Welcome to Q ATBEBI BbyJu's LIVE

3D Geometