisector 𝐵1 𝛼 2, 2, 0

→ DR′s of bisector 𝐵2 𝛼 0, 0, 2
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Equation of the angle bisector of the angle between the lines

is :
𝑥−1

1
=

𝑦−2

1
=

𝑧−3

1
and 𝑥−1

1
=

𝑦−2

1
=

𝑧−3

−1

A

B

C

D

𝑥 = 1;
𝑦−2

1
=

𝑧−3

1

𝑥−1

2
=

𝑦−2

3
; 𝑧 = 3

𝑥−1

2
=

𝑦−2

2
; 𝑧 = 3

𝑥−1

1
=

𝑦−2

2
=

𝑧−3

3
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The direction cosines of the lines bisecting the angle between the 

lines whose direction cosines are 𝑙1 , 𝑚1, 𝑛1 and 𝑙2, 𝑚2, 𝑛2 , and the 

angle between these lines is 𝜃, are :

A

B

C

D
𝑙1−𝑙2

2 sin
𝜃

2

,
𝑚1−𝑚2

2 sin
𝜃

2

,
𝑛1−𝑛2

2 sin
𝜃

2

𝑙1+𝑙2

cos
𝜃

2

,
𝑚1+𝑚2

cos
𝜃

2

,
𝑛1+𝑛2

cos
𝜃

2

𝑙1−𝑙2

sin
𝜃

2

,
𝑚1−𝑚2

sin
𝜃

2

,
𝑛1−𝑛2

sin
𝜃

2

𝑙1+𝑙2

2 cos
𝜃

2

,
𝑚1+𝑚2

2 cos
𝜃

2

,
𝑛1+𝑛2

2 cos
𝜃

2
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Solution:

The direction cosines of the lines bisecting the angle between the 

lines whose direction cosines are 𝑙1 , 𝑚1, 𝑛1 and 𝑙2, 𝑚2, 𝑛2 , and the 

angle between these lines is 𝜃, are :

DRs of bisectors are : &  𝑙1 − 𝑙2 , 𝑚1 −𝑚2 , 𝑛1 − 𝑛2𝑙1 + 𝑙2 , 𝑚1 +𝑚2 , 𝑛1 + 𝑛2

Now, (𝑙1 + 𝑙2)
2+(𝑚1 +𝑚2)

2+(𝑛1 + 𝑛2)
2

= 𝑙1
2 +𝑚1

2 + 𝑛1
2 + 𝑙2

2 +𝑚2
2 + 𝑛2

2 + 2(𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2)

= 2 + 2 cos 𝜃

⇒ (𝑙1 − 𝑙2)
2+(𝑚1 −𝑚2)

2+(𝑛1 − 𝑛2)
2

= 𝑙1
2 +𝑚1

2 + 𝑛1
2 + 𝑙2

2 +𝑚2
2 + 𝑛2

2 − 2(𝑙1𝑙2 +𝑚1𝑚2 + 𝑛1𝑛2)

= 2 − 2 cos 𝜃

𝑥 − 𝑥1
𝑙1 + 𝑙2

=
𝑦 − 𝑦1
𝑚1 +𝑚2

=
𝑧 − 𝑧1
𝑛1 + 𝑛2

𝑥 − 𝑥1
𝑙1 − 𝑙2

=
𝑦 − 𝑦1
𝑚1 −𝑚2

=
𝑧 − 𝑧1
𝑛1 − 𝑛2

&
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Solution:

The direction cosines of the lines bisecting the angle between the 

lines whose direction cosines are 𝑙1 , 𝑚1, 𝑛1 and 𝑙2, 𝑚2, 𝑛2 , and the 

angle between these lines is 𝜃, are :

𝑙1+𝑙2

(𝑙1+𝑙2)
2+(𝑚1+𝑚2)

2+(𝑛1+𝑛2)
2
,

𝑚1+𝑚2

(𝑙1+𝑙2)
2+(𝑚1+𝑚2)

2+(𝑛1+𝑛2)
2
,

𝑙1−𝑙2

(𝑙1−𝑙2)
2+(𝑚1−𝑚2)

2+(𝑛1−𝑛2)
2
,

𝑚1−𝑚2

(𝑙1−𝑙2)
2+(𝑚1−𝑚2)

2+(𝑛1−𝑛2)
2

,

𝑛1+𝑛2

(𝑙1+𝑙2)
2+(𝑚1+𝑚2)

2+(𝑛1+𝑛2)
2

𝑛1−𝑛2

(𝑙1−𝑙2)
2+(𝑚1−𝑚2)

2+(𝑛1−𝑛2)
2

DCs of bisectors are :

𝑙1+𝑙2

2+2 cos 𝜃
,

𝑚1+𝑚2

2+2 cos 𝜃
,

𝑙1−𝑙2

2−2 cos 𝜃
,

𝑚1−𝑚2

2−2 cos 𝜃
,

𝑛1+𝑛2

2+2 cos 𝜃

𝑛1−𝑛2

2−2 cos 𝜃

⇒
𝑙1+𝑙2

2 cos
𝜃

2

,
𝑚1+𝑚2

2 cos
𝜃

2

,
𝑛1+𝑛2

2 cos
𝜃

2

⇒
𝑙1−𝑙2

2 sin
𝜃

2

,
𝑚1−𝑚2

2 sin
𝜃

2

,
𝑛1−𝑛2

2 sin
𝜃

2

and

and
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The direction cosines of the lines bisecting the angle between the 

lines whose direction cosines are 𝑙1 , 𝑚1, 𝑛1 and 𝑙2, 𝑚2, 𝑛2 , and the 

angle between these lines is 𝜃, are :

A

B

C

D
𝑙1−𝑙2

2 sin
𝜃

2

=
𝑚1−𝑚2

2 sin
𝜃

2

=
𝑛1−𝑛2

2 sin
𝜃

2

𝑙1+𝑙2

cos
𝜃

2

=
𝑚1+𝑚2

cos
𝜃

2

=
𝑛1+𝑛2

cos
𝜃

2

𝑙1−𝑙2

sin
𝜃

2

=
𝑚1−𝑚2

sin
𝜃

2

=
𝑛1−𝑛2

sin
𝜃

2

𝑙1+𝑙2

2 cos
𝜃

2

=
𝑚1+𝑚2

2 cos
𝜃

2

=
𝑛1+𝑛2

2 cos
𝜃

2
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Foot of Perpendicular from a Point to a Lines :

𝑃

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐿

(𝑥0, 𝑦0, 𝑧0)

𝑎Ԧ𝑖 + 𝑏Ԧ𝑗 + 𝑐𝑘

Let point 𝐴 𝑥1, 𝑦1, 𝑧1 and

Let 𝑃 is the foot of perpendicular from point 𝐴

∴ 𝑃 ≡ (𝑥0 + 𝑎𝜆 , 𝑦0 + 𝑏𝜆 , 𝑧0 + 𝑐𝜆)

DRs of 𝐿 ∶ 𝑎, 𝑏, 𝑐

Line 𝐿 ∶ 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐

∵ 𝐴𝑃 is ⊥ to 𝐿

𝑎 𝑥0 + 𝑎𝜆 − 𝑥1 + 𝑏 𝑦0 + 𝑏𝜆 − 𝑦1 + 𝑐 𝑧0 + 𝑐𝜆 − 𝑧1 = 0

DRs of 𝐴𝑃: 𝑥0+𝑎𝜆 − 𝑥1, 𝑦0 + 𝑏𝜆 − 𝑦1, 𝑧0 + 𝑐𝜆 − 𝑧1

on the line 𝐿.

So, 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐
= 𝜆
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Foot of Perpendicular from a Point to a Lines :

𝑃

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐿

(𝑥0, 𝑦0, 𝑧0)

𝑎Ԧ𝑖 + 𝑏Ԧ𝑗 + 𝑐𝑘

𝑎 𝑥0 + 𝑎𝜆 − 𝑥1 + 𝑏 𝑦0 + 𝑏𝜆 − 𝑦1 + 𝑐 𝑧0 + 𝑐𝜆 − 𝑧1 = 0

⇒ 𝜆 =
𝑎 𝑥1 − 𝑥0 + 𝑏 𝑦1 − 𝑦0 + 𝑐 𝑧1 − 𝑧0

𝑎2 + 𝑏2 + 𝑐2

Substitute value of 𝜆 to get point 𝑃

𝑃 ≡ (𝑥0 + 𝑎𝜆 , 𝑦0 + 𝑏𝜆 , 𝑧0 + 𝑐𝜆)

Line 𝐿 ∶ 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐
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A

B

C

D

0, 1, 2

−2,−3,−4

1, 3, 5

4, 9, 14

𝑥

1
=

𝑦−1

2
=

𝑧−2

3
is :

The foot of perpendicular from the point (1,6,3) on the line
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Solution:

𝑥

1
=

𝑦−1

2
=

𝑧−2

3
is :

The foot of perpendicular from the point (1,6,3) on the line

𝑃 𝜆, 1 + 2𝜆, 2 + 3𝜆

𝐴(1,6,3)

𝐿

1,2,3

∴ 𝑃 ≡ 1,3,5

𝑃 ≡ (𝜆 , 1 + 2𝜆 , 2 + 3𝜆)

⇒ 1 𝜆 − 1 + 2 2𝜆 − 5 + 3 3𝜆 − 1 = 0

⇒ 𝜆 = 1

𝑥

1
=
𝑦 − 1

2
=
𝑧 − 2

3
= 𝜆

∵ 𝐴𝑃 is ⊥ to 𝐿

DRs of 𝐴𝑃 𝛼 (𝜆 − 1, 2𝜆 − 5 , 3𝜆 − 1)

DRs of 𝐿 𝛼 (1, 2, 3)
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𝑥

1
=

𝑦−1

2
=

𝑧−2

3
is :

The foot of perpendicular from the point (1,6,3) on the line

A

B

C

D

0, 1, 2

−2,−3,−4

1, 3, 5

4, 9, 14
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𝟒A

𝟑B

𝟐C

𝟏D

passing through 𝛼, 7, 1 is 5

3
,
7

3
,
17

3
, then 𝛼 is equal to :

If foot of perpendicular drawn from the point 1, 0, 3 on a line 

JEE MAINS JAN 2020
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passing through 𝛼, 7, 1 is 5

3
,
7

3
,
17

3
, then 𝛼 is equal to :

If foot of perpendicular drawn from the point 1, 0, 3 on a line 

JEE MAINS JAN 2020

𝟒A

B

C

D
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Solution:

passing through 𝛼, 7, 1 is 5

3
,
7

3
,
17

3
, then 𝛼 is equal to :

If foot of perpendicular drawn from the point 1, 0, 3 on a line 

JEE MAINS JAN 2020

𝑃
5

3
,
7

3
,
17

3

𝐴(1, 0, 3)

𝐿

𝐵(𝛼, 7,1)
⇒

5

3
− 1 𝛼 −

5

3
+

7

3
− 0 7 −

7

3
+

17

3
− 3 1 −

17

3

⇒ 3𝛼 − 12 = 0

⇒
2

3
𝛼 −

5

3
+

7

3
×

14

3
+

8

3
×−

14

3
= 0

⇒ 3𝛼 − 5 + 49 − 56 = 0

∵ 𝐴𝑃 is ⊥ to 𝐿

= 0

DRs of 𝐴𝑃 𝛼
5

3
− 1,

7

3
− 0,

17

3
− 3 𝛼

2

3
,
7

3
,
8

3

DRs of 𝐿 𝛼 𝛼 −
5

3
, 7 −

7

3
, 1 −

17

3
𝛼 𝛼 −

5

3
,
14

3
, −

14

3

⇒ 𝛼 = 4
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Image of a Point with Respect to a Line :

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐿

𝐴′(𝑥1′, 𝑦1′, 𝑧1′)

Let point 𝐴 𝑥1, 𝑦1, 𝑧1 &

Let 𝐴′ 𝑥′, 𝑦′, 𝑧′ is image of point 𝐴 with respect to line 𝐿

and, 𝑃 is the mid point of the line segment 
𝐴𝐴′ as well as the foot of perpendicular from 
the point 𝐴 on the line 𝐿

To find point 𝑃 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 , apply mid point formula

𝑥𝑝 =
𝑥1+𝑥

′

2
𝑦𝑝 =

𝑦1+𝑦
′

2
𝑧𝑝 =

𝑧1+𝑧
′

2

Line 𝐿 ∶ 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐

∴ 𝐴′ 𝑥′, 𝑦′, 𝑧′ ≡ 2𝑥𝑝 − 𝑥1 , 2𝑦𝑝 − 𝑦1 , 2𝑧𝑝 − 𝑧1

𝑃 is mid point of 𝐴𝐴′

To get 𝐴′ → find 𝑃

Then apply mid point formula
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𝑥+1

2
=

𝑦−3

−2
=

𝑧

−1
, then 𝑎 + 𝑏 + 𝑐 is equal to :

If 𝑎, 𝑏, 𝑐 is the image of the point 1, 2, −3 in the line,

JEE MAINS JAN 2020

A

B

C

D

−1

2

3

1

𝑃

𝐴(1,2,−3)

𝐿

𝐴′(𝑎, 𝑏, 𝑐)

Solution:

𝑥+1

2
=

𝑦−3

−2
=

𝑧

−1
= 𝜆

⇒ 𝑃 ≡ −1 + 2𝜆 , 3 − 2𝜆 ,−𝜆

𝑃 is a point on the foot of  perpendicular of  the line 𝐿
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𝑥+1

2
=

𝑦−3

−2
=

𝑧

−1
, then 𝑎 + 𝑏 + 𝑐 is equal to :

If 𝑎, 𝑏, 𝑐 is the image of the point 1, 2, −3 in the line,

JEE MAINS JAN 2020
Solution:

𝑃

𝐴(1,2, −3)

𝐿

𝐴′(𝑎, 𝑏, 𝑐)

𝑥+1

2
=

𝑦−3

−2
=

𝑧

−1
𝑃 ≡ (−1 + 2𝜆 , 3 − 2𝜆 ,−𝜆)

⇒ 2 2𝜆 − 2 − 2 1 − 2𝜆 − −𝜆 + 3 = 0

⇒ Put 𝜆 = 1 ∴ 𝑃 ≡ 1, 1, −1

∵ 𝐴𝑃 is ⊥ to 𝐿

DRs of 𝐴𝑃 𝛼 2𝜆 − 2,1 − 2𝜆, 3 − 𝜆

DRs of 𝐿 𝛼 2,−2,−1

∴ cos𝜃 = 0

Use mid point formula,

𝑎+1

2
= 1

𝑏+2

2
= 1

𝑐−3

2
= −1

⇒ 𝑎 = 1 ⇒ 𝑏 = 0 ⇒ 𝑐 = 1 ⇒ 𝑎 + 𝑏 + 𝑐 = 2
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Perpendicular Distance of a Point from a Line :

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐿

Ԧ𝑏

Let point 𝐴 𝑥1, 𝑦1, 𝑧1 & Line 𝐿 ∶ 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐

Let 𝑃 is the foot of perpendicular from point 𝐴.

Find point 𝑃 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 , and then evaluate distance 𝐴𝑃

Method 1 :

Method 2 :

𝐶𝑃 = Ԧ𝑎 − Ԧ𝑐 . ෠𝑏

𝐴𝑃 = 𝐴𝐶2 − 𝐶𝑃2 = Ԧ𝑎 − Ԧ𝑐 2 − Ԧ𝑎 − Ԧ𝑐 2 cos2 𝜃

𝐴𝑃 = Ԧ𝑎 − Ԧ𝑐 1 − cos2 𝜃

𝐴𝑃 = Ԧ𝑎 − Ԧ𝑐 sin 𝜃 𝐴𝑃 = Ԧ𝑎 − Ԧ𝑐 × ෠𝑏

𝐶(𝑥0, 𝑦0, 𝑧0)



Return to Top

Computing Distance between two parallel Lines :

𝐵

𝐴 Ԧ𝑎

𝐿1

𝐿2𝐶 Ԧ𝑐 𝐷

Ԧ𝑏

𝐿1 ∶ Ԧ𝑟 = Ԧ𝑎 + 𝜆 Ԧ𝑏

𝐿2 ∶ Ԧ𝑟 = Ԧ𝑐 + 𝜇 Ԧ𝑏

Area of △ 𝐴𝐵𝐶=
1

2
Ԧ𝑎 − Ԧ𝑐 × Ԧ𝑏

=
𝑎− Ԧ𝑐 ×𝑏

𝑏

=
1

2
Ԧ𝑏 . 𝐴𝐷

𝐴𝐷 = Shortest Distance

Get 𝐶𝐷 = Ԧ𝑎 − Ԧ𝑐 . ෠𝑏

Use Pythagoras to find 𝐴𝐷

𝐴𝐷 = Shortest Distance
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Perpendicular Distance of a point from a Line:

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐿

Ԧ𝑏

Let point 𝐴 𝑥1, 𝑦1, 𝑧1 and Line 𝐿 ∶ 𝑥−𝑥0
𝑎

=
𝑦−𝑦0

𝑏
=

𝑧−𝑧0

𝑐

Let 𝑃 is the foot of perpendicular from point 𝐴.

Method 1

Method 2

Find point 𝑃 𝑥𝑝, 𝑦𝑝, 𝑧𝑝 , and then evaluate distance 𝐴𝑃

Let point 𝐴 Ԧ𝑎 and Line 𝐿 ∶ Ԧ𝑟 = Ԧ𝑐 + 𝜆 Ԧ𝑏

Using formula 𝐴𝑃 =
𝑎− Ԧ𝑐 ×𝑏

𝑏

Ԧ𝑎 = 𝑥1 ƶ𝑖 + 𝑦1 ƶ𝑗 + 𝑧1 ƶ𝑘

Ԧ𝑐 = 𝑥0 ƶ𝑖 + 𝑦0 ƶ𝑗 + 𝑧0 ƶ𝑘

Ԧ𝑏 = 𝑎ƶ𝑖 + 𝑏 ƶ𝑗 + 𝑐 ƶ𝑘
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A

B

C

D

Greater than 3 but less than 4

Less than 2

Greater than 4

Greater than 2 but less than 3

straight line, 𝑥+3
10

=
𝑦−2

−7
=

𝑧

1
is : 

The length of perpendicular from the point 2,−1, 4 on the

JEE MAINS Apr 2019
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straight line, 𝑥+3
10

=
𝑦−2

−7
=

𝑧

1
is : 

The length of perpendicular from the point 2,−1, 4 on the

Solution:
JEE MAINS Apr 2019

Ԧ𝑎 = 2ƶ𝑖 − ƶ𝑗 + 4 ƶ𝑘 Ԧ𝑐 = −3ƶ𝑖 + 2 ƶ𝑗Ԧ𝑏 = 10ƶ𝑖 − 7ƶ𝑗 + ƶ𝑘

=
5

2

𝑥+3

10
=

𝑦−2

−7
=

𝑧

1

Ƹ𝑖 Ƹ𝑗 ෠𝑘
5 −3 4
10 −7 1

𝑃

𝐴(2,−1,4)

𝐿Ԧ𝑎 − Ԧ𝑐 = 5ƶ𝑖 − 3ƶ𝑗 + 4 ƶ𝑘

𝐴𝑃 = Ԧ𝑎 − Ԧ𝑐 × ෠𝑏 ෠𝑏 =
10ƶ𝑖−7 ƶ𝑗+ƶ𝑘

150

Ԧ𝑎 − Ԧ𝑐 × Ԧ𝑏 =

=
252+352+52

150
𝐴𝑃 =

𝑎− Ԧ𝑐 ×෠𝑏

𝑏
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straight line, 𝑥+3
10

=
𝑦−2

−7
=

𝑧

1
is : 

The length of perpendicular from the point 2,−1, 4 on the

A

B

C

D

JEE MAINS Apr 2019

Greater than 3 but less than 4

Less than 2

Greater than 4

Greater than 2 but less than 3
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A

B

C

D

5 17

6

2 34

34

𝐵𝐶 = 5units . Then the area ( in sq. units ) of this triangle, given

The vertices 𝐵 and 𝐶 of ∆𝐴𝐵𝐶 lie on the line  𝑥+2
3

=
𝑦−1

0
=

𝑧

4
, such that

JEE MAINS Apr 2019
that the point 𝐴(1, −1, 2), is : 
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Solution:

𝐵𝐶 = 5units . Then the area ( in sq. units ) of this triangle, given

The vertices 𝐵 and 𝐶 of ∆𝐴𝐵𝐶 lie on the line  𝑥+2
3

=
𝑦−1

0
=

𝑧

4
, such that

JEE MAINS Apr 2019
that the point 𝐴(1, −1, 2), is : 

𝐴 1,−1,2

𝐿

𝐵 𝐶𝑃

5
Ԧ𝑏 = 3ƶ𝑖 + 4 ƶ𝑘

Ԧ𝑎 = ƶ𝑖 − ƶ𝑗 + 2 ƶ𝑘

Ԧ𝑐 = −2ƶ𝑖 + ƶ𝑗

Ԧ𝑏 = 3ƶ𝑖 + 4 ƶ𝑘

𝐴𝑃 =
ƶ𝑖− ƶ𝑗+2ƶ𝑘 − −2ƶ𝑖+ ƶ𝑗 × 3ƶ𝑖+4ƶ𝑘

3ƶ𝑖+4ƶ𝑘

𝑥+2

3
=

𝑦−1

0
=

𝑧

4

𝐴𝑃 =
3 Ƹ𝑖−2 Ƹ𝑗+2෠𝑘 × 3ƶ𝑖+4ƶ𝑘

3ƶ𝑖+4ƶ𝑘

𝐴𝑃 =
𝑎− Ԧ𝑐 ×𝑏

𝑏
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Solution:

𝐵𝐶 = 5units . Then the area ( in sq. units ) of this triangle, given

The vertices 𝐵 and 𝐶 of ∆𝐴𝐵𝐶 lie on the line  𝑥+2
3

=
𝑦−1

0
=

𝑧

4
, such that

JEE MAINS Apr 2019
that the point 𝐴(1, −1, 2), is : 

𝐴 1,−1,2

𝐿

𝐵 𝐶𝑃

5
Ԧ𝑏 = 3ƶ𝑖 + 4 ƶ𝑘

=
−8ƶ𝑖−6 ƶ𝑗+6ƶ𝑘

5

∴ Area = 1

2
⋅ 5 ⋅

2 34

5

=
2 34

5

3 Ƹ𝑖 − 2 Ƹ𝑗 + 2෠𝑘 × 3ƶ𝑖 + 4 ƶ𝑘

𝐴𝑃 =
3 Ƹ𝑖−2 Ƹ𝑗+2෠𝑘 × 3ƶ𝑖+4ƶ𝑘

3ƶ𝑖+4ƶ𝑘

=
Ƹ𝑖 Ƹ𝑗 ෠𝑘
3 −2 2
3 0 4

= Ƹ𝑖 −8 − 0 − Ƹ𝑗 12 − 6 + ෠𝑘(0 + 6)

= −8ƶ𝑖 − 6 ƶ𝑗 + 6 ƶ𝑘

= 34
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A

B

C

D

𝐵𝐶 = 5units . Then the area ( in sq. units ) of this triangle, given

The vertices 𝐵 and 𝐶 of ∆𝐴𝐵𝐶 lie on the line  𝑥+2
3

=
𝑦−1

0
=

𝑧

4
, such that

JEE MAINS Apr 2019
that the point 𝐴(1, −1, 2), is : 

5 17

6

2 34

34
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Introduction to plane in 

3 −D

Session 05

Return to Top
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Skew lines:

𝐿1

𝐿2

𝑃

𝑄
Neither parallel nor intersecting straight lines.

Non – coplanar

𝑃𝑄 (⊥𝑟 to both 𝐿1 & 𝐿2) is the shortest 
distance between lines 𝐿1 & 𝐿2.
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Shortest distance between 2 skew lines: 

𝐿1 ∶ Ԧ𝑟 = Ԧ𝑎 + 𝜆 Ԧ𝑝

𝐿2 ∶ Ԧ𝑟 = Ԧ𝑏 + 𝜇 Ԧ𝑞

Shortest distance = | Projection of 𝐴𝐵 on 𝑛 |

=
𝐴𝐵 ⋅ 𝑛

𝑛

=
𝑏−𝑎 ⋅ Ԧ𝑝×𝑞

Ԧ𝑝×𝑞

𝐴( Ԧ𝑎)

𝐵(Ԧ𝑏)

Ԧ𝑝

Ԧ𝑞

Ԧ𝑝 × Ԧ𝑞

𝐿1

𝐿2
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Shortest distance between 2 skew lines: 

Distance 𝑃𝑄 is the shortest distance between lines 𝐿1 & 𝐿2.
𝐿1

𝐿2

𝑃

𝑄

Let the lines be: 

𝐿1 ∶
𝑥−𝑥1

𝑎1
=

𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝐿2 ∶
𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2

∴ 𝑃𝑄 =

𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

σ 𝑏1𝑐2−𝑏2𝑐1
2

Note: If lines are skew, 

𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

σ 𝑏1𝑐2−𝑏2𝑐1
2

≠ 0

𝑏−𝑎 ⋅ Ԧ𝑝×𝑞

Ԧ𝑝×𝑞

Ԧ𝑏 − Ԧ𝑎 = 𝑥2 − 𝑥1 Ƹ𝑖 + 𝑦2 − 𝑦1 Ƹ𝑗 + 𝑧2 − 𝑧1 ෠𝑘
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The shortest distance between the lines 𝑥−3
3

=
𝑦−8

−1
=

𝑧−3

1
and  

𝑥+3

−3
=

𝑦+7

2
=

𝑧−6

4
is:

JEE MAINS JAN 2020

A

B

D

C

3

2 30

3 30

7

2
30
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The shortest distance between the lines 𝑥−3
3

=
𝑦−8

−1
=

𝑧−3

1
and  

𝑥+3

−3
=

𝑦+7

2
=

𝑧−6

4
is:

JEE MAINS JAN 2020

𝑥−3

3
=

𝑦−8

−1
=

𝑧−3

1

𝑥+3

−3
=

𝑦+7

2
=

𝑧−6

4

∴ 𝑃𝑄 =

𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

σ 𝑏1𝑐2−𝑏2𝑐1
2

∴ 𝑃𝑄 =

6 15 −3
3 −1 1
−3 2 4

−6 2+ 15 2+ 3 2

⇒ 𝑃𝑄 =
270

270

⇒ 𝑃𝑄 = 3 30

Solution:
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The shortest distance between the lines 𝑥−3
3

=
𝑦−8

−1
=

𝑧−3

1
and  

𝑥+3

−3
=

𝑦+7

2
=

𝑧−6

4
is:

JEE MAINS JAN 2020

A

B

D

C

3

2 30

3 30

7

2
30
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Let 𝜆 be an integer. If the shortest distance between the lines 

𝑥 − 𝜆 = 2𝑦 − 1 = −2𝑧 and 𝑥 = 𝑦 + 2𝜆 = 𝑧 − 𝜆 is 7

2 2
, then the value 

of 𝜆 is _______.
JEE MAINS FEB 2021



Return to Top

Let 𝜆 be an integer. If the shortest distance between the lines 

𝑥 − 𝜆 = 2𝑦 − 1 = −2𝑧 and 𝑥 = 𝑦 + 2𝜆 = 𝑧 − 𝜆 is 7

2 2
, then the value 

of 𝜆 is _______.
JEE MAINS FEB 2021

𝐿1 ∶
𝑥−𝜆

1
=

𝑦−
1

2
1

2

=
𝑧

−
1

2

𝜆 ∈ 𝕀

𝐿2 ∶
𝑥

1
=

𝑦+2𝜆

1
=

𝑧−𝜆

1

∴ 𝑃𝑄 =

𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

σ 𝑏1𝑐2−𝑏2𝑐1
2

𝑃𝑄 =

𝜆
1

2
+2𝜆 −𝜆

1
1

2
−
1

2
1 1 1

12+
3

2

2
+

1

2

2
=

7

2 2

𝜆
1

2
+ 2𝜆 −𝜆

1
1

2
−

1

2

1 1 1

= 𝜆
1

2
+

1

2
−

1

2
+ 2𝜆 1 +

1

2
− 𝜆 1 −

1

2
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Let 𝜆 be an integer. If the shortest distance between the lines 

𝑥 − 𝜆 = 2𝑦 − 1 = −2𝑧 and 𝑥 = 𝑦 + 2𝜆 = 𝑧 − 𝜆 is 7

2 2
, then the value 

of 𝜆 is _______.
JEE MAINS FEB 2021

⇒

𝜆
1

2
+ 2𝜆 −𝜆

1
1

2
−

1

2

1 1 1

= 𝜆 −
1

2
+ 2𝜆

3

2
−

𝜆

2
= −

5𝜆

2
−

3

4

⇒
−5𝜆

2
−
3

4

7

2

=
7

2 2

⇒ −10𝜆 − 3 = 7

⇒ −10𝜆 − 3 = ±7

⇒ 𝜆 =
2

5
, −1

∴ 𝜆 = 1
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Condition for lines to be Coplanar:

Two lines which are either intersecting or parallel, 

are always coplanar (lying in the same plane).

Let lines be:

𝐿1 ∶
𝑥−𝑥1

𝑎1
=

𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝐿2 ∶
𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2

If lines are parallel, they have same direction cosines. 

𝐿2

𝐿1

If lines are intersecting, shortest distance between them is 0.
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Condition for lines to be Coplanar:

𝐿2

𝐿1

Condition for co planar lines : 

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

= 0
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If for some 𝛼 ∈ ℝ, the lines 𝐿1 ∶
𝑥+1

2
=

𝑦−2

−1
=

𝑧−1

1
and 𝐿2 ∶

𝑥+2

𝛼
=

𝑦+1

5−𝛼
=

𝑧+1

1
are 

coplanar, then the line 𝐿2 passes through the point: 
JEE MAINS SEPT 2020

A

B

D

C

−2, 10, 2

2,−10,−2

10,−2,−2

10, 2, 2
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If for some 𝛼 ∈ ℝ, the lines 𝐿1 ∶
𝑥+1

2
=

𝑦−2

−1
=

𝑧−1

1
and 𝐿2 ∶

𝑥+2

𝛼
=

𝑦+1

5−𝛼
=

𝑧+1

1
are 

coplanar, then the line 𝐿2 passes through the point: 
JEE MAINS SEPT 2020

𝐿1 ∶
𝑥+1

2
=

𝑦−2

−1
=

𝑧−1

1

𝐿2 ∶
𝑥+2

𝛼
=

𝑦+1

5−𝛼
=

𝑧+1

1

⇒
1 3 2
2 −1 1
𝛼 5 − 𝛼 1

= 0

Solution:

coplanar

∵

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

= 0

⇒ 1 −1 − 5 − 𝛼 − 3 2 − 𝛼 + 2 2 5 − 𝛼 + 𝛼 = 0

⇒ 𝛼 = −4

∴ 𝐿2 ∶
𝑥+2

−4
=

𝑦+1

9
=

𝑧+1

1
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If for some 𝛼 ∈ ℝ, the lines 𝐿1 ∶
𝑥+1

2
=

𝑦−2

−1
=

𝑧−1

1
and 𝐿2 ∶

𝑥+2

𝛼
=

𝑦+1

5−𝛼
=

𝑧+1

1
are 

coplanar, then the line 𝐿2 passes through the point: 
JEE MAINS SEPT 2020

Solution:

∴ 𝐿2 ∶
𝑥+2

−4
=

𝑦+1

9
=

𝑧+1

1

Any point on line 𝐿2 can be −4𝜆 − 2, 9𝜆 − 1, 𝜆 − 1

For 𝜆 = −1, it passes through 2,−10,−2 .
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If for some 𝛼 ∈ ℝ, the lines 𝐿1 ∶
𝑥+1

2
=

𝑦−2

−1
=

𝑧−1

1
and 𝐿2 ∶

𝑥+2

𝛼
=

𝑦+1

5−𝛼
=

𝑧+1

1
are 

coplanar, then the line 𝐿2 passes through the point: 
JEE MAINS SEPT 2020

A

B

D

C

−2, 10, 2

2,−10,−2

10,−2,−2

10, 2, 2
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If the lines 
𝑥

1
=

𝑦

2
=

𝑧

3
,
𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
and 

𝑥+𝑘

3
=

𝑦−1

2
=

𝑧−2

ℎ
are

concurrent, then:

A

B

D

C

ℎ = −2, 𝑘 = −6

ℎ =
1

2
, 𝑘 = −2

ℎ = 6, 𝑘 = 2

ℎ = 2, 𝑘 =
1

2
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If the lines 
𝑥

1
=

𝑦

2
=

𝑧

3
,
𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
and 

𝑥+𝑘

3
=

𝑦−1

2
=

𝑧−2

ℎ
are

concurrent, then:

Solution:

𝐿1 ∶
𝑥

1
=

𝑦

2
=

𝑧

3
= 𝜆 𝐿2 ∶

𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
= 𝜇 𝐿3 ∶

𝑥+𝑘

3
=

𝑦−1

2
=

𝑧−2

ℎ

concurrent

Point on 𝐿1 𝜆, 2𝜆, 3𝜆

Point on 𝐿2 3𝜇 + 1,−𝜇 + 2, 4𝜇 + 3

𝜆 = 3𝜇 + 1

2𝜆 = −𝜇 + 2

3𝜆 = 4𝜇 + 3

Point of intersection is 1, 2, 3

⇒ 𝜆 = 1, 𝜇 = 0
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If the lines 
𝑥

1
=

𝑦

2
=

𝑧

3
,
𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
and 

𝑥+𝑘

3
=

𝑦−1

2
=

𝑧−2

ℎ
are

concurrent, then:

Solution:

Point of intersection is (1, 2, 3)

𝐿3 passes through 1, 2, 3

Putting in 𝐿3 ∶
1+𝑘

3
=

2−1

2
=

3−2

ℎ

⇒ ℎ = 2, 𝑘 =
1

2
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If the lines 
𝑥

1
=

𝑦

2
=

𝑧

3
,
𝑥−1

3
=

𝑦−2

−1
=

𝑧−3

4
and 

𝑥+𝑘

3
=

𝑦−1

2
=

𝑧−2

ℎ
are

concurrent, then:

A

B

D

C

ℎ = −2, 𝑘 = −6

ℎ =
1

2
, 𝑘 = −2

ℎ = 6, 𝑘 = 2

ℎ = 2, 𝑘 =
1

2
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Shortest Distance between Parallel Lines:

Distance 𝑃𝑄 is the shortest distance 

between lines between lines 𝐿1 & 𝐿2.

Let the lines be:

𝑃

𝐿2

𝐿1𝑄

𝐿1 ∶
𝑥−𝑥1

𝑎1
=

𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝐿2 ∶
𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2
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Computing distance between two parallel lines:

𝐵 𝑏

𝐴 Ԧ𝑎

𝐿1

𝐿2

𝑏

𝐶 Ԧ𝑐 𝐷

𝑏

𝐿1 ∶
𝑥−𝑥1

𝑎1
=

𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝐿2 ∶
𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2

Area of △ 𝐴𝐵𝐶 =
1

2
Ԧ𝑎 − Ԧ𝑐 × Ԧ𝑏

=
1

2
Ԧ𝑏 . 𝐴𝐷

𝐴𝐷 = Shortest Distance=
𝑎− Ԧ𝑐 ×𝑏

𝑏

𝐶𝐷 = Ԧ𝑎 − Ԧ𝑐 ⋅ ෠𝑏 𝐴𝐷 = 𝐴𝐶2 − 𝐶𝐷2 = Ԧ𝑎 − Ԧ𝑐 × ෠𝑏
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𝑃

𝐿2

𝐿1𝑄

Shortest Distance between Parallel Lines:

Distance 𝑃𝑄 is the shortest distance 

between lines between lines 𝐿1 & 𝐿2.

Let the lines be:

𝐿1 ∶
𝑥−𝑥1

𝑎1
=

𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝐿2 ∶
𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2

𝑃𝑄 =

ƶ𝑖 ƶ𝑗 ƶ𝑘
𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1

𝑎1
2+𝑏1

2+𝑐1
2
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The shortest distance between the lines 𝐿1:
𝑥−1

2
=

𝑦+1

−1
=

𝑧

2
and 

𝐿2 ∶
𝑥−2

4
=

𝑦

−2
=

𝑧+1

4
, is: 

A B DC26
26

3
3 5

Solution:

𝐿1 ∶
𝑥−1

2
=

𝑦+1

−1
=

𝑧

2

𝐿2 ∶
𝑥−2

4
=

𝑦

−2
=

𝑧+1

4

𝑃𝑄 =

ƶ𝑖 ƶ𝑗 ƶ𝑘
1 1 −1
2 −1 2

22 + −1 2 +22
=

Ƹ𝑖−4 Ƹ𝑗−3෠𝑘

3
=

26

3

𝑃𝑄 =

ƶ𝑖 ƶ𝑗 ƶ𝑘
𝑥2−𝑥1 𝑦2−𝑦1 𝑧2−𝑧1
𝑎1 𝑏1 𝑐1

𝑎1
2+𝑏1

2+𝑐1
2



Return to Top

Plane: Normal

𝐴

𝐵

If a line joining any two points on a surface lies 

completely on it, then the surface is a plane.

If the line joining any two points on a surface is 

perpendicular to some fixed straight line. 

Or 

Then, the surface is called a plane and a fixed straight 

line is called normal to the plane. 
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Equation of plane passing through a point:
Normal

𝐴 𝑥1, 𝑦1, 𝑧1

𝑃 𝑥, 𝑦, 𝑧

Given: Direction ratio of normal of plane 𝑎, 𝑏, 𝑐

and a point 𝐴(𝑥1, 𝑦1, 𝑧1) on it.

Equation: 𝑎 𝑥 − 𝑥1 + 𝑏 𝑦 − 𝑦1 + 𝑐 𝑧 − 𝑧1 = 0

𝐴𝑃 ⊥ Normal

DRs of Normal ∝ 𝑎, 𝑏, 𝑐

DRs of AP ∝ 𝑥 − 𝑥1, 𝑦 − 𝑦1, 𝑐 − 𝑐1

⇒ cos𝜃
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General form of Equation of Plane:

Let direction ratio of normal of plane be 𝑎, 𝑏, 𝑐.
Normal

Equation of plane: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

Plane

𝑦𝑧 plane

𝑥𝑧 plane

𝑥𝑦 plane

Parallel to 𝑥−axis

Parallel to 𝑦−axis

Parallel to 𝑧−axis

Equation

𝑥 = 0

𝑦 = 0

𝑧 = 0

𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑎𝑥 + 𝑐𝑧 = 𝑑

𝑎𝑥 + 𝑏𝑦 = 𝑑
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JEE MAINS FEB 2021

A

B

D

C

𝑃1 and 𝑃3 are parallel

𝑃2 and 𝑃3 are parallel

𝑃1 and 𝑃2 are parallel

𝑃1, 𝑃2 and 𝑃3 are parallel 

Consider the three planes : 𝑃1: 3𝑥 + 15𝑦 + 21𝑧 = 9; 𝑃2 ∶ 𝑥 − 3𝑦 − 𝑧 = 5;

𝑃3: 2𝑥 + 10𝑦 + 14𝑧 = 5. Then, which one of the following is true ?
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Consider the three planes : 𝑃1: 3𝑥 + 15𝑦 + 21𝑧 = 9; 𝑃2 ∶ 𝑥 − 3𝑦 − 𝑧 = 5;

𝑃3: 2𝑥 + 10𝑦 + 14𝑧 = 5. Then, which one of the following is true ?

JEE MAINS FEB 2021

A

B

D

C

𝑃1 and 𝑃3 are parallel

𝑃2 and 𝑃3 are parallel

𝑃1 and 𝑃2 are parallel

𝑃1, 𝑃2 and 𝑃3 are parallel 
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Consider the three planes : 𝑃1: 3𝑥 + 15𝑦 + 21𝑧 = 9; 𝑃2 ∶ 𝑥 − 3𝑦 − 𝑧 = 5;

𝑃3: 2𝑥 + 10𝑦 + 14𝑧 = 5. Then, which one of the following is true ?

JEE MAINS FEB 2021

Solution:

𝑃1: 𝑥 + 5𝑦 + 7𝑧 = 3

𝑃2 ∶ 𝑥 − 3𝑦 − 𝑧 = 5

𝑃3: 𝑥 + 5𝑦 + 7𝑧 =
5

2

𝑃1 and 𝑃3 are parallel.
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The equation of a plane which passes through 2,−3, 1 and is 

perpendicular to the line joining points 3, 4, −1 & 2,−1, 5 , is :

A

C

B

D

𝑥 + 5𝑦 − 6𝑧 + 19 = 0

𝑥 + 5𝑦 + 6𝑧 + 19 = 0

𝑥 − 5𝑦 + 6𝑧 − 19 = 0

𝑥 − 5𝑦 − 6𝑧 − 19 = 0

Solution:

𝐵 2,−1, 5
Normal

𝑃 2,−3, 1

𝐴 3, 4,−1
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The equation of a plane which passes through 2,−3, 1 and is 

perpendicular to the line joining points 3, 4, −1 & 2,−1, 5 , is :

Solution:

DRs of the line joining 𝐴𝐵: −1,−5, 6

DRs of the plane will be: −1,−5, 6

So, the equation of plane is:

− 𝑥 − 2 − 5 𝑦 + 3 + 6 𝑧 − 1 = 0

⇒ 𝑥 + 5𝑦 − 6𝑧 + 19 = 0

𝐵 2,−1, 5
Normal

𝑃 2,−3, 1

𝐴 3, 4, −1
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Find the vector and cartesian equations of the plane which passes 

through the points 5, 2, −4 and perpendicular to the line with direction 

ratios 2, 3, −1
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We have the position vector of point 

5, 2, −4 as Ԧ𝑎 = 5 Ƹ𝑖 + 2 Ƹ𝑗 − 4෠𝑘 and the normal 

vector 𝑁 perpendicular to the plane as 𝑁

= 2 Ƹ𝑖 + 3 Ƹ𝑗 − ෠𝑘

Solution:

Find the vector and cartesian equations of the plane which passes 

through the points 5, 2, −4 and perpendicular to the line with direction 

ratios 2, 3, −1

Therefore, the vector equation of the 

plane is given by Ԧ𝑟 − Ԧ𝑎 ⋅ 𝑁 = 𝜃

or Ԧ𝑟 − (5 Ƹ𝑖 + 2 Ƹ𝑗 − 4෠𝑘) ⋅ 2 Ƹ𝑖 + 3 Ƹ𝑗 − ෠𝑘 = 0⋯ 1

Transforming 1 into cartesian form, we have

Normal

𝑃 5, 2,−4

𝑁 = 2 Ƹ𝑖 + 3 Ƹ𝑗 − ෠𝑘

𝑥 − 5 Ƹ𝑖 + 𝑦 − 2 Ƹ𝑗 + 𝑧 + 4 ෠𝑘 ⋅ 2 Ƹ𝑖 + 3 Ƹ𝑗 − ෠𝑘 = 0

or 2 𝑥 − 5 + 3 𝑦 − 2 − 𝑧 + 4 = 0



Return to Top

Solution:

Find the vector and cartesian equations of the plane which passes 

through the points 5, 2, −4 and perpendicular to the line with direction 

ratios 2, 3, −1

or 2 𝑥 − 5 + 3 𝑦 − 2 − 𝑧 + 4 = 0

i.e. 2𝑥 + 3𝑦 − 𝑧 = 20

Which is the cartesian equation of the plane 

Normal

𝑃 5, 2,−4

𝑁 = 2 Ƹ𝑖 + 3 Ƹ𝑗 − ෠𝑘
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Representation of 

equation of plane

Session 06

Return to Top
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A

B

D

C

𝑥 + 3𝑧 = 0

3𝑥 + 𝑧 = 6

𝑥 + 3𝑧 = 10

3𝑥 − 𝑧 = 0

The equation of the plane which contains 𝑦-axis and passes 
through the point (1, 2, 3) is :

JEE MAINS Mar 2021



Return to Top

Solution:

The equation of the plane which contains 𝑦-axis and passes 
through the point (1, 2, 3) is :

Equation of the plane passing through (1, 2, 3) is:

𝐴.

𝐵.

𝐶.

𝐷.

3𝑥 + 𝑧 = 6

3𝑥 − 𝑧 = 0

𝑥 + 3𝑧 = 10

𝑥 + 3𝑧 = 0

𝑦-axis

1, 2, 3

JEE MAINS Mar 2021

Let the equation of plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

Then point must pass thru 0, 0, 0

0 + 0 + 0 = 𝑑 ⇒ 𝑑 = 0

𝑎 + 2𝑏 + 3𝑐 = 0

𝑎, 𝑏, 𝑐 normal ⊥ 𝑦 − axis 0, 1, 0

⇒ cos𝜃 = 0 ⇒ 𝑎 ⋅ 0 + 𝑏 ⋅ 1 + 𝑐 ⋅ 0 = 0

⇒ 𝑏 = 0

⇒ 𝑎 + 3𝑐 = 0 ⇒ 𝑎 = −3𝑐

∴ Equation of the plane is : 𝑎𝑥 + 𝑐𝑧 = 0
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Solution:

The equation of the plane which contains 𝑦-axis and passes 
through the point (1, 2, 3) is :

∴ Equation of the plane is: 3𝑥 − 𝑧 = 0

𝐴.

𝐵.

𝐶.

𝐷.

3𝑥 + 𝑧 = 6

3𝑥 − 𝑧 = 0

𝑥 + 3𝑧 = 10

𝑥 + 3𝑧 = 0

𝑦-axis

1, 2, 3

JEE MAINS Mar 2021

∴ Equation of the plane is: 𝑎𝑥 + 𝑐𝑧 = 0

⇒ 𝑎 = −3𝑐

⇒ −3𝑐𝑥 + 𝑐𝑧 = 0
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B 3𝑥 − 𝑧 = 0

The equation of the plane which contains 𝑦-axis and passes 
through the point (1, 2, 3) is :

A

D

C

𝑥 + 3𝑧 = 0

3𝑥 + 𝑧 = 6

𝑥 + 3𝑧 = 10

JEE MAINS Mar 2021
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Let the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 bisects the line joining the 
points 4,−3, 1 and (2, 3, −5) at right angles. If 𝑎, 𝑏, 𝑐, 𝑑 are 
integers, then the minimum value (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2) is :

𝑃(4,−3, 1)

𝑄 2, 3, −5

𝐴 3, 0,−2

Solution: DRs of normal to plane ≡ DRs of 𝑃𝑄 ≡ 2,−6, 6 ≡ 1,−3, 3

Let 𝐴 be the midpoint of 𝑃 & 𝑄 and lie on the plane.

∴ 𝐴 ≡ 3, 0,−2

min 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = ? ; 𝑎, 𝑏, 𝑐, 𝑑 ∈ 𝕀

DRs of 𝑃𝑄 : 1,−3, 3 ∝ 𝑎, 𝑏, 𝑐

⇒ 𝑥 − 3𝑦 + 3𝑧 + 𝑑 = 0

It passes through the point (3, 0, −2)

⇒ 3 − 0 − 6 + 𝑑 = 0

⇒ 𝑑 = 3

∴ Equation of the plane is : 𝑥 − 3𝑦 + 3𝑧 + 3 = 0
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Let the plane 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0 bisects the line joining the 
points 4,−3, 1 and (2, 3, −5) at right angles. If 𝑎, 𝑏, 𝑐, 𝑑 are 
integers, then the minimum value (𝑎2 + 𝑏2 + 𝑐2 + 𝑑2) is :

Solution:

𝑃(4,−3, 1)

𝑄 2, 3, −5

𝐴 3, 0,−2
Minimum value of 𝑎2 + 𝑏2 + 𝑐2 + 𝑑2 = 28

⇒ 𝑑 = 3

∴ Equation of the plane is : 𝑥 − 3𝑦 + 3𝑧 + 3 = 0

DRs of normal to plane ≡ DRs of 𝑃𝑄 ≡ 2,−6, 6 ≡ 1,−3, 3
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JEE MAINS Feb 2021

Let 𝜆, 2, 1 be a point on the plane which passes through the point 
4, −2, 2 . If the plane is perpendicular to the line joining the points 

−2,−21, 29 and −1,−16 , 23 , then 𝜆

11

2
−

4𝜆

11
− 4 is equal to ____

DRs  of 𝑃𝑄 : −1,−5, 6

DRs of 𝐴𝐵 : 4 − 𝜆,−4, 1

𝐴𝐵 is perpendicular to 𝑃𝑄

⇒ −1 4 − 𝜆 + −5 −4 + 6 1 = 0

⇒ 𝜆 = −22

⇒
𝜆

11

2
−

4𝜆

11
− 4 = 8

𝐴 4,−2, 2 𝐵 𝜆, 2, 1

𝑃 −2,−21, 29

𝑄 −1,−16 , 23

Solution:
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Intercept form of equation of plane:

Thus, intercept form, is :

General form of equation of plane is : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

⇒
𝑎𝑥

𝑑
+

𝑏𝑦

𝑑
+

𝑐𝑧

𝑑
= 1 ⇒

𝑥

𝑑/𝑎
+

𝑦

𝑑/𝑏
+

𝑧

𝑑/𝑐
= 1

𝑋𝑖𝑛𝑡 =
𝑑

𝑎
, 𝑌𝑖𝑛𝑡 =

𝑑

𝑏
, 𝑍𝑖𝑛𝑡 =

𝑑

𝑐

𝑥

𝑋𝑖𝑛𝑡
+

𝑦

𝑌𝑖𝑛𝑡
+

𝑧

𝑍𝑖𝑛𝑡
= 1

DRs  of normal is : 1

𝑋𝑖𝑛𝑡
,

1

𝑌𝑖𝑛𝑡
,

1

𝑍𝑖𝑛𝑡

𝑑

𝑎
, 0, 00, 0,

𝑑

𝑐

0,
𝑑

𝑏
, 0

𝑋

𝑌

𝑍
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A

B

D

C

𝑥 + 5𝑦 − 4𝑧 = 40

𝑥 + 5𝑦 − 4𝑧 = 0

𝑥 + 5𝑦 − 4𝑧 = 10

𝑥 + 5𝑦 − 4𝑧 = 5

The equation of a plane parallel to 𝑥 + 5𝑦 − 4𝑧 + 5 = 0 and 
cutting intercepts on the axes whose sum is 38, is:
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Solution:
Equation of parallel plane: 𝑥 + 5𝑦 − 4𝑧 = 𝑑

⇒ 𝑑 = 40

𝑋𝑖𝑛𝑡. = 𝑑 𝑌𝑖𝑛𝑡. =
𝑑

5
𝑍𝑖𝑛𝑡. = −

𝑑

4

Sum = 𝑑 + 𝑑

5
−

𝑑

4
= 38

Equation of plane : 𝑥 + 5𝑦 − 4𝑧 = 40

The equation of a plane parallel to 𝑥 + 5𝑦 − 4𝑧 + 5 = 0 and 
cutting intercepts on the axes whose sum is 38, is:

As the plane are parallel ⇒ DRs of normal remains same ⇒ coeff of 𝑥, 𝑦, 𝑧
𝑥

𝑑
+

𝑦
𝑑

5

+
𝑧

−
𝑑

4

= 1

Given: 𝑋𝑖𝑛𝑡 + 𝑌𝑖𝑛𝑡 + 𝑍𝑖𝑛𝑡 = 38
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D 𝑥 + 5𝑦 − 4𝑧 = 40

A

B

C

𝑥 + 5𝑦 − 4𝑧 = 0

𝑥 + 5𝑦 − 4𝑧 = 10

𝑥 + 5𝑦 − 4𝑧 = 5

The equation of a plane parallel to 𝑥 + 5𝑦 − 4𝑧 + 5 = 0 and 
cutting intercepts on the axes whose sum is 38, is:



Return to Top

JEE MAINS Mar 2021

If (𝑥, 𝑦, 𝑧) be an arbitrary point lying on a plane 𝑃 which passes 
through the points 42 , 0 , 0 , 0 , 42 , 0 & 0 , 0 , 42 , then the 

value of the expression 3 + 𝑥−11

(𝑦−19)2(𝑧−12)2
+

𝑦−19

(𝑥−11)2(𝑧−12)2

+
𝑧−12

(𝑥−11)2(𝑦−19)2
−

𝑥+𝑦+𝑧

14(𝑥−11)(𝑦−19)(𝑧−12)
is equal to:

By intercept form, 

⇒ (𝑥 − 11) + (𝑦 − 19) + (𝑧 − 12) = 0 ⇒ 𝑝 + 𝑞 + 𝑟 = 0

𝑥 + 𝑦 + 𝑧 = 42

𝑝 𝑞 𝑟

Equation of plane 𝑃 ∶

= 3 +
𝑝

(𝑞)2(𝑟)2
+

𝑞

(𝑝)2(𝑟)2
+

𝑟

(𝑝)2(𝑞)2
−

𝑝+𝑞+𝑟+42

14(𝑝)(𝑞)(𝑟)

𝑝 + 𝑞 + 𝑟 = 0= 3 +
(𝑝)3+(𝑞)3+(𝑟)3

(𝑝)2(𝑞)2(𝑟)2
−

42

14(𝑝)(𝑞)(𝑟)

= 3 +
𝑥−11

(𝑦−19)2(𝑧−12)2
+

𝑦−19

(𝑥−11)2(𝑧−12)2
+

𝑧−12

(𝑥−11)2(𝑦−19)2
−

𝑥+𝑦+𝑧

14(𝑥−11)(𝑦−19)(𝑧−12)

Solution:
A

B

D

C

−45

3

39

0
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JEE MAINS Mar 2021

If (𝑥, 𝑦, 𝑧) be an arbitrary point lying on a plane 𝑃 which passes 
through the points 42 , 0 , 0 , 0 , 42 , 0 & 0 , 0 , 42 , then the 

value of the expression 3 + 𝑥−11

(𝑦−19)2(𝑧−12)2
+

𝑦−19

(𝑥−11)2(𝑧−12)2

+
𝑧−12

(𝑥−11)2(𝑦−19)2
−

𝑥+𝑦+𝑧

14(𝑥−11)(𝑦−19)(𝑧−12)
is equal to:

𝑝 + 𝑞 + 𝑟 = 0

= 3 +
(𝑝)3+(𝑞)3+(𝑟)3

(𝑝)2(𝑞)2(𝑟)2
−

42

14(𝑝)(𝑞)(𝑟)

⇒ (𝑝)3+(𝑞)3+(𝑟)3= 3𝑝𝑞𝑟

= 3 +
3𝑝𝑞𝑟

(𝑝)2(𝑞)2(𝑟)2
−

3

(𝑝)(𝑞)(𝑟)

= 3

A

B

D

C

−45

3

39

0
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A

B

D

C

𝑥−1

1
=

𝑦−1

1
=

𝑧−2

2

𝑥−1

1
=

𝑦−1

2
=

𝑧−2

2

𝑥−1

2
=

𝑦−1

1
=

𝑧−2

1

𝑥−1

2
=

𝑦−1

2
=

𝑧−2

1

JEE MAINS Sept 2020

A plane 𝑃 meets the coordinate axes at 𝐴, 𝐵 & 𝐶 respectively. The 
centroid of ∆𝐴𝐵𝐶 is given to be 1,1,2 . Then the equation of the 
line through this centroid and perpendicular to the plane 𝑃 is:
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Solution:
JEE MAINS Sept 2020

A plane 𝑃 meets the coordinate axes at 𝐴, 𝐵 & 𝐶 respectively. The 
centroid of ∆𝐴𝐵𝐶 is given to be 1,1,2 . Then the equation of the 
line through this centroid and perpendicular to the plane 𝑃 is:

Equation of plane : 𝑥
3
+

𝑦

3
+

𝑧

6
= 1

Centroid of ∆𝐴𝐵𝐶:

⇒ 𝑎 = 3, 𝑏 = 3, 𝑐 = 6

⇒ 2𝑥 + 2𝑦 + 𝑧 = 6

= 1 , 1 , 2
𝑎

3
,
𝑏

3
,
𝑐

3

DRs of line perpendicular to the plane : 2 , 2 , 1

Point on line is: 1 , 1 , 2

Thus, equation of line is: 𝑥−1

2
=

𝑦−1

2
=

𝑧−2

1

𝐴

𝐵

𝐶

𝑎

𝑏

𝑐
𝐺

0, 0, 𝑐

𝑎, 0, 0

0, 𝑏, 0

𝑎

3
,
𝑏

3
,
𝑐

3

𝑎, 0, 0

0, 0, 𝑐

0, 𝑏, 0

𝑋

𝑌

𝑍

𝑥

𝑎
+

𝑦

𝑏
+

𝑧

𝑧
= 1

1, 1, 2
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JEE MAINS Sept 2020

A plane 𝑃 meets the coordinate axes at 𝐴, 𝐵 & 𝐶 respectively. The 
centroid of ∆𝐴𝐵𝐶 is given to be 1,1,2 . Then the equation of the 
line through this centroid and perpendicular to the plane 𝑃 is:

A

D

C

𝑥−1

1
=

𝑦−1

1
=

𝑧−2

2

𝑥−1

1
=

𝑦−1

2
=

𝑧−2

2

𝑥−1

2
=

𝑦−1

1
=

𝑧−2

1

B 𝑥−1

2
=

𝑦−1

2
=

𝑧−2

1
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Normal Form of Plane: 

𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 𝑝

Conversion of general form to normal form:  

General form ∶ 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

Divide both sides by 𝑎2 + 𝑏2 + 𝑐2

Normal form ∶

Constant term on right side should be positive . Note

𝑎𝑥

𝑎2+𝑏2+𝑐2
+

𝑏𝑦

𝑎2+𝑏2+𝑐2
+

𝑐𝑧

𝑎2+𝑏2+𝑐2
=

𝑑

𝑎2+𝑏2+𝑐2

𝑙, 𝑚, 𝑛 are DCs of normal.

𝑝 = distance of plane from origin.

(𝑙, 𝑚, 𝑛)

𝐴

𝑋

𝑌

𝑍

𝑂

𝑝
𝛼
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A

B

D

C

3𝑥 + 2𝑦 + 6𝑧 = −70

3𝑥 + 2𝑦 + 6𝑧 = 70

3𝑥 − 2𝑦 − 6𝑧 = 70

3𝑥 + 2𝑦 − 6𝑧 = 70

Equation of plane upon which the length of normal from 
origin is 10 and direction ratios of this normal are  3, 2, 6 , is :
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Solution:

Equation of plane upon which the length of normal from 
origin is 10 and direction ratios of this normal are  3, 2, 6 , is :

DCs of normal are:

Equation of plane :

3𝑥 + 2𝑦 + 6𝑧 = 70

(
3

7
,
2

7
,
6

7
) 

3

7
𝑥 +

2

7
𝑦 +

6

7
𝑧 = 10

DRs of normal are: (3, 2, 6)

𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 𝑝

𝑝 = 10
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A 3𝑥 + 2𝑦 + 6𝑧 = 70

B

D

C

3𝑥 + 2𝑦 + 6𝑧 = −70

3𝑥 − 2𝑦 − 6𝑧 = 70

3𝑥 + 2𝑦 − 6𝑧 = 70

Equation of plane upon which the length of normal from 
origin is 10 and direction ratios of this normal are  3, 2, 6 , is :
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Equation of plane passing through three points: 

Equation of plane passing through points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2
and 𝐶 𝑥3, 𝑦3, 𝑧3 is :

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1

= 0

𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2

𝐶 𝑥3, 𝑦3, 𝑧3

Equation of plane : [ Ԧ𝑟 − Ԧ𝑎 Ԧ𝑏 Ԧ𝑐] = 0

Ԧ𝑏

Ԧ𝑐

Ԧ𝑎

Ԧ𝑟(𝑥, 𝑦, 𝑧)

Ԧ𝑟 − Ԧ𝑎

𝑥 Ƹ𝑖 + 𝑦 Ƹ𝑗 + 𝑧෠𝑘

𝑥1 Ƹ𝑖 + 𝑦1 Ƹ𝑗 + 𝑧1 ෠𝑘

𝑃𝑃 𝑥, 𝑦, 𝑧 is the general point on plane

𝐴𝑃,𝐴𝐵, 𝐴𝐶, are coplanar 

𝐴𝑃 𝐴𝐵 𝐴𝐶 = 0

Ԧ𝑟 − Ԧ𝑎 Ԧ𝑏 − Ԧ𝑎 Ԧ𝑐 − Ԧ𝑎 = 0
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Equation of plane passing through the points 1, 1, 1 , 2, 1, −1
& 3, 3, 0 is:

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1

= 0

𝑥 − 1 𝑦 − 1 𝑧 − 1
1 0 −2
2 2 −1

= 0

Equation of plane : 

4𝑥 − 3𝑦 + 2𝑧 = 3

𝑥2, 𝑦2, 𝑧2 ≡ 2, 1,−1

𝑥1, 𝑦1, 𝑧1 ≡ 1, 1, 1

𝑥3, 𝑦3, 𝑧3 ≡ 3, 3, 0

⇒ 𝑥 − 1 4 − 𝑦 − 1 3 + 𝑧 − 1 2 = 0

⇒ 4𝑥 − 4 − 3𝑦 + 3 + 2𝑧 − 2 = 0
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Condition for four points to be coplanar: 

Given points 𝐴 𝑥1, 𝑦1, 𝑧1 , 𝐵 𝑥2, 𝑦2, 𝑧2 , 𝐶 𝑥3, 𝑦3, 𝑧3 and 𝐷 𝑥4, 𝑦4, 𝑧4

Condition: Ԧ𝑝 Ԧ𝑞 Ԧ𝑟 = 0

Condition for them to lie in a plane :

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1
𝑥4 − 𝑥1 𝑦4 − 𝑦1 𝑧4 − 𝑧1

= 0

𝐴(𝑥1, 𝑦1, 𝑧1)

𝐷(𝑥4, 𝑦4, 𝑧4)

𝐶 𝑥3, 𝑦3, 𝑧3

𝐵(𝑥2, 𝑦2, 𝑧2)
Ԧ𝑟 Ԧ𝑞

Ԧ𝑝

𝐴𝐵, 𝐴𝐶, 𝐴𝐷, are coplanar 

𝐴𝐵 = 𝑥2 − 𝑥1 Ƹ𝑖 + 𝑦2 − 𝑦1 Ƹ𝑗 + 𝑧2 − 𝑧1 ෠𝑘

𝐴𝐶 = 𝑥3 − 𝑥1 Ƹ𝑖 + 𝑦3 − 𝑦1 Ƹ𝑗 + 𝑧3 − 𝑧1 ෠𝑘

𝐴𝐷 = 𝑥4 − 𝑥1 Ƹ𝑖 + 𝑦4 − 𝑦1 Ƹ𝑗 + 𝑧4 − 𝑧1 ෠𝑘
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If 1, 5, 35 , 7, 5, 5 , 1, 𝜆 , 7 & 2𝜆, 1, 2 are coplanar, then the sum of 
all possible values of 𝜆 is:

JEE MAINS Feb 2021

𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑥3 − 𝑥1 𝑦3 − 𝑦1 𝑧3 − 𝑧1
𝑥4 − 𝑥1 𝑦4 − 𝑦1 𝑧4 − 𝑧1

= 0
6 0 −30
0 𝜆 − 5 −28

2𝜆 − 1 −4 −33
= 0

1 0 −5
0 𝜆 − 5 −28

2𝜆 − 1 −4 −33
= 0

⇒ 5𝜆2 − 44𝜆 + 39 = 0 ⇒ Sum of values of 𝜆 : 44
5

A

B

D

C

44

5

−
44

5

−
39

5

39

5
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A

B

D

C

12

5

17

7

JEE MAINS Jan 2019

If the point 2, 𝛼, 𝛽 lies on the plane which passes through the 
points 3, 4, 2 & 7, 0, 6 and is perpendicular to the plane 2𝑥
− 5𝑦 = 15, then 2𝛼 − 3𝛽 is equal to:
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Solution:
JEE MAINS Jan 2019

If the point 2, 𝛼, 𝛽 lies on the plane which passes through the 
points 3, 4, 2 & 7, 0, 6 and is perpendicular to the plane 2𝑥
− 5𝑦 = 15, then 2𝛼 − 3𝛽 is equal to:

(2, −5,0)

3 , 4 , 2

7 , 0 , 6

2 , 𝛼 , 𝛽

Ԧ𝑎
𝑏

2𝑥 − 5𝑦 = 15

𝑛
𝑛 =

ƶ𝑖 ƶ𝑗 ෠𝑘
−1 𝛼 − 4 𝛽 − 2
4 −4 4

𝑛 = 4 𝛼 + 𝛽 − 6 ƶ𝑖 + 4 𝛽 − 1 ƶ𝑗 + 4 −𝛼 + 5 ෠𝑘

Normal vector to the plane  : 𝑛 = Ԧ𝑎 × Ԧ𝑏

∵ it is perpendicular to the plane 2𝑥 − 5𝑦 = 15

⇒ 8 𝛼 + 𝛽 − 6 − 20 𝛽 − 1 = 0

⇒ 2𝛼 − 3𝛽 = 7

2𝛼 − 3𝛽 = ?
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B 7

JEE MAINS Jan 2019

If the point 2, 𝛼, 𝛽 lies on the plane which passes through the 
points 3, 4, 2 & 7, 0, 6 and is perpendicular to the plane 2𝑥
− 5𝑦 = 15, then 2𝛼 − 3𝛽 is equal to:

A

D

C

12

5

17
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A point and a plane

Session 07

Return to Top
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The equation of the and 

perpendicular to the planes 3𝑥 + 𝑦 − 2𝑧 = 5 and   2𝑥 − 5𝑦 − 𝑧 = 7 , is:

JEE MAINS FEB 2021

plane passing through the point 1 , 2 ,−3

A 3𝑥 − 10𝑦 − 2𝑧 + 11 = 0

B 11𝑥 + 𝑦 + 17𝑧 + 38 = 0

C 6𝑥 − 5𝑦 − 2𝑧 − 2 = 0

D 6𝑥 − 5𝑦 + 2𝑧 + 10 = 0⇒ 𝑛 =
ƶ𝑖 ƶ𝑗 ෠𝑘
3 1 −2
2 −5 −1

= −11ƶ𝑖 − ƶ𝑗 − 17෠𝑘

𝑃1: 𝑛1 ∶ 3ƶ𝑖 + ƶ𝑗 − 2෠𝑘

𝑛2 ∶ 2ƶ𝑖 − 5ƶ𝑗 − ෠𝑘

Let normal vector to the plane be 𝑛 = 𝑛1 × 𝑛2

3𝑥 + 𝑦 − 2𝑧 = 5

𝑃2: 2𝑥 − 5𝑦 − 𝑧 = 7

plane passing through the point 1 , 2 ,−3

Solution:

So, equation of the plane: −11 𝑥 − 1 − 𝑦 − 2 − 17 𝑧 + 3 = 0

⇒ 11𝑥 + 𝑦 + 17𝑧 + 38 = 0
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Foot of perpendicular from a point to a plane: 𝐴(𝑥1, 𝑦1, 𝑧1)

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

Normal𝑛

Let the equation of the plane : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝐴𝑃 is parallel to normal to the plane, 

𝑥𝑝−𝑥1

𝑎
=

𝑦𝑝−𝑦1

𝑏
=

𝑧𝑝−𝑧1

𝑐
= 𝜆⋯(𝑖)

⇒ 𝑥𝑝 = 𝑥1 + 𝑎𝜆 ;

Since, 𝑃 lies on plane 

𝑦𝑝 = 𝑦1 + 𝑏𝜆 ; 𝑧𝑝 = 𝑧1 + 𝑐𝜆

𝑎 𝑥1 + 𝑎𝜆 + 𝑏 𝑦1 + 𝑏𝜆 + 𝑐 𝑧1 + 𝑐𝜆 = 𝑑 ⇒ 𝜆 = −
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2
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Foot of perpendicular from a point to a plane: 𝐴(𝑥1, 𝑦1, 𝑧1)

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

Normal𝑛

Let the equation of the plane : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑥𝑝−𝑥1

𝑎
=

𝑦𝑝−𝑦1

𝑏
=

𝑧𝑝−𝑧1

𝑐
= 𝜆⋯(𝑖)

⇒ 𝜆 = −
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

Substituting the value in (𝑖)

𝑥𝑝 − 𝑥1
𝑎

=
𝑦𝑝 − 𝑦1

𝑏
=
𝑧𝑝 − 𝑧1

𝑐
= −

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2
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The foot of perpendicular of point 1,0,2 to the plane 2𝑥 + 𝑦 + 𝑧 = 5, is:   

A

B

D

C

(2,0,1)

5

3
,
1

3
,
4

3

4

3
,
1

6
,
13

6

1

6
,
4

3
,
10

3
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The foot of perpendicular of point 1,0,2 to the plane 2𝑥 + 𝑦 + 𝑧 = 5, is:   

𝑥𝑝−1

2
=

𝑦𝑝

1
=

𝑧𝑝−2

1
= −

2 1 +0+2−5

6

𝑥𝑝 =
4

3
; 𝑦𝑝 =

1

6
; 𝑧𝑝 =

13

6

Thus foot of perpendicular is:

𝑥𝑝−𝑥1

𝑎
=

𝑦𝑝−𝑦1

𝑏
=

𝑧𝑝−𝑧1

𝑐
= −

𝑎𝑥1+𝑏𝑦1+𝑐𝑧1−𝑑

𝑎2+𝑏2+𝑐2

4

3
,
1

6
,
13

6
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The foot of perpendicular of point 1,0,2 to the plane 2𝑥 + 𝑦 + 𝑧 = 5, is:   

A

B

D

C

(2,0,1)

5

3
,
1

3
,
4

3

4

3
,
1

6
,
13

6

1

6
,
4

3
,
10

3

C
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Image of point with respect to a plane : 𝐴(𝑥1, 𝑦1, 𝑧1)

𝑃(𝑥𝑝, 𝑦𝑝, 𝑧𝑝)

𝑛 Normal

𝐴′(𝑥′, 𝑦′, 𝑧′)

Let the equation of the plane : 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

𝑥′ = 2𝑥𝑝 − 𝑥1; 𝑦
′ = 2𝑦𝑝 − 𝑦1; 𝑧

′ = 2𝑧𝑝 − 𝑧1

𝑥𝑝 − 𝑥1
𝑎

=
𝑦𝑝 − 𝑦1

𝑏
=
𝑧𝑝 − 𝑧1

𝑐
= 𝜆⋯ (𝑖)

𝜆 = −
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

𝑥′ − 𝑥1
𝑎

=
2𝑥𝑝 − 2𝑥1

𝑎
= 2𝜆

𝑥′ − 𝑥1
𝑎

=
𝑦′ − 𝑦1

𝑏
=
𝑧′ − 𝑧1

𝑐
= −2

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2
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If the mirror image of the point 1, 3, 5 with respect to the 

plane 4𝑥 − 5𝑦 + 2𝑧 = 8 is 𝛼, 𝛽, 𝛾 , then 5 𝛼 + 𝛽 + 𝛾 equals:  _______.

JEE MAINS FEB 2021

A 47

B 43

C 39

D 41

Solution:

⇒ 𝛼 =
13

5
; 𝛽 = 1 ; 𝛾 =

29

5

⇒ 5 𝛼 + 𝛽 + 𝛾 = 13 + 5 + 29

𝑥′−𝑥1

𝑎
=

𝑦′−𝑦1

𝑏
=

𝑧′−𝑧1

𝑐
= −2

𝑎𝑥1+𝑏𝑦1+𝑐𝑧1−𝑑

𝑎2+𝑏2+𝑐2

⇒
𝛼−1

4
=

𝛽−3

−5
=

𝛾−5

2
= −2

4 1 −5 3 +2 5 −8

42+ −5 2+22

= 47
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A

B

D

C

1,−1, 1

−1,−1,−1

1, 1, 1

−1,−1, 1

The . Which 
of the following points lies on this plane?

mirror image of the point 1 , 2 , 3 in a plane is − 7

3
, −

4

3
, −

1

3
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JEE MAINS JAN 2020

The . Which 
of the following points lies on this plane?

mirror image of the point 1 , 2 , 3 in a plane is − 7

3
, −

4

3
, −

1

3

Solution:

Mirror image of the point 1 , 2 , 3 in a plane is − 7

3
, −

4

3
, −

1

3

≡ (1 , 1 , 1)

Point 𝑃 is : − 2

3
,
1

3
,
4

3

Equation of plane :

⇒ 1 ⋅ 𝑥 +
2

3
+ 1 ⋅ 𝑦 −

1

3
+ 1 ⋅ 𝑧 −

4

3
= 0

1 +
7

3
, 2 +

4

3
, 3 +

1

3

DRs of normal to the plane is:
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JEE MAINS JAN 2020

The . Which 
of the following points lies on this plane?

mirror image of the point 1 , 2 , 3 in a plane is − 7

3
, −

4

3
, −

1

3

Equation of plane :

⇒ 1 ⋅ 𝑥 +
2

3
+ 1 ⋅ 𝑦 −

1

3
+ 1 ⋅ 𝑧 −

4

3
= 0

⇒ 𝑥 + 𝑦 + 𝑧 = 1

Thus, point  (1,−1, 1) lies on the plane
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B

D

C

−1,−1,−1

1, 1, 1

−1,−1, 1

The . Which 
of the following points lies on this plane?

mirror image of the point 1 , 2 , 3 in a plane is − 7

3
, −

4

3
, −

1

3

A 1,−1, 1
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Distance of a Point from a Plane:

𝑛Normal

𝐴 𝑥1, 𝑦1, 𝑧1 Ԧ𝛼

Let equation of plane:  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

where  𝑎, 𝑏, 𝑐 are DRs of normal.

𝐷 =
| Ԧ𝛼. 𝑛 − 𝑑|

𝑛

𝐷 =
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2
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The equation of the planes parallel to the plane 𝑥 − 2𝑦 + 2𝑧 − 3 = 0 which 

are at a unit distance from the point 1, 2, 3 is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. If 

𝑏 − 𝑑 = 𝐾 𝑐 − 𝑎 , then the positive value of 𝐾 is___.

Solution:
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JEE MAINS MAR 2021

The equation of the planes parallel to the plane 𝑥 − 2𝑦 + 2𝑧 − 3 = 0 which 

are at a unit distance from the point 1, 2, 3 is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 + 𝑑 = 0. If 

𝑏 − 𝑑 = 𝐾 𝑐 − 𝑎 , then the positive value of 𝐾 is___.

Let equation of required plane ∶ 𝑥 − 2𝑦 + 2𝑧 + 𝑑 = 0

or 4

1 − 2 2 + 2 3 + 𝑑

12 + (−2)2 + 22
= 1

⇒ 𝑑 = 0,−6

𝑏 − 𝑑 = −2 , 𝑐 − 𝑎 = 1

∴ 𝐾 = 4

𝐷 =
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

⇒ 𝐾 = −2 or 4

Solution:



Return to Top

Relative Position of Two Points with Respect 

to a Plane:
𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2

Ratio in which the plane divides line joining 

points 𝐴 & 𝐵 is :

Let equation of plane :  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 𝑑 = 0

where  𝑎, 𝑏, 𝑐 are DRs of normal.

Two points 𝐴 𝑥1, 𝑦1, 𝑧1 & 𝐵 𝑥2, 𝑦2, 𝑧2 are on: 

−
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑
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Relative Position of Two Points with Respect 

to a Plane:

𝐵 𝑥2, 𝑦2, 𝑧2

𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2

(𝑖) Same side of plane, 

Ratio in which the plane divides line joining 

points 𝐴 & 𝐵 is :

−
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑

−
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑
< 0

⇒
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑
> 0

the signs of 𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑 and 
𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑 are same.
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Relative Position of Two Points with Respect 

to a Plane:

𝐵 𝑥2, 𝑦2, 𝑧2

𝐴 𝑥1, 𝑦1, 𝑧1

𝐵 𝑥2, 𝑦2, 𝑧2

(𝑖𝑖) Opposite side of plane, 

the signs of 𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑 and 𝑎𝑥2 + 𝑏𝑦2
+ 𝑐𝑧2 − 𝑑 are opposite.
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A

B

D

C

2: 3

−1: 3

Ratio in which the plane 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 divides the line joining the 

points 1, 2, −4 & −3, 1,−7 is:

3: 4

3: 1
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Ratio in which the plane 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 divides the line joining the 

points 1, 2, −4 & −3, 1,−7 is:

Solution:

Division is 1: 3 external.

Ratio ∶ −
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎𝑥2 + 𝑏𝑦2 + 𝑐𝑧2 − 𝑑Ratio = −
2 1 − 2 + 3 −4 + 4

2 −3 − 1 + 3 −7 + 4

= −
1

3
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A

D

C

2: 3

−1: 3

Ratio in which the plane 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 divides the line joining the 

points 1, 2, −4 & −3, 1,−7 is:

3: 4

3: 1

B
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A

B

D

C

Opposite side

The plane

Points 1, 2, 3 & 2,−1, 4 with respect to the plane  𝑥 + 4𝑦 + 𝑧 − 3 = 0

lie on:

Same side

One lie on plane and other doesn’t
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B

D

C

The plane

Points 1, 2, 3 & 2,−1, 4 with respect to the plane  𝑥 + 4𝑦 + 𝑧 − 3 = 0

lie on:

Same side

One lie on plane and other doesn’t

A Opposite side
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Solution:

Let 𝐴 1, 2, 3 & 𝐵 2,−1, 4

Equation of plane: 𝑥 + 4𝑦 + 𝑧 − 3 = 0

For point 𝐴:

For point 𝐵:

∴ Points 𝐴 & 𝐵 lie on opposite side.

> 01 + 4 2 + 3 − 3

2 + 4 −1 + 4 − 3 < 0

Points 1, 2, 3 & 2,−1, 4 with respect to the plane  𝑥 + 4𝑦 + 𝑧 − 3 = 0

lie on:
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Angle between a Line and a Plane:

Line

𝜃

Normal

90° − 𝜃

Let equation of plane:  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

where  𝑎, 𝑏, 𝑐 are DRs of normal.

Let equation of line :  𝑥−𝑥0

𝑎1
=

𝑦−𝑦0

𝑏1
=

𝑧−𝑧0

𝑐1

where 𝑎1, 𝑏1, 𝑐1 are DRs of line.

cos 90° − 𝜃 =
𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1

𝑎2 + 𝑏2 + 𝑐2 𝑎1
2 + 𝑏1

2 + 𝑐1
2

𝜃 = sin−1
𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1

𝑎2 + 𝑏2 + 𝑐2 𝑎1
2 + 𝑏1

2 + 𝑐1
2
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Angle between a Line and a Plane:

Line

𝜃

Normal

90° − 𝜃

Let equation of plane:  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

Let equation of line :  𝑥−𝑥0

𝑎1
=

𝑦−𝑦0

𝑏1
=

𝑧−𝑧0

𝑐1

𝜃 = sin−1
𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1

𝑎2 + 𝑏2 + 𝑐2 𝑎1
2 + 𝑏1

2 + 𝑐1
2

(𝑖) Condition for line to be parallel to plane:

(𝑖𝑖) Condition for line to be perpendicular to plane:

𝑎

𝑎1
=

𝑏

𝑏1
=

𝑐

𝑐1

𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1 = 0
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A

B

D

C

−
3

5

3

5

If an angle between the line, 𝑥+1
2

=
𝑦−2

1
=

𝑧−3

−2
and the plane, 𝑥 − 2𝑦 − 𝑘𝑧 = 3

is cos−1 2 2

3
, then a value of 𝑘 is :  

5

3

−
5

3

JEE MAINS JAN 2019
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If an angle between the line, 𝑥+1
2

=
𝑦−2

1
=

𝑧−3

−2
and the plane, 𝑥 − 2𝑦 − 𝑘𝑧 = 3

is cos−1 2 2

3
, then a value of 𝑘 is :  

JEE MAINS JAN 2019

Solution:

Let angle 𝜃 = cos−1
2 2

3

⇒ 𝜃 =

⇒
1

3
=

2 1 +1 −2 −2 −𝑘

22+12+ −2 2 12+ −2 2+ −𝑘 2

⇒
1

3
=

2𝑘

3 5+ 𝑘 2
⇒ 5 + 𝑘 2 = 2𝑘

𝜃 = sin−1
𝑎𝑎1+𝑏𝑏1+𝑐𝑐1

𝑎2+𝑏2+𝑐2 𝑎1
2+𝑏1

2+𝑐1
2

⇒ 3𝑘2 = 5 ⇒ 𝑘 = ±
5

3

Squaring

= sin−1
1

3
sin−1 1 −

2 2

3
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A

B

D

−
3

5

3

5

If an angle between the line, 𝑥+1
2

=
𝑦−2

1
=

𝑧−3

−2
and the plane, 𝑥 − 2𝑦 − 𝑘𝑧 = 3

is cos−1 2 2

3
, then a value of 𝑘 is :  

−
5

3

CC 5

3

JEE MAINS JAN 2019



Return to TopReturn to Top

A line and a plane

Session 08

Return to Top
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Condition for a Line to Lie in a Plane

For, line to lie in a plane : 

Let equation of plane:  𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

where  𝑎, 𝑏, 𝑐 are DRs of normal.

and equation of line :  
𝑥−𝑥0

𝑎1
=

𝑦−𝑦0

𝑏1
=

𝑧−𝑧0

𝑐1

where 𝑎1, 𝑏1, 𝑐1 are DRs of line.

𝑖 𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 = 𝑑

𝑖𝑖 𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1 = 0, (Line  ⊥𝑟 to the normal to the plane)     

𝐴 𝑥0, 𝑦0, 𝑧0

Line 

Normal

(𝑎1, 𝑏1, 𝑐1)

(𝑎, 𝑏, 𝑐)
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A

B

C

D

If the line  𝑥−3
2

=
𝑦+2

−1
=

𝑧+4

3
,  lies in the plane 𝑙𝑥 + 𝑚𝑦 − 𝑧 = 9, then       

𝑙2 +𝑚2 is equal to  :  

18 26

5 2

JEE Main 2016

Line 𝑥−3
2

=
𝑦− −2

−1
=

𝑧− −4

3

Line passes through a point 3,−2,−4 & DRs of line 𝛼 2,−1, 3

DRs of normal to plane ∝ 𝑙,𝑚,−1

1) Point 𝐴 3,−2,−4 lies on 𝑙𝑥 + 𝑚𝑦 − 𝑧 = 9

⇒ 3𝑙 − 2𝑚 + 4 = 9 ⇒ 3𝑙 − 2𝑚 = 5

Line ⊥𝑟 to normal ⇒ 2𝑙 − 𝑚 − 3 = 0 ⇒ 2𝑙 −𝑚 = 3
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If the line  𝑥−3
2

=
𝑦+2

−1
=

𝑧+4

3
,  lies in the plane 𝑙𝑥 + 𝑚𝑦 − 𝑧 = 9, then       

𝑙2 +𝑚2 is equal to  :  
JEE Main 2016

Line ⊥𝑟 to normal ⇒ 2𝑙 − 𝑚 − 3 = 0 ⇒ 2𝑙 − 𝑚 = 3

𝑙 = 1,𝑚 = −1 ⇒ 𝑙2 +𝑚2 = 12 + −1 2 = 2

⇒ 3𝑙 − 2𝑚 + 4 = 9 ⇒ 3𝑙 − 2𝑚 = 5
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A

B

C

D

JEE Main Feb 2021

Let 𝑃 be a plane 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0 containing the line, 1−𝑥
1

=
𝑦+4

2

=
𝑧+2

3
. If the plane divides the line segment 𝐴𝐵 joining points

𝐴(−3,−6,1) and 𝐵 2,4, −3 in ratio 𝑘: 1, then the value of 𝑘 is:  

1.5

2

4

3
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𝐵 2, 4, −3𝐴 −3,−6, 1

𝑘 ∶ 1

𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0

DRs of line ∝ −1, 2, 3

⇒ 𝑛 = 2𝑚

Equation of line: 𝑥−1
−1

=
𝑦− −4

2
=

𝑧− −2

3
lies on 

the plane

Point 𝐴′ 1,−4,−2 lies on 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0

⇒ −2𝑚 + 𝑛 = 0

Line perpendicular to plane ⇒ −𝑙 + 2𝑚 + 3𝑛 = 0

Solution:
JEE Main Feb 2021

Let 𝑃 be a plane 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0 containing the line, 1−𝑥
1

=
𝑦+4

2

=
𝑧+2

3
. If the plane divides the line segment 𝐴𝐵 joining points

𝐴(−3,−6,1) and 𝐵 2,4, −3 in ratio 𝑘: 1, then the value of 𝑘 is:  

𝑙 − 4𝑚 − 2𝑛 = 0

DRs of normal ∝ 𝑙,𝑚, 𝑛
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𝐵 2, 4, −3𝐴 −3,−6, 1

𝑘 ∶ 1

𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0

⇒ 𝑛 = 2𝑚⇒ −2𝑚 + 𝑛 = 0

Line perpendicular to plane

⇒ −𝑙 + 2𝑚 + 3𝑛 = 0

Solution:
JEE Main Feb 2021

Let 𝑃 be a plane 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0 containing the line, 1−𝑥
1

=
𝑦+4

2

=
𝑧+2

3
. If the plane divides the line segment 𝐴𝐵 joining points

𝐴(−3,−6,1) and 𝐵 2,4, −3 in ratio 𝑘: 1, then the value of 𝑘 is:  

Put  𝑛 = 2𝑚 in −𝑙 + 2𝑚 + 3𝑛 = 0

∴ 𝑙 = 8𝑚

Equation of line: 𝑥−1
−1

=
𝑦− −4

2
=

𝑧− −2

3

∴ Equation of plane : 8𝑚𝑥 +𝑚𝑦 + 2𝑚𝑧 = 0

8𝑥 + 𝑦 + 2𝑧 = 0
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𝐵 2, 4, −3𝐴 −3,−6, 1

𝑘 ∶ 1

𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0∴ Equation of plane :

Ratio = 𝑘

1

⇒ 𝑘 = 2

8𝑥 + 𝑦 + 2𝑧 = 0

Equation of line: 1−𝑥
1

=
𝑦+4

2
=

𝑧+2

3

⇒
28

14
=

𝑘

1

⇒ −
8 −3 + −6 +2 1

8 2 + 4 +2 −3
=

𝑘

1

Solution:
JEE Main Feb 2021

Let 𝑃 be a plane 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0 containing the line, 1−𝑥
1

=
𝑦+4

2

=
𝑧+2

3
. If the plane divides the line segment 𝐴𝐵 joining points

𝐴(−3,−6,1) and 𝐵 2,4, −3 in ratio 𝑘: 1, then the value of 𝑘 is:  

Ratio = −
𝑎𝑥1+𝑏𝑦1+𝑐𝑧1−𝑑

𝑎𝑥2+𝑏𝑦2+𝑐𝑧2−𝑑
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A

B

C

D

1.5

2

4

3

JEE Main Feb 2021

Let 𝑃 be a plane 𝑙𝑥 + 𝑚𝑦 + 𝑛𝑧 = 0 containing the line, 
1−𝑥

1
=

𝑦+4

2
=

𝑧+2

3
.

If the plane divides the line segment 𝐴𝐵 joining points
𝐴(−3,−6,1) and 𝐵 2,4, −3 in ratio 𝑘: 1, then the value of 𝑘 is:  



Return to Top

Equation of Plane Containing Two Parallel Lines 

Equation of lines :  𝑥−𝑥1
𝑎1

=
𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝑥−𝑥2

𝑎1
=

𝑦−𝑦2

𝑏1
=

𝑧−𝑧2

𝑐1

So, equation of plane is: 

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑎1 𝑏1 𝑐1

= 0

𝐵 𝑥2, 𝑦2, 𝑧2

𝐴 𝑥1, 𝑦1, 𝑧1

𝑅 𝑥, 𝑦, 𝑧

Ԧ𝑝 𝑎1, 𝑏1, 𝑐1

𝐴𝑅 𝐴𝐵 Ԧ𝑝 = 0

𝐴𝑅, 𝐴𝐵 & Ԧ𝑝 are coplanar

⇒ 𝐴𝑅 𝐴𝐵 Ԧ𝑝 = 0

⇒ Ԧ𝑟 − Ԧ𝑎 Ԧ𝑏 − Ԧ𝑎 Ԧ𝑝 = 0
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The equation of plane containing the lines, 
𝑥−4

1
=

𝑦−3

−4
=

𝑧−2

5
and 

𝑥−3

1
=

𝑦+2

−4
=

𝑧−0

5
, is :

Solution:
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The equation of plane containing the lines, 
𝑥−4

1
=

𝑦−3

−4
=

𝑧−2

5
and 

𝑥−3

1
=

𝑦+2

−4
=

𝑧−0

5
, is :

Solution:

𝑥 − 4 𝑦 − 3 𝑧 − 2
−1 −5 −2
1 −4 5

= 0

The equation of plane :

∴ Equation of plane : 11𝑥 − 𝑦 − 3𝑧 = 35

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑥2 − 𝑥1 𝑦2 − 𝑦1 𝑧2 − 𝑧1
𝑎1 𝑏1 𝑐1

= 0

⇒ 𝑥 − 4 −25 − 8 − 𝑦 − 3 −5 + 2 + 𝑧 − 2 4 + 5 = 0

⇒ −33𝑥 + 3𝑦 + 9𝑧 + 105 = 0

⇒ 11𝑥 − 𝑦 − 3𝑧 = 35

𝐿1|| 𝐿2 ⇒ Ԧ𝑝 = Ƹ𝑖 − 4 Ƹ𝑗 + 5෠𝑘

𝐿1 passes through point 𝐴 = 4, 3, 2

𝐿2 passes through point 𝐵 = 3,−2, 0
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Equation of Plane Containing Two Lines

Equation of lines:  𝑥−𝑥1
𝑎1

=
𝑦−𝑦1

𝑏1
=

𝑧−𝑧1

𝑐1

𝑥−𝑥2

𝑎2
=

𝑦−𝑦2

𝑏2
=

𝑧−𝑧2

𝑐2

So, equation of plane is: 

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

= 0

𝐴 𝑥1, 𝑦1, 𝑧1

Ԧ𝑝 𝑎1, 𝑏1, 𝑐1

Ԧ𝑞 𝑎2, 𝑏2, 𝑐2
𝑅(𝑥, 𝑦, 𝑧)

𝐴𝑅 Ԧ𝑝 Ԧ𝑞 = 0

𝐵 𝑥2, 𝑦2, 𝑧2

𝐴𝑅 Ԧ𝑝 Ԧ𝑞 are coplanar 

⇒ 𝐴𝑅 Ԧ𝑝 Ԧ𝑞 = 0
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Let 𝑃 be a plane containing the line  
𝑥−1

3
=

𝑦+6

4
=

𝑧+5

2
and parallel to the 

line 
𝑥−3

4
=

𝑦−2

−3
=

𝑧+5

7
. If the point 1,−1, 𝛼 lies on the plane 𝑃, then the 

value of 5𝛼 is equal to ____

Equation of plane is : 

𝑥 − 1 𝑦 + 6 𝑧 + 5
3 4 2
4 −3 7

= 0

⇒ 1,−1, 𝛼 lies on it

⇒
0 5 𝛼 + 5
3 4 2
4 −3 7

= 0

⇒ 5𝛼 + 38 = 0

⇒ 5𝛼 = 38

⇒ 5 13 + 25(𝛼 + 5) = 0

Normal

𝐴 1,−6,−5

𝑃

1,−1, 𝛼

Solution:

𝐿1 passes through point 1,−6,−5

𝐿1 ≡ 3 Ƹ𝑖 + 4 Ƹ𝑗 + 2෠𝑘, 𝐿2 ≡ 3 Ƹ𝑖 + 4 Ƹ𝑗 + 2෠𝑘
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Let 𝑃 be a plane containing the line  
𝑥−1

3
=

𝑦+6

4
=

𝑧+5

2
and parallel to the 

line 
𝑥−3

4
=

𝑦−2

−3
=

𝑧+5

7
. If the point 1,−1, 𝛼 lies on the plane 𝑃, then the 

value of 5𝛼 is equal to ____

Equation of plane is : 

𝑥 − 1 𝑦 + 6 𝑧 + 5
3 4 2
4 −3 7

= 0

⇒ 1,−1, 𝛼 lies on it

⇒
0 5 𝛼 + 5
3 4 2
4 −3 7

= 0

⇒ 5𝛼 + 38 = 0

⇒ 5𝛼 = 38

⇒ 5 13 + 25(𝛼 + 5) = 0

Normal

𝐴 1,−6,−5

𝑃

1,−1, 𝛼

Solution:
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Let a plane 𝑃 contains two lines Ԧ𝑟 = ƶ𝑖 + 𝜆 ƶ𝑖 + ƶ𝑗 , 𝜆 ∈ ℝ and 
Ԧ𝑟 = − ƶ𝑗 + 𝜇 ƶ𝑗 − ෠𝑘 , μ ∈ ℝ. If 𝑄 𝛼, 𝛽, 𝛾 is the foot of the perpendicular
drawn form the point 𝑀 1,0,1 to 𝑃, then 3 𝛼 + 𝛽 + 𝛾 equals ____

JEE Main Sep 2020
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Let a plane 𝑃 contains two lines Ԧ𝑟 = ƶ𝑖 + 𝜆 ƶ𝑖 + ƶ𝑗 , 𝜆 ∈ ℝ and 
Ԧ𝑟 = − ƶ𝑗 + 𝜇 ƶ𝑗 − ෠𝑘 , μ ∈ ℝ. If 𝑄 𝛼, 𝛽, 𝛾 is the foot of the perpendicular
drawn form the point 𝑀 1,0,1 to 𝑃, then 3 𝛼 + 𝛽 + 𝛾 equals ____

JEE Main Sep 2020

Equation of plane is: 𝑥 − 1 𝑦 𝑧
1 1 0
0 1 −1

= 0

⇒ 𝑥 − 𝑦 − 𝑧 = 1

𝑥𝑝−𝑥1

𝑎
=

𝑦𝑝−𝑦1

𝑏
=

𝑧𝑝−𝑧1

𝑐
= −

𝑎𝑥1+𝑏𝑦1+𝑐𝑧1−𝑑

𝑎2+𝑏2+𝑐2

𝑥 − 𝑥1 𝑦 − 𝑦1 𝑧 − 𝑧1
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

= 0

Solution:

Ԧ𝑟 − Ԧ𝑎 Ԧ𝑝 Ԧ𝑞 = 0 where Ԧ𝑝 = Ƹ𝑖 + Ƹ𝑗 and Ԧ𝑞 = Ƹ𝑗 − ෠𝑘

Equation of plane is
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Let a plane 𝑃 contains two lines Ԧ𝑟 = ƶ𝑖 + 𝜆 ƶ𝑖 + ƶ𝑗 , 𝜆 ∈ ℝ and 
Ԧ𝑟 = − ƶ𝑗 + 𝜇 ƶ𝑗 − ෠𝑘 , μ ∈ ℝ. If 𝑄 𝛼, 𝛽, 𝛾 is the foot of the perpendicular
drawn form the point 𝑀 1,0,1 to 𝑃, then 3 𝛼 + 𝛽 + 𝛾 equals ____

JEE Main Sep 2020

𝑥𝑝−𝑥1

𝑎
=

𝑦𝑝−𝑦1

𝑏
=

𝑧𝑝−𝑧1

𝑐
= −

𝑎𝑥1+𝑏𝑦1+𝑐𝑧1−𝑑

𝑎2+𝑏2+𝑐2

⇒
𝛼−1

1
=

𝛽−0

−1
=

𝛾−1

−1
= −

1−0−1−1

12+(−1)2+ −1 2 =
1

3

⇒ 𝛼 =
4

3
, 𝛽 = −

1

3
, 𝛾 =

2

3

⇒ 3 𝛼 + 𝛽 + 𝛾 = 3
4

3
+ −

1

3
+

2

3
= 5

Solution:
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A plane passing through the point 3,1,1 contains two lines whose 

direction ratios are  1,−2, 2 and 2, 3, −1 respectively . If this plane also 

passes through the point  𝛼,−3,5 , then 𝛼 is equal to : 

A

B

C

D

−10 5

10 −5



Return to Top

Solution:
JEE Main Sep 2021

A plane passing through the point 3,1,1 contains two lines whose 

direction ratios are  1,−2, 2 and 2, 3, −1 respectively . If this plane also 

passes through the point  𝛼,−3,5 , then 𝛼 is equal to : 

(3, 1, 1) (2, 3, −1)

(𝛼, −3, 5)

𝑛DRs of line 𝐿1 ∶ (1,−2, 2)

DRs of line 𝐿2 ∶ (2, 3, −1)

DRs of line 𝐿1 ∶ (1,−2, 2) ≡ 𝐿1.

𝑥 − 3 𝑦 − 1 𝑧 − 1
1 −2 2
2 3 −1

= 0

Point 𝛼,−3, 5 lies on above plane

DRs of line 𝐿1 ∶ (2, 3, −1) ≡ 𝐿2.

𝐴𝑅, 𝐿1, 𝐿2 are coplanar

𝐴𝑅 𝐿1 𝐿2 = 0
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A plane passing through the point 3,1,1 contains two lines whose 

direction ratios are  1,−2, 2 and 2, 3, −1 respectively . If this plane also 

passes through the point  𝛼,−3,5 , then 𝛼 is equal to : 

Solution:

(3, 1, 1) (2, 3, −1)

(𝛼, −3, 5)

𝑛

𝑥 − 3 𝑦 − 1 𝑧 − 1
1 −2 2
2 3 −1

= 0

Point 𝛼,−3, 5 lies on above plane

𝛼 − 3 −4 4
1 −2 2
2 3 −1

= 0

𝑅1 →
𝑅1

2
⇒

𝛼 − 3

2
−2 2

1 −2 2
2 3 −1

= 0

⇒
𝛼 − 3

2
= 1 ⇒ 𝛼 − 3 = 2

⇒ 𝛼 = 5
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A plane passing through the point 3,1,1 contains two lines whose 

direction ratios are  1,−2, 2 and 2, 3, −1 respectively . If this plane also 

passes through the point  𝛼,−3,5 , then 𝛼 is equal to : 

A

B

C

D

−10 5

10 −5
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Intersection point of a line and a plane 

Let equation of plane: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

where  𝑎, 𝑏, 𝑐 are direction ratios of normal.

and equation of line:  
𝑥−𝑥0

𝑎1
=

𝑦−𝑦0

𝑏1
=

𝑧−𝑧0

𝑐1
= 𝜆

where 𝑎1, 𝑏1, 𝑐1 are direction ratios of the line.

Let 𝐴 is the point on the line 

⇒ 𝐴 ≡ 𝑥0 + 𝑎1𝜆 , 𝑦0 + 𝑏1𝜆, 𝑧0+𝑐1𝜆 ⋯(𝑖)

𝐴 also lies on plane, 

⇒ 𝑎 𝑥0 + 𝑎1𝜆 + 𝑏 𝑦0 + 𝑏1𝜆 + 𝑐 𝑧0 + 𝑐1𝜆 = 𝑑

𝐴

(𝑎1, 𝑏1, 𝑐1)
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Intersection point of a line and a plane 

𝐴

(𝑎1, 𝑏1, 𝑐1)

Let equation of plane: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑

and equation of line:  𝑥−𝑥0
𝑎1

=
𝑦−𝑦0

𝑏1
=

𝑧−𝑧0

𝑐1
= 𝜆

⇒ 𝐴 ≡ 𝑥0 + 𝑎1𝜆 , 𝑦0 + 𝑏1𝜆, 𝑧0 + 𝑐1𝜆 ⋯(𝑖)

⇒ 𝑎 𝑥0 + 𝑎1𝜆 + 𝑏 𝑦0 + 𝑏1𝜆 + 𝑐 𝑧0 + 𝑐1𝜆 = 𝑑

∴ 𝜆 =
𝑑 − 𝑎𝑥0 − 𝑏𝑦0 − 𝑐𝑧0
𝑎𝑎1 + 𝑏𝑏1 + 𝑐𝑐1

Substitute value of 𝜆 in (𝑖) to get point 𝐴.
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A

B

C

D

The equation of line passing through the point of intersection of line 
𝑥−4

2
=

𝑦−5

2
=

𝑧−3

1
and the plane  𝑥 + 𝑦 + 𝑧 − 2 = 0 is

𝑥−4

1
=

𝑦−5

1
=

𝑧−5

−1

𝑥−2

2
=

𝑦−3

2
=

𝑧+3

3

𝑥+3

3
=

4−𝑦

3
=

𝑧+1

−2

𝑥−1

1
=

𝑦−3

2
=

𝑧+4

−5

Let 𝐴 be a point on the line ⇒ 𝐴 ≡ 4 + 2𝜆 , 5 + 2𝜆, 3 + 𝜆

𝐴 also lies on plane 𝑥 + 𝑦 + 𝑧 − 2 = 0

⇒ 4 + 2𝜆 + 5 + 2𝜆 + 3 + 𝜆 − 2 = 0

⇒ 𝜆 = −2

∴ 𝐴 ≡ 0 , 1 , 1

Equation of line: 
𝑥−4

2
=

𝑦−5

2
=

𝑧−3

1
= 𝜆

So, point 𝐴(0, 1, 1) lies on the line
𝑥−1

1
=

𝑦−3

2
=

𝑧+4

−5
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The point of intersection of line
𝑥−3

4
=

𝑦+2

−1
=

𝑧−6

−2
and the plane 𝑥 − 7𝑦

+ 3𝑧 = 15 is:

A

B

C

D

−13, 2,−14

−13, 2, 14

3, 2, −14

13, 12 , 14
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The point of intersection of line
𝑥−3

4
=

𝑦+2

−1
=

𝑧−6

−2
and the plane 𝑥 − 7𝑦

+ 3𝑧 = 15 is:

A

B

C

D

−13, 2,−14

−13, 2, 14

3, 2, −14

13, 12 , 14
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The point of intersection of line
𝑥−3

4
=

𝑦+2

−1
=

𝑧−6

−2
and the plane 𝑥 − 7𝑦

+ 3𝑧 = 15 is:

Any given on the line
𝑥−3

4
=

𝑦+2

−1
=

𝑧−6

−2
can be taken as

⇒ 𝑥, 𝑦, 𝑧 = 4𝑡 + 3,−𝑡 − 2,−2𝑡 + 6

Now for the intersection with the given plane, 4𝑡 + 3,−𝑡 − 2,−2𝑡 + 6 must 
lie on the plane 𝑥 − 7𝑦 + 3𝑧 = 15

⇒ 4𝑡 + 3 − 7 −𝑡 − 2 + 3(−2𝑡 + 6) = 15

⇒ 5𝑡 + 35 = 15

⇒ 5𝑡 = −20

⇒ 𝑡 = −4

Hence, the point of intersection is 3 − 16, 4 − 2, 8 + 6 = −13, 2, 14

Solution:
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A

B

C

D

JEE Main Feb 2021

The distance of point 1 , 1 , 9 from the point of intersection of the 

line 
𝑥−3

1
=

𝑦−4

2
=

𝑧−5

2
and the plane 𝑥 + 𝑦 + 𝑧 − 17 = 0 is: 

2 19

19 2

38

38
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The distance of point 1 , 1 , 9 from the point of intersection of the 

line 
𝑥−3

1
=

𝑦−4

2
=

𝑧−5

2
and the plane 𝑥 + 𝑦 + 𝑧 − 17 = 0 is: 

Let 𝐴 be a point on the line 

⇒ 𝐴 ≡ 3 + 𝜆 , 4 + 2𝜆, 5 + 2𝜆

𝐴 also lies on plane, 

3 + 𝜆 + 4 + 2𝜆 + 5 + 2𝜆 − 17 = 0

⇒ 𝜆 = 1 𝐴 ≡ 4, 6, 7

Equation of line: 
𝑥−3

1
=

𝑦−4

2
=

𝑧−5

2
= 𝜆

𝐴

(1,1,9)

Solution:
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The distance of point 1 , 1 , 9 from the point of intersection of the 

line 
𝑥−3

1
=

𝑦−4

2
=

𝑧−5

2
and the plane 𝑥 + 𝑦 + 𝑧 − 17 = 0 is: 

𝐴 ≡ 4, 6, 7

= 38

Distance = 4− 1 2 + 6 − 1 2 + 9 − 7 2

= 32 + 52 + 22

Solution:
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The distance of point 1 , 1 , 9 from the point of intersection of the 

line 
𝑥−3

1
=

𝑦−4

2
=

𝑧−5

2
and the plane 𝑥 + 𝑦 + 𝑧 − 17 = 0 is: 

A

B

C

D

2 19

19 2

38

38
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A

B

C

D

A plane has equation 𝑥 − 𝑦 + 𝑧 − 5 = 0 and a line has direction ratios 

as (2, 3, −6), then the distance of point 𝑃 1, 3, 5 along the line from 

the given plane is:

2 unit 2 3 unit

3 2 unit 3 unit

Equation of line 𝑃𝑄:

𝑄 ≡ 1 + 2𝜆, 3 + 3𝜆, 5 − 6𝜆

𝑥−1

2
=

𝑦−3

3
=

𝑧−5

−6
= 𝜆

𝑄

𝑃(1, 3, 5)(2,3, −6)
Solution:



Return to Top

JEE Main Aug 2021

A plane has equation 𝑥 − 𝑦 + 𝑧 − 5 = 0 and a line has direction ratios 

as (2, 3, −6), then the distance of point 𝑃 1, 3, 5 along the line from 

the given plane is:

𝑄 also lies on plane:

⇒ 1 + 2𝜆 − 3 + 3𝜆 + 5 − 6𝜆 − 5 = 0

⇒ 𝜆 = −
2

7

𝑃𝑄 = 1 + 2𝜆 − 1 2 + 3 + 3𝜆 − 3 2 + 5 − 6𝜆 − 5 2

= 4𝜆2 + 9𝜆2 + 36𝜆2

⇒ 𝑃𝑄 = 49𝜆2

= 49 ⋅
4

49

𝑥 − 𝑦 + 𝑧 − 5 = 0

= 2

Solution:
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Angle bisector of two 

planes

Session 09

Return to Top
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A

B

D

C

7 unit 

2 unit

5 unit

3 unit

The distance of point  𝑃 3, 8, 2 from the line 𝑥−1
2

=
𝑦−3

4
=

𝑧−2

3

measured parallel to the plane 3𝑥 + 2𝑦 − 2𝑧 + 17 = 0 is:



Return to Top

Solution:

The distance of point  𝑃 3, 8, 2 from the line 𝑥−1
2

=
𝑦−3

4
=

𝑧−2

3

measured parallel to the plane 3𝑥 + 2𝑦 − 2𝑧 + 17 = 0 is:

Direction ratios of 𝑃𝑄:

Point 𝑄 ≡ 1 + 2𝜆 , 3 + 4𝜆, 2 + 3𝜆

∵ 𝑃𝑄 is parallel to plane  

⇒ 3 2𝜆 − 2 + 2 4𝜆 − 5 − 2 3𝜆 = 0

⇒ 𝜆 = 2

⇒ 𝑄 ≡ 5,11 , 8

2𝜆 − 2, 4𝜆 − 5, 3𝜆

Equation of line: 𝑥−1
2

=
𝑦−3

4
=

𝑧−2

3
= 𝜆

𝑃𝑄 = ?

𝑃(3, 8, 2)
𝑄

𝑃𝑄 = 5 − 3 2 + 11 − 8 2 + 8 − 2 2 = 7

3𝑥 + 2𝑦 − 2𝑧 + 17 = 0
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D 7 unit

The distance of point  𝑃 3, 8, 2 from the line 𝑥−1
2

=
𝑦−3

4
=

𝑧−2

3

measured parallel to the plane 3𝑥 + 2𝑦 − 2𝑧 + 17 = 0 is:

A

B

C

2 unit

5 unit

3 unit



Return to Top

JEE Adv 2013

Equation of line: 𝑥+2
2

=
𝑦+1

−1
=

𝑧

3
= 𝜆

Any point 𝑃 on the given line is

2𝜆 − 2,−𝜆 − 1, 3𝜆

The point 𝑃 lies on the given plane for some 𝜆.

⇒ 2𝜆 − 2 + −𝜆 − 1 + 3𝜆 = 3

⇒ 4𝜆 = 6

⇒ 𝜆 =
3

2

⇒ 𝑃 ≡ 1,−
5

2
,
9

2

𝑃

2,−1, 3

A

B

D

C

Perpendiculars are drawn form points on the line 𝑥+2
2

=
𝑦+1

−1
=

𝑧

3
to the plane  

𝑥 + 𝑦 + 𝑧 = 3. The feet of perpendiculars lie on the line: 

𝑥

2
=

𝑦−1

−7
=

𝑧−2

5

𝑥

5
=

𝑦−1

8
=

𝑧−2

−13

𝑥

2
=

𝑦−1

3
=

𝑧−2

−5

𝑥

4
=

𝑦−1

3
=

𝑧−2

−7
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⇒ 𝑃 ≡ 1,−
5

2
,
9

2

The foot of the perpendicular from the point 
−2,−1, 0 on the plane is the point 𝑄.

𝑄 ≡ 0, 1, 2

𝑥2 − 𝑥1
𝑎

=
𝑦2 − 𝑦1

𝑏
=
𝑧2 − 𝑧1

𝑐
= −

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 + 𝑑

𝑎2 + 𝑏2 + 𝑐2

⇒
𝑥1+2

1
=

𝑥2+1

1
=

𝑥3−0

1
= −

1 −2 +1 −1 +1 0 −3

12+12+12
= 2

The direction ratio of 𝑃𝑄: −1,
7

2
, −

5

2
= 2,−7, 5

Hence, the equation of the line is 𝑥
2
=

𝑦−1

−7
=

𝑧−2

5

JEE Adv 2013

Perpendiculars are drawn form points on the line 𝑥+2
2

=
𝑦+1

−1
=

𝑧

3
to the plane  

𝑥 + 𝑦 + 𝑧 = 3. The feet of perpendiculars lie on the line: 

𝑃

2,−1, 3

A

B

D

C

𝑥

2
=

𝑦−1

−7
=

𝑧−2

5

𝑥

5
=

𝑦−1

8
=

𝑧−2

−13

𝑥

2
=

𝑦−1

3
=

𝑧−2

−5

𝑥

4
=

𝑦−1

3
=

𝑧−2

−7
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A

B

D

C

𝑥+2

9
=

𝑦−5

−1
=

𝑧

−3

𝑥−4

9
=

𝑦

−1
=

𝑧+3

−3

𝑥

9
=

𝑦

−1
=

𝑧

−3

𝑥−4

9
=

𝑦+1

−1
=

𝑧−7

−3

The image of the line 𝑥−1
9

=
𝑦−2

−1
=

𝑧+3

−3
in the plane 3𝑥 − 3𝑦 + 10𝑧 = 26 is:



Return to Top

Solution:
1, 2, −3

9,−1,−3

9,−1,−3

Line : 𝑥−1
9

=
𝑦−2

−1
=

𝑧+3

−3

Plane : 3𝑥 − 3𝑦 + 10𝑧 = 26

∴ Line is parallel to the plane.

9 ⋅ 3 + −1 ⋅ −3 + −3 ⋅ 10 = 0

Let image of point 𝑃 with respect to plane is 𝑄.

⇒ 𝑄 ≡ 4 ,−1 , 7

𝑥−1

3
=

𝑦−2

−3
=

𝑧+3

10

∴ Image: 𝑥−4
9

=
𝑦+1

−1
=

𝑧−7

−3

= −2
3 1 −3 2 +10 −3 −26

118

⇒
𝑥−1

3
=

𝑦−2

−3
=

𝑧+3

10
= 1

The image of the line 𝑥−1
9

=
𝑦−2

−1
=

𝑧+3

−3
in the plane 3𝑥 − 3𝑦 + 10𝑧 = 26 is:

𝑃

𝑄



Return to Top

A

B

D

C

𝑥+2

9
=

𝑦−5

−1
=

𝑧

−3

𝑥−4

9
=

𝑦

−1
=

𝑧+3

−3

𝑥

9
=

𝑦

−1
=

𝑧

−3

𝑥−4

9
=

𝑦+1

−1
=

𝑧−7

−3

The image of the line 𝑥−1
9

=
𝑦−2

−1
=

𝑧+3

−3
in the plane 3𝑥 − 3𝑦 + 10𝑧 = 26 is:
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Angle between two planes:

Let equations of planes be:  

Angle between planes is same as angle 
between their normals

and

Let angle between planes is 𝜃, then

cos𝜃 =
𝑎1𝑎2+𝑏1𝑏2+𝑐1𝑐2

𝑎1
2+𝑏1

2+𝑐1
2 𝑎2

2+𝑏2
2+𝑐2

2

(𝑖) Planes are perpendicular, if

(𝑖𝑖) Planes are parallel, if

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 = 0

𝑎1

𝑎2
=

𝑏1

𝑏2
=

𝑐1

𝑐2

𝜃

𝜃

𝑛1
𝑛2

90 − 𝜃
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The direction ratios of normal to the plane through the points 
0, −1, 0 and 0, 0, 1 and making  an angle  𝜋

4
with the plane 

𝑦 − 𝑧 + 5 = 0 are:

Let equation of plane be 𝑎 𝑥 − 0 + 𝑏 𝑦 + 1 + 𝑐 𝑧 − 0 = 0

passes through 0, 0, 1

⇒ 𝑏 + 𝑐 = 0

cos
𝜋

4
= ෞ𝑛1 ⋅ ෞ𝑛2 =

𝑏−𝑐

𝑎2 + 𝑏2 + 𝑐2⋅ 2
=

1

2

⇒ 𝑎2 + 𝑏2 + 𝑐2 = 𝑏 − 𝑐 = 2𝑏

⇒ 𝑎2 + 2𝑏2 = 4𝑏2

⇒ 𝑎 = ± 2𝑏 and 𝑐 = −𝑏

Direction ratios: 2, 1, −1 or 2, 2, − 2

Solution:

A

B

D

C

2 3, 1, −1

2, 2, − 2

2, 1, −1

2,−1, 1
𝜋

4

0,−1,0 0, 0, 1

0, 1, −1

𝑛1

𝑛2

⇒ 𝑎 0 + 𝑏 1 + 𝑐 1 = 0

𝑛1 = 𝑎 Ƹ𝑖 + 𝑏 Ƹ𝑗 + 𝑐 ෠𝑘

𝑛2 = Ƹ𝑗 − ෠𝑘
𝜃 =

𝜋

4
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A

B

D

C

cos−1
19

35

cos−1
17

31

cos−1
9

35

cos−1
7

31

A tetrahedron has vertices 𝑃 1, 2, 1 , 𝑄 2, 1, 3 , 𝑅 −1, 1, 2 and 
𝑂 0, 0, 0 . The angle between the faces 𝑂𝑃𝑄 and 𝑃𝑄𝑅 is: 

JEE Main Jan 2019
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Solution:

A tetrahedron has vertices 𝑃 1, 2, 1 , 𝑄 2, 1, 3 , 𝑅 −1, 1, 2 and 
𝑂 0, 0, 0 . The angle between the faces 𝑂𝑃𝑄 and 𝑃𝑄𝑅 is: 

JEE Main Jan 2019

Angle between the faces 𝑂𝑃𝑄 & 𝑃𝑄𝑅 is same as angle 
between their normal. 

Ԧ𝑏 = −ƶ𝑖 + ƶ𝑗 − 2෠𝑘 Ԧ𝑎 = −3ƶ𝑖 − ෠𝑘

𝑛1 =
ƶ𝑖 ƶ𝑗 ෠𝑘
−3 0 −1
−1 1 −2

Let normal vector to the face 𝑃𝑄𝑅 = 𝑛1

⇒ 𝑛1 = ƶ𝑖 − 5ƶ𝑗 − 3෠𝑘

Ԧ𝑐 = ƶ𝑖 + 2ƶ𝑗 + ෠𝑘

Ԧ𝑑 = 2ƶ𝑖 + ƶ𝑗 + 3෠𝑘

Let normal vector to the face 𝑂𝑃𝑄 = 𝑛2

𝑅𝑄

𝑃

𝑏

Ԧ𝑎

𝑂

Ԧ𝑐

Ԧ𝑑
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Solution:

A tetrahedron has vertices 𝑃 1, 2, 1 , 𝑄 2, 1, 3 , 𝑅 −1, 1, 2 and 
𝑂 0, 0, 0 . The angle between the faces 𝑂𝑃𝑄 and 𝑃𝑄𝑅 is: 

JEE Main Jan 2019
Ԧ𝑐 = ƶ𝑖 + 2ƶ𝑗 + ෠𝑘

Ԧ𝑑 = 2ƶ𝑖 + ƶ𝑗 + 3෠𝑘

𝑛2 =
ƶ𝑖 ƶ𝑗 ෠𝑘
1 2 1
2 1 3

⇒ 𝑛2 = 5ƶ𝑖 − ƶ𝑗 − 3෠𝑘

𝜃 = cos−1
ƶ𝑖− 5 ƶ𝑗− 3෠𝑘 ⋅ 5ƶ𝑖− ƶ𝑗− 3෠𝑘

35⋅ 35

⇒ 𝜃 = cos−1
19

35

cos𝜃 =
𝑛1⋅𝑛2

𝑛1 𝑛2

𝑅𝑄

𝑃

𝑏

Ԧ𝑎

𝑂

Ԧ𝑐

Ԧ𝑑
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A tetrahedron has vertices 𝑃 1, 2, 1 , 𝑄 2, 1, 3 , 𝑅 −1, 1, 2 and 
𝑂 0, 0, 0 . The angle between the faces 𝑂𝑃𝑄 and 𝑃𝑄𝑅 is: 

JEE Main Jan 2019
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D cos−1
19

35

A tetrahedron has vertices 𝑃 1, 2, 1 , 𝑄 2, 1, 3 , 𝑅 −1, 1, 2 and 
𝑂 0, 0, 0 . The angle between the faces 𝑂𝑃𝑄 and 𝑃𝑄𝑅 is: 

JEE Main Jan 2019

A

B

C

cos−1
17

31

cos−1
9

35

cos−1
7

31
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Equation of angle bisector of  two planes:

Equation of angle bisector planes:  

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= ±
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2

Let equation of planes be:  

and

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑃2

𝑃1
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Equation of angle bisector of  two planes containing a point:

(𝑖) If sign of 𝑎1𝛼 + 𝑏1𝛽 + 𝑐1𝛾 − 𝑑1
and 𝑎2𝛼 + 𝑏2𝛽 + 𝑐2𝛾 − 𝑑2 is same, then equation of 
bisector containing point 𝛼, 𝛽, 𝛾 will be : 

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= +
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2

Let equation of planes be:  

and

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑃2

𝑃1
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Equation of angle bisector of  two planes containing a point:

(𝑖𝑖) If sign of 𝑎1𝛼 + 𝑏1𝛽 + 𝑐1𝛾 − 𝑑1 and
𝑎2𝛼 + 𝑏2𝛽 + 𝑐2𝛾 − 𝑑2 is opposite, then equation of 
bisector containing point 𝛼, 𝛽, 𝛾 will be : 

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= −
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2

Let equation of planes be:  

and

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑃2

𝑃1
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Equation of acute/obtuse angle bisector of two planes:

Let equation of planes be:  

and

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑃2

𝑃1

𝑖 If  𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 > 0,

Then equation of acute angle bisector

and equation of obtuse angle bisector

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= −
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= +
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2
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Equation of acute/obtuse angle bisector of two planes:

Let equation of planes be:  

and

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑃2

𝑃1

𝑖𝑖 If  𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2 < 0,

Then equation of acute angle bisector

and equation of obtuse angle bisector

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= −
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2

𝑎1𝑥+𝑏1𝑦+𝑐1𝑧−𝑑1

𝑎1
2+𝑏1

2+𝑐1
2

= +
𝑎2𝑥+𝑏2𝑦+𝑐2𝑧−𝑑2

𝑎2
2+𝑏2

2+𝑐2
2
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Distance between parallel Planes:

Let equation of planes be:  𝑃1: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑1 and 𝑃2: 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 = 𝑑2

𝐷 =
𝑎1𝑥0 + 𝑏1𝑦0 + 𝑐1𝑧0 − 𝑑1

𝑎1
2 + 𝑏1

2 + 𝑐1
2

𝑎𝑥0 + 𝑏𝑦0 + 𝑐𝑧0 = 𝑑2

𝐷 =
𝑑2 − 𝑑1

𝑎2 + 𝑏2 + 𝑐2

Let 𝐴 lies on 𝑃2

𝑃2

𝑃1

𝐴(𝑥0, 𝑦0, 𝑧0)

𝐷
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Solution: JEE Main Apr 2019

If the plane, 2𝑥 − 𝑦 + 2𝑧 + 3 = 0 has the distances 1
3

and 2
3

units 
from the planes 4𝑥 − 2𝑦 + 4𝑧 + 𝜆 = 0 and 2𝑥 − 𝑦 + 2𝑧 + 𝜇 = 0,

respectively, then the maximum value of 𝜆 + 𝜇 is equal to: 

𝑃0: 2𝑥 − 𝑦 + 2𝑧 + 3 = 0

𝑃1: 2𝑥 − 𝑦 + 2𝑧 +
𝜆

2
= 0

𝑃2: 2𝑥 − 𝑦 + 2𝑧 + 𝜇 = 0

𝐷 =
𝑑2 − 𝑑1

𝑎2 + 𝑏2 + 𝑐2

1

3
=

𝜆

2
−3

22+(−1)2+(2)2

2

3
=

𝜇−3

22+(−1)2+(2)2

𝑃2 𝑃1 𝑃0 𝑃1 𝑃2

2

3

1

3

1

3

2

3

A

B

D

C

15

13

5

9
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Solution: JEE Main Apr 2019

If the plane, 2𝑥 − 𝑦 + 2𝑧 + 3 = 0 has the distances 1
3

and 2
3

units 
from the planes 4𝑥 − 2𝑦 + 4𝑧 + 𝜆 = 0 and 2𝑥 − 𝑦 + 2𝑧 + 𝜇 = 0,

respectively, then the maximum value of 𝜆 + 𝜇 is equal to: 

⇒ 1 =
𝜆

2
− 3

⇒ 𝜆 = 8 , 4

⇒ 2 = 𝜇 − 3

⇒ 𝜇 = 1 , 5

𝜆 + 𝜇 𝑚𝑎𝑥 = 13

2

3
=

𝜇−3

22+(−1)2+(2)2

1

3
=

𝜆

2
−3

22+(−1)2+(2)2

2

3
=

𝜇 − 3

22 + (−1)2+(2)2

𝜆 + 𝜇 max =?

𝑃2 𝑃1 𝑃0 𝑃1 𝑃2

2

3

1

3

1

3

2

3

A

B

D

C

15

13

5

9
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If the distance between the plane, 23𝑥 − 10𝑦 − 2𝑧 + 48 = 0 and 
the plane containing the lines  𝑥+1

2
=

𝑦−3

4
=

𝑧+1

3
and 𝑥+3

2
=

𝑦+2

6

=
𝑧−1

𝜆
𝜆 ∈ ℝ is equal to 𝑘

633
, then 𝑘 is equal to: 
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Solution:
JEE Main Jan 2020

If the distance between the plane, 23𝑥 − 10𝑦 − 2𝑧 + 48 = 0 and 
the plane containing the lines  𝑥+1

2
=

𝑦−3

4
=

𝑧+1

3
and 𝑥+3

2
=

𝑦+2

6

=
𝑧−1

𝜆
𝜆 ∈ ℝ is equal to 𝑘

633
, then 𝑘 is equal to: 

Required distance =

𝐷 =
23 −1 −10 3 −2 −1 +48

232+(−10)2+(−2)2

⇒ 𝐷 =
3

633

∴ 𝑘 = 3

Perpendicular distance between plane 
23𝑥 − 10𝑦 − 2𝑧 + 48 = 0 either from point 
(−1, 3,−1) or (−3,−2, 1)

=
3

529+100+4

𝐷

𝑃

𝐷

𝐿1

𝐿2



Return to Top

A

B

D

C

(2,−4, 1)

(1,−4, 1)

(2,4, 1)

(1,4, −1)

JEE Main Apr 2019

A plane which bisects the angle between the two planes 2𝑥 − 𝑦
+ 2𝑧 − 4 = 0 and 𝑥 + 2𝑦 + 2𝑧 − 2 = 0, passes through the point: 



Return to Top

D (2,−4,1)

JEE Main Apr 2019

A plane which bisects the angle between the two planes 2𝑥 − 𝑦
+ 2𝑧 − 4 = 0 and 𝑥 + 2𝑦 + 2𝑧 − 2 = 0, passes through the point: 

A

B

C

(1,−4, 1)

(2,4, 1)

(1,4, −1)



Return to TopReturn to Top

Family of planes and 

equation of sphere

Session 10

Return to Top



Return to Top

Family of Planes : 

Let equation of planes be:  

and

Equation of a plane passing through the line of intersection of non –

parallel planes 𝑃1 and 𝑃2, is:

So, equation of required plane: 

𝑃1: 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑃2: 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 − 𝑑1 + 𝜆 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 − 𝑑2 = 0

𝑃1 + 𝜆𝑃2 = 0, 𝜆 𝜖 𝑅

𝑃1

𝑃2



Return to Top

If the equation of the plane passing through the line of intersection of 
the planes 2𝑥 − 7𝑦 + 4𝑧 − 3 = 0, 3𝑥 − 5𝑦 + 4𝑧 + 11 = 0 and the point (−2, 1, 3)
is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 7 = 0, then the value of 2𝑎 + 𝑏 + 𝑐 − 7 is:    

JEE MAINS Mar 2021



Return to Top

If the equation of the plane passing through the line of intersection of 
the planes 2𝑥 − 7𝑦 + 4𝑧 − 3 = 0, 3𝑥 − 5𝑦 + 4𝑧 + 11 = 0 and the point (−2, 1, 3)
is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 7 = 0, then the value of 2𝑎 + 𝑏 + 𝑐 − 7 is:    

JEE MAINS Mar 2021

Required plane has equation: 

⇒ 𝜆 =
1

6

2𝑥 − 7𝑦 + 4𝑧 − 3 + 𝜆 3𝑥 − 5𝑦 + 4𝑧 + 11 = 0

It passes through the point (−2 , 1 , 3),  

(−2) 2 + 3𝜆 − 1 7 + 5𝜆 + 12 1 + 𝜆 − 3 + 11𝜆 = 0

𝑃1

𝑃2
−2,1,3

𝑥 2 + 3𝜆 − 𝑦 7 + 5𝜆 + 4𝑧 1 + 𝜆 − 3 + 11𝜆 = 0⋯(𝑖)

Solution:



Return to Top

If the equation of the plane passing through the line of intersection of 
the planes 2𝑥 − 7𝑦 + 4𝑧 − 3 = 0, 3𝑥 − 5𝑦 + 4𝑧 + 11 = 0 and the point (−2, 1, 3)
is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 7 = 0, then the value of 2𝑎 + 𝑏 + 𝑐 − 7 is:    

JEE MAINS Mar 2021

Solution:

𝑃1

𝑃2
−2,1,3𝑥 2 + 3𝜆 − 𝑦 7 + 5𝜆 + 4𝑧 1 + 𝜆 − 3 + 11𝜆 = 0⋯(𝑖)

𝑎 = 15,

⇒ 2𝑎 + 𝑏 + 𝑐 − 7

𝑏 = −47, 𝑐 = 28

⇒ 𝜆 =
1

6

Substituting in (𝑖)

Thus, the plane: 15𝑥 − 47𝑦 + 28𝑧 − 7 = 0

= 4



Return to Top

If the equation of the plane passing through the line of intersection of 
the planes 2𝑥 − 7𝑦 + 4𝑧 − 3 = 0, 3𝑥 − 5𝑦 + 4𝑧 + 11 = 0 and the point (−2, 1, 3)
is 𝑎𝑥 + 𝑏𝑦 + 𝑐𝑧 − 7 = 0, then the value of 2𝑎 + 𝑏 + 𝑐 − 7 is:    

JEE MAINS Mar 2021



Return to Top

If the equation of a plane 𝑃, passing through the intersection of the 
planes, 𝑥 + 4𝑦 − 𝑧 + 7 = 0 and 3𝑥 + 𝑦 + 5𝑧 − 8 = 0 is 𝑎𝑥 + 𝑏𝑦 + 6𝑧 − 15 = 0,

for some 𝑎, 𝑏 ∈ ℝ, then the distance of the point (3, 2, −1) form the 
plane 𝑃 is: 

JEE MAINS Sept 2020

Required plane has equation: 

𝑥 + 4𝑦 − 𝑧 + 7 + 𝜆 3𝑥 + 𝑦 + 5𝑧 − 8 = 0

𝑥 1 + 3𝜆 + 𝑦 4 + 𝜆 + 𝑧 −1 + 5𝜆 + 7 − 8𝜆 = 0 ⋯(𝑖)

Comparing with the given equation:

6

−1+5𝜆
=

−15

7−8𝜆

𝑎𝑥 + 𝑏𝑦 + 6𝑧 − 15 = 0

⇒ 14 − 16𝜆 = 5 − 25𝜆

⇒ 9𝜆 = −9 ⇒ 𝜆 = −1

𝑃1

𝑃2 𝐷 (3, 2, −1)

𝑃
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If the equation of a plane 𝑃, passing through the intersection of the 
planes, 𝑥 + 4𝑦 − 𝑧 + 7 = 0 and 3𝑥 + 𝑦 + 5𝑧 − 8 = 0 is 𝑎𝑥 + 𝑏𝑦 + 6𝑧 − 15 = 0,

for some 𝑎, 𝑏 ∈ ℝ, then the distance of the point (3, 2, −1) form the 
plane 𝑃 is: 

JEE MAINS Sept 2020

𝑃1

𝑃2 𝐷 (3, 2, −1)

𝑃

Substituting in (𝑖)

Thus, the plane: −2𝑥 + 3𝑦 − 6𝑧 + 15 = 0

D =
−6 + 6 + 6 + 15

−2 2 + 32 + (−6)2

= 3

𝑥 1 + 3𝜆 + 𝑦 4 + 𝜆 + 𝑧 −1 + 5𝜆 + 7 − 8𝜆 = 0 ⋯(𝑖)

⇒ 𝜆 = −1

=
21

49
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The vector equation of the plane through the line of intersection of the 

planes 𝑥 + 𝑦 + 𝑧 − 1 = 0 and 2𝑥 + 3𝑦 + 4𝑧 − 5 = 0 which is perpendicular to 

the plane 𝑥 − 𝑦 + 𝑧 = 0, is: 
JEE MAINS April 2019

A

B

D

C

Ԧ𝑟 ⋅ ƶ𝑖 − ෠𝑘 − 2 = 0

Ԧ𝑟 × ƶ𝑖 + ෠𝑘 + 2 = 0

Ԧ𝑟 ⋅ ƶ𝑖 − ෠𝑘 + 2 = 0

Ԧ𝑟 × ƶ𝑖 + ෠𝑘 − 2 = 0



Return to Top

Solution:

The vector equation of the plane through the line of intersection of the 

planes 𝑥 + 𝑦 + 𝑧 − 1 = 0 and 2𝑥 + 3𝑦 + 4𝑧 − 5 = 0 which is perpendicular to 

the plane 𝑥 − 𝑦 + 𝑧 = 0, is: 
JEE MAINS April 2019

Required plane has equation: 

𝑥 + 𝑦 + 𝑧 − 1 + 𝜆 2𝑥 + 3𝑦 + 4𝑧 − 5 = 0

Since it is perpendicular to the plane:

1 1 + 2𝜆 − 1 + 3𝜆 + 1 + 4𝜆 = 0

𝑥 − 𝑦 + 𝑧 = 0

⇒ 𝜆 = −
1

3

𝑥 − 𝑦 + 𝑧 = 0

𝑥 + 𝑦 + 𝑧 − 1 = 0

𝑥 + 3𝑦 + 4𝑧 − 5 = 0

𝑥 1 + 2𝜆 + 𝑦 1 + 3𝜆 + 𝑧 1 + 4𝜆 − 1 − 5𝜆 = 0⋯(𝑖)
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The vector equation of the plane through the line of intersection of the 

planes 𝑥 + 𝑦 + 𝑧 − 1 = 0 and 2𝑥 + 3𝑦 + 4𝑧 − 5 = 0 which is perpendicular to 

the plane 𝑥 − 𝑦 + 𝑧 = 0, is: 
JEE MAINS April 2019

𝑥 − 𝑦 + 𝑧 = 0

𝑥 + 𝑦 + 𝑧 − 1 = 0

𝑥 + 3𝑦 + 4𝑧 − 5 = 0

𝑥 1 + 2𝜆 + 𝑦 1 + 3𝜆 + 𝑧 1 + 4𝜆 − 1 − 5𝜆 = 0⋯(𝑖)

Substituting in (𝑖)

⇒ 𝜆 = −
1

3

𝑥

3
−

𝑧

3
+

2

3
= 0

Thus, vector equation of plane: Ԧ𝑟 ⋅ ƶ𝑖 − ෠𝑘 + 2 = 0

⇒ 𝑥 − 𝑧 + 2 = 0

Solution:
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The vector equation of the plane through the line of intersection of the 

planes 𝑥 + 𝑦 + 𝑧 − 1 = 0 and 2𝑥 + 3𝑦 + 4𝑧 − 5 = 0 which is perpendicular to 

the plane 𝑥 − 𝑦 + 𝑧 = 0, is: 
JEE MAINS April 2019

A

B

D

Ԧ𝑟 ⋅ ƶ𝑖 − ෠𝑘 − 2 = 0

Ԧ𝑟 × ƶ𝑖 + ෠𝑘 + 2 = 0

Ԧ𝑟 ⋅ ƶ𝑖 − ෠𝑘 + 2 = 0

Ԧ𝑟 × ƶ𝑖 + ෠𝑘 − 2 = 0

C



Return to Top

Non–Symmetrical Form of Line 

Let equation of planes be:  

and

A straight line in space is characterized by intersection 

of two planes, which are not parallel.

𝑃1: 𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 𝑑1

𝑃2: 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 𝑑2

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 − 𝑑1 = 0 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 − 𝑑2

(Non – symmetric form)

Equation of line of intersection of planes 𝑃1 and 𝑃2, is: 

𝑃1

𝑃2

𝑃1

𝑃2

Line of intersection

Line of intersection
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Non–Symmetrical Form of Line 

To convert to symmetric form of line: 

Step 1 : Get direction ratios:

Let 𝑎, 𝑏, 𝑐 be the direction ratios

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 − 𝑑1 = 0 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 − 𝑑2

(Non – symmetric form)

Equation of line of intersection of planes 𝑃1 and 𝑃2, is: 

Line of intersection lies on both 𝑃1 & 𝑃2, then

𝑎, 𝑏, 𝑐 =

ƶ𝑖 ƶ𝑗 ෠𝑘
𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2

𝑃1

𝑃2 Line of intersection



Return to Top

Non–Symmetrical Form of Line 

Step 2 : Point on the line: If 𝑎 ≠ 0, take a point on 𝑦 − 𝑧 plane

i.e. 𝑃(0, 𝑦1, 𝑧1), and substitute it in the equation of planes

So, solving the simultaneous equations

𝑏1𝑦1 + 𝑐1𝑧1 = 𝑑1 𝑏2𝑦1 + 𝑐2𝑧1 = 𝑑2 , to get point 𝑃.

To convert to symmetric form of line: 

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 − 𝑑1 = 0 = 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 − 𝑑2

(Non – symmetric form)

Equation of line of intersection of planes 𝑃1 and 𝑃2, is: 

𝑃1

𝑃2 Line of intersection

Step 1 : Get direction ratios:



Return to Top

Reduce the equation of line 4𝑥 + 4𝑦 − 5𝑧 − 12 = 0 & 8𝑥 + 12𝑦 − 13𝑧 − 32 = 0

in symmetric form: 



Return to Top

Reduce the equation of line 4𝑥 + 4𝑦 − 5𝑧 − 12 = 0 & 8𝑥 + 12𝑦 − 13𝑧 − 32 = 0

in symmetric form: 

Solution:

Line of intersection of planes: 

Direction ratio: 𝑎, 𝑏, 𝑐

Putting 𝑧 = 0, in 𝑖 & 𝑖𝑖

4𝑥 + 4𝑦 − 5𝑧 − 12 = 0⋯(𝑖)

8𝑥 + 12𝑦 − 13𝑧 − 32 = 0⋯(𝑖𝑖)

Point on the line:

𝑥 + 𝑦 = 3

2𝑥 + 3𝑦 = 8

ƶ𝑖 ƶ𝑗 ෠𝑘
4 4 −5
8 12 −13

= 8ƶ𝑖 + 12 ƶ𝑗 + 16෠𝑘

= 2, 3, 4

𝑥 = 1, 𝑦 = 2, 𝑧 = 0
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Reduce the equation of line 4𝑥 + 4𝑦 − 5𝑧 − 12 = 0 & 8𝑥 + 12𝑦 − 13𝑧 − 32 = 0

in symmetric form: 

Solution:

Thus, equation of line:
𝑥−1

2
=

𝑦−2

3
=

𝑧

4

Point on the line: 𝑥 = 1, 𝑦 = 2, 𝑧 = 0

Direction ratio: 𝑎, 𝑏, 𝑐 = 2, 3, 4



Return to Top

A plane 𝑃 contains the line 𝑥 + 2𝑦 + 3𝑧 + 1 = 0 = 𝑥 − 𝑦 − 𝑧 − 6, and is 

perpendicular to the plane −2𝑥 + 𝑦 + 𝑧 + 8 = 0. Then which of the 

following points lies on 𝑃?

𝟏, 𝟎, 𝟏A

𝟐,−𝟏, 𝟏B

𝟎, 𝟏, 𝟏C

−𝟏, 𝟏, 𝟐D



Return to Top

A plane 𝑃 contains the line 𝑥 + 2𝑦 + 3𝑧 + 1 = 0 = 𝑥 − 𝑦 − 𝑧 − 6, and is 

perpendicular to the plane −2𝑥 + 𝑦 + 𝑧 + 8 = 0. Then which of the 

following points lies on 𝑃?

Solution:

Required plane is a plane passing through 

the line of intersection of planes

𝑃1 ≡ 𝑥 + 2𝑦 + 3𝑧 + 1 = 0

And 𝑃2 ≡ 𝑥 − 𝑦 − 𝑧 − 6 = 0

Its equation: 𝑃1 + 𝜆𝑃2 = 0

⇒ 𝑥 + 2𝑦 + 3𝑧 + 1 + 𝜆 𝑥 − 𝑦 − 𝑧 − 6 = 0

⇒ 1+ 𝜆 𝑥 + 2 − 𝜆 𝑦 + 3 − 𝜆 𝑧 + 1 − 6𝜆 = 0

∵ Perpendicular to −2𝑥 + 𝑦 + 𝑧 + 8 = 0

∴ −2 1 + 𝜆 + 2 − 𝜆 + 3 − 𝜆 = 0

𝟏, 𝟎, 𝟏A

𝟐,−𝟏, 𝟏B

𝟎, 𝟏, 𝟏C

−𝟏, 𝟏, 𝟐D



Return to Top

A plane 𝑃 contains the line 𝑥 + 2𝑦 + 3𝑧 + 1 = 0 = 𝑥 − 𝑦 − 𝑧 − 6, and is 

perpendicular to the plane −2𝑥 + 𝑦 + 𝑧 + 8 = 0. Then which of the 

following points lies on 𝑃?

Solution:

∴ −2 1 + 𝜆 + 2 − 𝜆 + 3 − 𝜆 = 0

⇒ 𝜆 =
3

4

⇒ Required plane is 7𝑥 + 5𝑦 + 9𝑧 = 14

Checking the option show that 

0, 1, 1 Satisfies it.

𝟏, 𝟎, 𝟏A

𝟐,−𝟏, 𝟏B

𝟎, 𝟏, 𝟏C

−𝟏, 𝟏, 𝟐D
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A plane 𝑃 contains the line 𝑥 + 2𝑦 + 3𝑧 + 1 = 0 = 𝑥 − 𝑦 − 𝑧 − 6, and is 

perpendicular to the plane −2𝑥 + 𝑦 + 𝑧 + 8 = 0. Then which of the 

following points lies on 𝑃?

A 𝟏, 𝟎, 𝟏

B 𝟐,−𝟏, 𝟏

D −𝟏, 𝟏, 𝟐

𝟎, 𝟏, 𝟏C
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The shortest distance between the lines 𝑥−1
0

=
𝑦+1

−1
=

𝑧

1
and

𝑥 + 𝑦 + 𝑧 + 1 = 0 & 2𝑥 − 𝑦 + 𝑧 + 3 = 0 is:  

Solution:

JEE MAINS Sept 2020

Line of intersection of planes: 

Direction ratio: 𝑎, 𝑏, 𝑐

Putting 𝑧 = 0, in 𝑖 & 𝑖𝑖

𝑥 + 𝑦 + 𝑧 + 1 = 0 ⋯(𝑖)

2𝑥 − 𝑦 + 𝑧 + 3 = 0 ⋯(𝑖𝑖)

𝑥 + 𝑦 + 1 = 0

2𝑥 − 𝑦 + 3 = 0

ƶ𝑖 ƶ𝑗 ෠𝑘
1 1 1
2 −1 1

= 2ƶ𝑖 + ƶ𝑗 − 3෠𝑘

= 2, 1,−3

A

B

D

C

1

2

1

1

3

1

2
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A

B

D

C

1

2

1

1

3

1

2

Solution:

𝑥 + 𝑦 + 1 = 0 2𝑥 − 𝑦 + 3 = 0

Point on the line: 𝑥 = −
4

3
, 𝑦 =

1

3
, 𝑧 = 0

Direction ratio: 𝑎, 𝑏, 𝑐 = 2, 1,−3

Thus, equation of line :
𝑥 +

4
3

2
=
𝑦 −

1
3

1
=

𝑧

−3

JEE MAINS Sept 2020

The shortest distance between the lines 𝑥−1
0

=
𝑦+1

−1
=

𝑧

1
and

𝑥 + 𝑦 + 𝑧 + 1 = 0 & 2𝑥 − 𝑦 + 𝑧 + 3 = 0 is:  



Return to Top

Solution:

𝑥 +
4

3

2
=

𝑦 −
1

3

1
=

𝑧

−3
S.D. =

𝑏 − 𝑎 . 𝑐 × 𝑑

𝑐 × 𝑑

𝑥−1

0
=

𝑦+1

−1
=

𝑧

1

𝑐 × 𝑑 =
ƶ𝑖 ƶ𝑗 ෠𝑘
2 1 −3
0 −1 1

= −2ƶ𝑖 − 2 ƶ𝑗 − 2෠𝑘

Shortest distance =

=
1

3

−2 2 + (−2)2+(−2)2

7

3
−

4

3
0

2 1 −3
0 −1 1

=

7

3
1−3 +

4

3
2

12

A

B

D

C

1

2

1

1

3

1

2

JEE MAINS Sept 2020

The shortest distance between the lines 𝑥−1
0

=
𝑦+1

−1
=

𝑧

1
and

𝑥 + 𝑦 + 𝑧 + 1 = 0 & 2𝑥 − 𝑦 + 𝑧 + 3 = 0 is:  



Return to Top

If for some 𝛼 and 𝛽 in ℝ, the intersection of the following three planes 

𝑥 + 4𝑦 − 2𝑧 − 1 = 0, 𝑥 + 7𝑦 − 5𝑧 − 𝛽 = 0 and 𝑥 + 5𝑦 + 𝛼𝑧 = 5 is a line in 

ℝ3, then 𝛼 + 𝛽 is: 
JEE MAINS Jan 2020

A

B

D

C

0

−10

10

2
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Solution:

Plane intersect in a line:  ⇒ there should be infinite solution of the given 

system of equations for infinite solutions.

∆ =
1 4 −2
1 7 −5
1 5 𝛼

Also, ∆1=
1 4 −2
𝛽 7 −5
5 5 −3

∴ 𝛼 + 𝛽 = 10

= 0 ⇒ 𝛼 = −3

= 0

⇒ 𝛽 = 13

If for some 𝛼 and 𝛽 in ℝ, the intersection of the following three planes 

𝑥 + 4𝑦 − 2𝑧 − 1 = 0, 𝑥 + 7𝑦 − 5𝑧 − 𝛽 = 0 and 𝑥 + 5𝑦 + 𝛼𝑧 = 5 is a line in 

ℝ3, then 𝛼 + 𝛽 is: 
JEE MAINS Jan 2020



Return to Top

If for some 𝛼 and 𝛽 in ℝ, the intersection of the following three planes 

𝑥 + 4𝑦 − 2𝑧 − 1 = 0, 𝑥 + 7𝑦 − 5𝑧 − 𝛽 = 0 and 𝑥 + 5𝑦 + 𝛼𝑧 = 5 is a line in 

ℝ3, then 𝛼 + 𝛽 is: 
JEE MAINS Jan 2020

A

B

D

0

−10

2

C 10
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Sphere 

Center radius form: 𝑥 − 𝑎 2 + (𝑦 − 𝑏)2+(𝑧 − 𝑐)2= 𝑟2

General form: 𝑥2 + 𝑦2 + 𝑧2 + 2𝑢𝑥 + 2𝑣𝑦 + 2𝑤𝑧 + 𝑑 = 0

Center ≡ −𝑢,−𝑣,−𝑤

Diametric form:

𝑥 − 𝑥1 𝑥 − 𝑥2 + 𝑦 − 𝑦1 𝑦 − 𝑦2 + 𝑧 − 𝑧1 𝑧 − 𝑧2 = 0

Radius = 𝑢2 + 𝑣2 +𝑤2 − 𝑑

𝐶 𝑎, 𝑏, 𝑐

𝑃 𝑥, 𝑦, 𝑧

𝑟
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The equation of sphere having center at (1, 2, 3) and touching 

the plane 𝑥 + 2𝑦 + 3𝑧 = 0, is: 

Solution:

Radius = distance of center from the plane 

𝑟 =
1 + 4 + 9

12 + 22 + 32

So, equation: 𝑥 − 𝑎 2 + (𝑦 − 𝑏)2+(𝑧 − 𝑐)2= 𝑟2

𝑥 − 1 2 + (𝑦 − 2)2+(𝑧 − 3)2= 14

⇒ 𝑟 = 14

𝐶 1,2,3
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Plane 𝑥 + 2𝑦 − 𝑧 = 4, cuts the sphere  𝑥2 + 𝑦2 + 𝑧2 − 𝑥 + 𝑧 − 2 = 0. Then the 

radius of the circle formed is:

A

B

D

C

1 unit

4 units

3 units

2 units
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Plane 𝑥 + 2𝑦 − 𝑧 = 4, cuts the sphere  𝑥2 + 𝑦2 + 𝑧2 − 𝑥 + 𝑧 − 2 = 0. Then the 

radius of the circle formed is:

A

B

D

C

4 units

3 units

2 units

1 unit
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Miscellaneous Questions

Session 11

Return to Top
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The number of 3 × 3 matrices 𝐴 whose entries are either 0 or 1

and for which the system 𝐴
𝑥
𝑦
𝑧

=
1
0
0

has exactly two distinct 

solutions :

A 0

IIT-JEE 2010

B 168

C 2

D 29 − 1

Solution:

Three planes can never intersect at exactly two points .

𝐴
𝑥
𝑦
𝑧

=
1
0
0

Let the matrix 𝐴 =

𝑎1 𝑏1 𝑐1
𝑎2 𝑏2 𝑐2
𝑎3 𝑏3 𝑐3

𝑎1𝑥 + 𝑏1𝑦 + 𝑐1𝑧 = 1

⇒ 𝑎2𝑥 + 𝑏2𝑦 + 𝑐2𝑧 = 0

𝑎3𝑥 + 𝑏3𝑦 + 𝑐3𝑧 = 0
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If the distance of the point 𝑃(1 ,−2 , 1) from the plane 𝑥 + 2𝑦 − 2𝑧 = 𝛼, 

where 𝛼 > 0 , is 5 , then the foot of perpendicular from 𝑃 to the plane , is :

IIT-JEE 2010

A

B

D

C

4

3
, −

4

3
,
1

3

8

3
,
4

3
, −

7

3

1

3
,
2

3
,
10

3

2

3
, −

1

3
,
5

2
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𝑃(1,−2, 1)

𝐴

Normal1,2,−2

𝑥 + 2𝑦 − 2𝑧 = 𝛼 ; 𝛼 > 0

Distance of 𝑃 from the plane = 5

⇒
1 − 4 − 2 − 𝛼

12 + 22 + −2 2
= 5=

𝛼 + 5

3

⇒ 𝛼 = 10 , −20 (not possible)

∴ Equation of plane is: 𝑥 + 2𝑦 − 2𝑧 = 10

𝐷 =
𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

If the distance of the point 𝑃(1 ,−2 , 1) from the plane 𝑥 + 2𝑦 − 2𝑧 = 𝛼, 

where 𝛼 > 0 , is 5 , then the foot of perpendicular from 𝑃 to the plane , is :

IIT-JEE 2010
Let 𝐴 be the foot of the perpendicular.
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𝑃(1,−2, 1)

𝐴

Normal1,2,−2

𝑥 + 2𝑦 − 2𝑧 = 𝛼 ; 𝛼 > 0

Let the coordinates of 𝐴 is (𝑝, 𝑞, 𝑟)

∴
𝑝−1

1
=

𝑞+2

2
=

𝑟−1

−2
=

−(1−4−2−10)

9

⇒ 𝑝 =
8

3
, 𝑞 =

4

3
, 𝑟 = −

7

3

So , point 𝐴 ≡
8

3
,
4

3
, −

7

3

If the distance of the point 𝑃(1 ,−2 , 1) from the plane 𝑥 + 2𝑦 − 2𝑧 = 𝛼, 

where 𝛼 > 0 , is 5 , then the foot of perpendicular from 𝑃 to the plane , is :

IIT-JEE 2010
∴ Equation of plane is: 𝑥 + 2𝑦 − 2𝑧 = 10
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If the distance of the point 𝑃(1 ,−2 , 1) from the plane 𝑥 + 2𝑦 − 2𝑧 = 𝛼, 

where 𝛼 > 0 , is 5 , then the foot of perpendicular from 𝑃 to the plane , is :

IIT-JEE 2010

A

B

D

C

4

3
, −

4

3
,
1

3

8

3
,
4

3
, −

7

3

1

3
,
2

3
,
10

3

2

3
, −

1

3
,
5

2
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Non zero value of 𝑎 for which the lines 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 =

𝛼𝑥 + 𝑦 − 𝑧 + 2 and 𝑥 − 3𝑦 + 𝑧 = 0 = 𝑥 + 2𝑦 + 𝑧 + 1 are coplanar is :

∴ 𝑛1 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
2 −1 3
𝛼 1 −1

⇒ 𝑛1 = −2 Ƹ𝑖 + 2 + 3𝛼 Ƹ𝑗 + 2 + 𝛼 ෠𝑘

If 𝑥 = 0, 𝑦 − 𝑧 + 2 = 0

−𝑦 + 3𝑧 + 4 = 0

, 𝑦 = −5𝑧 = −3

∴ 𝐿1 ∶
𝑥

−2
=

𝑦+5

2+3𝛼
=

𝑧+3

2+𝛼

2𝑥 − 𝑦 + 3𝑧 + 4 = 0 = 𝛼𝑥 + 𝑦 − 𝑧 + 2

𝑥 − 3𝑦 + 𝑧 = 0 = 𝑥 + 2𝑦 + 𝑧 + 1
Coplanar, 𝛼 ≠ 0

2𝑥 − 𝑦 + 3𝑧 + 4 = 0

𝛼𝑥 + 𝑦 − 𝑧 + 2 = 0

Let 𝑛1 is along 𝐿1

A −2

B 4

C 6

D 0

Solution:
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Non zero value of 𝑎 for which the lines 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 =

𝛼𝑥 + 𝑦 − 𝑧 + 2 and 𝑥 − 3𝑦 + 𝑧 = 0 = 𝑥 + 2𝑦 + 𝑧 + 1 are coplanar is :

If 𝑥 = 0, 𝑦 − 𝑧 + 2 = 0

−𝑦 + 3𝑧 + 4 = 0

, 𝑦 = −5𝑧 = −3

∴ 𝐿1 ∶
𝑥

−2
=

𝑦+5

2+3𝛼
=

𝑧+3

2+𝛼

𝑥 − 3𝑦 + 𝑧 = 0

𝑥 + 2𝑦 + 𝑧 + 1 = 0 Let 𝑛2 is along 𝐿2

∴ 𝑛2 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
1 −3 1
1 2 1

⇒ 𝑛2 = −5 Ƹ𝑖 + 5෠𝑘

If 𝑥 = 0, −3𝑦 + 𝑧 = 0

2𝑦 + 𝑧 + 1 = 0

, 𝑧 = −
3

5
𝑦 = −

1

5

Solution:
A −2

B 4

C 6

D 0
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Non zero value of 𝑎 for which the lines 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 =

𝛼𝑥 + 𝑦 − 𝑧 + 2 and 𝑥 − 3𝑦 + 𝑧 = 0 = 𝑥 + 2𝑦 + 𝑧 + 1 are coplanar is :

If 𝑥 = 0, −3𝑦 + 𝑧 = 0

2𝑦 + 𝑧 + 1 = 0

, 𝑧 = −
3

5
𝑦 = −

1

5

∴ 𝐿2 ∶
𝑥

−1
=

𝑦+
1

5

0
=

𝑧+
3

5

1

For 2 lines to be coplanar,  𝑑1 𝑑2 𝐴𝐵 = 0

⇒

−1 0 1
−2 2 + 3𝛼 2 + 𝛼

0 −5 +
1

5
−3 +

3

5

= 0

𝐴 0,−
1

5
, 5

𝐵 0,−5,−3

⇒ −1 2 + 3𝛼 −
12

5
+ 2 + 𝛼

24

5
+ 1

48

5
= 0

Solution:
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Non zero value of 𝑎 for which the lines 2𝑥 − 𝑦 + 3𝑧 + 4 = 0 =

𝛼𝑥 + 𝑦 − 𝑧 + 2 and 𝑥 − 3𝑦 + 𝑧 = 0 = 𝑥 + 2𝑦 + 𝑧 + 1 are coplanar is :

For 2 lines to be coplanar,  𝑑1 𝑑2 𝐴𝐵 = 0

⇒

−1 0 1
−2 2 + 3𝛼 2 + 𝛼

0 −5 +
1

5
−3 +

3

5

= 0 𝐴 0,−
1

5
, 5

𝐵 0,−5,−3
⇒ −1 2 + 3𝛼 −

12

5
+ 2 + 𝛼

24

5
+ 1

48

5
= 0

⇒
12

5
2 + 3𝛼 − 4 − 2𝛼 + 4 = 0

⇒ 𝛼 = −2⇒
12

5
2 + 𝛼 = 0

Solution:
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𝑃 𝜆, 𝜆, 𝜆

𝑄
𝑅

𝐿1

𝐿2

Let 𝑄 ≡

Let 𝑅 ≡

𝑃𝑄 is perpendicular to the line :

𝜆 − 𝑞 + 𝜆 − 𝑞 1 + 𝜆 − 1 0 = 0

∴ 𝑄 ≡ 𝜆 , 𝜆 , 1

𝑞 , 𝑞 , 1

𝑥

1
=

𝑦

1
=

𝑧−1

0

⇒ 𝑞 = 𝜆

𝑟 ,−𝑟 ,−1

From the point 𝑃 𝜆 , 𝜆 , 𝜆 , perpendiculars 𝑃𝑄 and 𝑃𝑅 are drawn 
on the lines 𝑦 = 𝑥 , 𝑧 = 1 and 𝑦 = −𝑥 , 𝑧 = −1 . If 𝑃 is such that 
∠𝑄𝑃𝑅 is a right angle , then the :possible value(s) of 𝜆 is/are

JEE Advanced 2014

𝐿1 ∶ 𝑦 = 𝑥, 𝑧 = 1 𝐿2 ∶ 𝑦 = −𝑥, 𝑧 = −1
A 1

B 2

C 6

D 0

Solution:
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Let 𝑅 ≡

∴ 𝑄 ≡ 𝜆 , 𝜆 , 1

𝑟 , −𝑟 ,−1

𝑃𝑄 is perpendicular to the line :

𝑥

1
=

𝑦

−1
=

𝑧+1

0

𝜆 − 𝑟 − 𝜆 + 𝑟 1 + 𝜆 + 1 0 = 0

∴ 𝑅 ≡ 0 , 0 ,−1

⇒ 𝑟 = 0

𝑃𝑄 ⊥ 𝑃𝑅

From the point 𝑃 𝜆 , 𝜆 , 𝜆 , perpendiculars 𝑃𝑄 and 𝑃𝑅 are drawn 
on the lines 𝑦 = 𝑥 , 𝑧 = 1 and 𝑦 = −𝑥 , 𝑧 = −1 . If 𝑃 is such that 
∠𝑄𝑃𝑅 is a right angle , then the :possible value(s) of 𝜆 is/are

JEE Advanced 2014
A 1

B 2

C 6

D 0

𝑃 𝜆, 𝜆, 𝜆

𝑄
𝑅

𝐿1

𝐿2

𝐿1 ∶ 𝑦 = 𝑥, 𝑧 = 1 𝐿2 ∶ 𝑦 = −𝑥, 𝑧 = −1

Solution:
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∴ 𝑄 ≡ 𝜆 , 𝜆 , 1 ∴ 𝑅 ≡ 0 , 0 ,−1

𝑃𝑄 ⊥ 𝑃𝑅

⇒ 0 ⋅ 𝜆 − 0 + 0 ⋅ 𝜆 − 0 + 𝜆 + 1 𝜆 − 1 = 0

⇒ 𝜆2 − 1 = 0

⇒ 𝜆 = ±1

𝜆 = 1 is rejected as it will lie on the given line

∴ 𝜆 = −1

From the point 𝑃 𝜆 , 𝜆 , 𝜆 , perpendiculars 𝑃𝑄 and 𝑃𝑅 are drawn 
on the lines 𝑦 = 𝑥 , 𝑧 = 1 and 𝑦 = −𝑥 , 𝑧 = −1 . If 𝑃 is such that 
∠𝑄𝑃𝑅 is a right angle , then the :possible value(s) of 𝜆 is/are

JEE Advanced 2014
A 1

B 2

C 6

D 0

𝑃 𝜆, 𝜆, 𝜆

𝑄
𝑅

𝐿1

𝐿2

𝐿1 ∶ 𝑦 = 𝑥, 𝑧 = 1 𝐿2 ∶ 𝑦 = −𝑥, 𝑧 = −1

Solution:
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In 𝑅3 , let 𝐿 be a straight line passing through origin. Suppose that 

all the points on 𝐿 are at a constant distance from the two planes 

𝑃1: 𝑥 + 2𝑦 − 𝑧 + 1 = 0 and 𝑃2: 2𝑥 − 𝑦 + 𝑧 − 1 = 0. Let 𝑀 be the locus of 

feet of perpendiculars drawn from the points on 𝐿 to the plane 𝑃1. 

Which of the following points lie(s) on 𝑀?
JEE Advanced 2015

A

B

D

C

0,−
5

6
, −

2

3

−
1

6
, −

1

3
,
1

6

−
5

6
, 0,

1

6

−
1

3
, 0,

2

3
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In 𝑅3 , let 𝐿 be a straight line passing through origin. Suppose that 

all the points on 𝐿 are at a constant distance from the two planes 

𝑃1: 𝑥 + 2𝑦 − 𝑧 + 1 = 0 and 𝑃2: 2𝑥 − 𝑦 + 𝑧 − 1 = 0. Let 𝑀 be the locus of 

feet of perpendiculars drawn from the points on 𝐿 to the plane 𝑃1. 

Which of the following points lie(s) on 𝑀?

𝐿 is parallel to the planes 𝑃1 & 𝑃2

Let vector parallel to the line is Ԧ𝑎

Ԧ𝑎 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
1 2 −1
2 −1 1

= Ƹ𝑖 − 3 Ƹ𝑗 − 5෠𝑘

∴ Direction ratio will be 1,−3,−5

JEE Advanced 2015
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In 𝑅3 , let 𝐿 be a straight line passing through origin. Suppose that 

all the points on 𝐿 are at a constant distance from the two planes 

𝑃1: 𝑥 + 2𝑦 − 𝑧 + 1 = 0 and 𝑃2: 2𝑥 − 𝑦 + 𝑧 − 1 = 0. Let 𝑀 be the locus of 

feet of perpendiculars drawn from the points on 𝐿 to the plane 𝑃1. 

Which of the following points lie(s) on 𝑀?

𝐿 ∶
𝑥

1
=

𝑦

−3
=

𝑧

−5

∴ Direction ratio will be 1,−3,−5

Feet of perpendicular of (0,0,0) on the plane 𝑃1 is : 

𝑥𝑝 − 𝑥1
𝑎

=
𝑦𝑝 − 𝑦1

𝑏
=
𝑧𝑝 − 𝑧1

𝑐
= −

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

𝑥𝑝 − 0

1
=
𝑦𝑝 − 0

2
=
𝑧𝑝 − 0

−1
= −

1

12 + 22 + (−1)2
= −

1

6

JEE Advanced 2015
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In 𝑅3 , let 𝐿 be a straight line passing through origin. Suppose that 

all the points on 𝐿 are at a constant distance from the two planes 

𝑃1: 𝑥 + 2𝑦 − 𝑧 + 1 = 0 and 𝑃2: 2𝑥 − 𝑦 + 𝑧 − 1 = 0. Let 𝑀 be the locus of 

feet of perpendiculars drawn from the points on 𝐿 to the plane 𝑃1. 

Which of the following points lie(s) on 𝑀?

𝑥𝑝 − 0

1
=
𝑦𝑝 − 0

2
=
𝑧𝑝 − 0

−1

⇒ 𝑥𝑝 = −
1

6
, 𝑦𝑝 = −

1

3
, 𝑧𝑝 =

1

6

Equation of line 𝑀 ∶
𝑥 +

1
6

1
=
𝑦 +

1
3

−3
=
𝑧𝑝 −

1
6

−5

Points 0,− 5

6
, −

2

3
and − 1

6
, −

1

3
,
1

6
lie on the line 𝑀.

𝐿 ∶
𝑥

1
=

𝑦

−3
=

𝑧

−5

= −
1

6

JEE Advanced 2015
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In 𝑅3 , let 𝐿 be a straight line passing through origin. Suppose that 

all the points on 𝐿 are at a constant distance from the two planes 

𝑃1: 𝑥 + 2𝑦 − 𝑧 + 1 = 0 and 𝑃2: 2𝑥 − 𝑦 + 𝑧 − 1 = 0. Let 𝑀 be the locus of 

feet of perpendiculars drawn from the points on 𝐿 to the plane 𝑃1. 

Which of the following points lie(s) on 𝑀?
JEE Advanced 2015

A

B

D

C

0,−
5

6
, −

2

3

−
1

6
, −

1

3
,
1

6

−
5

6
, 0,

1

6

−
1

3
, 0,

2

3
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Equation of plane which passes through the point of intersection 
of lines 𝑥−1

3
=

𝑦−2

1
=

𝑧−3

2
and 𝑥−3

1
=

𝑦−1

2
=

𝑧−2

3
and at greatest  distance

from the point 0 , 0 , 0 , is :

𝐿1 ∶
𝑥 − 1

3
=
𝑦 − 2

1
=
𝑧 − 3

2
= 𝜆

𝐿2 ∶
𝑥 − 3

1
=
𝑦 − 1

2
=
𝑧 − 2

3
= 𝜇

Point on 𝐿1: 1 + 3𝜆 , 2 + 𝜆 , 3 + 2𝜆 ⋯ (𝑖)

Point on 𝐿2: 3 + 𝜇 , 1 + 2𝜇 , 2 + 3𝜇 ⋯ 𝑖𝑖

To get intersection point , 

1 + 3𝜆 = 3 + 𝜇

2 + 𝜆 = 1 + 2𝜇
⇒ 𝜆 = 𝜇 = 1

𝑂 0, 0, 0
𝐿1 𝐿2

(4,3,5)𝑃

A

C

B

D

4𝑥 + 3𝑦 + 5𝑧 = 25

3𝑥 + 4𝑦 + 5𝑧 = 49

4𝑥 + 3𝑦 + 5𝑧 = 50

𝑥 + 7𝑦 − 5𝑧 = 2

Solution:



Return to Top

Equation of plane which passes through the point of intersection 
of lines 𝑥−1

3
=

𝑦−2

1
=

𝑧−3

2
and 𝑥−3

1
=

𝑦−1

2
=

𝑧−2

3
and at greatest  distance

from the point 0 , 0 , 0 , is :

∴ The intersecting point will be 𝑃(4 , 3 , 5)

𝑂𝑃 ≥ 𝑂𝑄

The equation  of plane at greatest distance 
from origin and passing through point 4 , 3 , 5
will have normal direction ratios as 4 , 3 , 5.

0,0,0

(4,3,5)𝑃

𝑄

𝑂

⇒ 4 𝑥 − 4 + 3 𝑦 − 3 + 5 𝑧 − 5 = 0

⇒ 4𝑥 + 3𝑦 + 5𝑧 = 50

(4,3,5)𝑃

0,0,0𝑂

Solution:
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let 𝑃 be a image of the point (3,1,7) with respect to the plane 
𝑥 − 𝑦 + 𝑧 = 3.  Then the equation of the plane passing through 
𝑃 and containing the straight line 𝑥

1
=

𝑦

2
=

𝑧

1
is :

JEE Advanced 2016

A

B

D

C

𝑥 + 𝑦 − 3𝑧 = 0

3𝑥 + 𝑧 = 0

𝑥 − 4𝑦 + 7𝑧 = 0

2𝑥 − 𝑦 = 0
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let 𝑃 be a image of the point (3,1,7) with respect to the plane 
𝑥 − 𝑦 + 𝑧 = 3.  Then the equation of the plane passing through 
𝑃 and containing the straight line 𝑥

1
=

𝑦

2
=

𝑧

1
is :

𝑃
𝐿

(3,1,7)

𝑥 − 𝑦 + 𝑧 = 3

𝐿 ∶
𝑥

1
=
𝑦

2
=
𝑧

1

Let 𝑃 ≡ (𝑥′, 𝑦′, 𝑧′)
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𝑥′ − 𝑥1
𝑎

=
𝑦′ − 𝑦1

𝑏
=
𝑧′ − 𝑧1

𝑐
= −2

𝑎𝑥1 + 𝑏𝑦1 + 𝑐𝑧1 − 𝑑

𝑎2 + 𝑏2 + 𝑐2

𝑥′ − 3

1
=
𝑦′ − 1

−1
=
𝑧′ − 7

1

𝑃 ≡ (−1 , 5 , 3)

= −2
3 − 1 + 7 − 3

12 + −1 2 + 12

= −4
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let 𝑃 be a image of the point (3,1,7) with respect to the plane 
𝑥 − 𝑦 + 𝑧 = 3.  Then the equation of the plane passing through 
𝑃 and containing the straight line 𝑥

1
=

𝑦

2
=

𝑧

1
is :

Let 𝑛 be the normal vector to the plane

𝑃 ≡ (−1 , 5 , 3)

𝑛 is perpendicular to line 𝑂𝑃 & given line 𝐿

𝑛 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘

−1 5 3
1 2 1

= − Ƹ𝑖 + 4 Ƹ𝑗 − 7෠𝑘

∴ Equation of plane is : 𝑥 − 4𝑦 + 7𝑧 = 0

𝐿 ∶
𝑥

1
=
𝑦

2
=
𝑧

1
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𝑃
𝐿

(3,1,7)

𝑥 − 𝑦 + 𝑧 = 3
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let 𝑃 be a image of the point (3,1,7) with respect to the plane 
𝑥 − 𝑦 + 𝑧 = 3.  Then the equation of the plane passing through 
𝑃 and containing the straight line 𝑥

1
=

𝑦

2
=

𝑧

1
is :
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A

B

D

C

𝑥 + 𝑦 − 3𝑧 = 0

3𝑥 + 𝑧 = 0

𝑥 − 4𝑦 + 7𝑧 = 0

2𝑥 − 𝑦 = 0
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Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.
Then which of the following statements(s) is (are) true ?

The line of intersection of 𝑃1 and 𝑃2 has direction ratios 1,2, −1

The line 3𝑥−4
9

=
1−3𝑦

9
=

𝑧

3
is perpendicular to the line of 

intersection of 𝑃1 and 𝑃2. 

The acute angle between 𝑃1 and 𝑃2 is 60°.

If 𝑃3 is the plane passing through the point (4,2, −2) and 
perpendicular to the line of intersection of 𝑃1 and 𝑃2, then the 
distance of the point 2,1,1 from the plane 𝑃3 is 2

3
.

D
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C

B

D
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Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Then which of the following statements(s) is (are) true ?

The line of intersection of 𝑃1 and 𝑃2 has direction ratios: 1,−1, 1

Let 𝑛1 is along the line of intersection.

⇒ 𝑛1 =
Ƹ𝑖 Ƹ𝑗 ෠𝑘
2 1 −1
1 2 1

= 3 Ƹ𝑖 − 3 Ƹ𝑗 + 3෠𝑘

The line 
𝑥−

4

3

3
=

𝑦−
1

3

−3
=

𝑧

3
is parallel to the line of intersection 

of 𝑃1 and 𝑃2. 

JEE Advanced 2018

Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Solution:
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Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Then which of the following statements(s) is (are) true ?

The line of intersection of 𝑃1 and 𝑃2 has direction ratios: 1,−1, 1

cos 𝜃 =
𝑎1𝑎2 + 𝑏1𝑏2 + 𝑐1𝑐2

𝑎1
2 + 𝑏1

2 + 𝑐1
2 𝑎2

2 + 𝑏2
2 + 𝑐2

2

⇒ cos𝜃 =
2 + 2 − 1

22 + 12 + (−1)2 12 + 22 + 12

Let 𝜃 be the angle the planes. 

cos𝜃 =
1

2
⇒ 𝜃 = 60°
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Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Solution:
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Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Then which of the following statements(s) is (are) true ?

Equation of 𝑃3: 𝑥 − 4 − 𝑦 − 2 + 𝑧 + 2 = 0

⇒ 𝑥 − 𝑦 + 𝑧 = 0

Distance of the point 2,1,1 =
2− 1 + 1

12 + (−1)2+12

=
2

3
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The line of intersection of 𝑃1 and 𝑃2 has direction ratios: 1,−1, 1

Let 𝑃1: 2𝑥 + 𝑦 − 𝑧 = 3 and  𝑃2: 𝑥 + 2𝑦 + 𝑧 = 2 be two planes.

Solution:
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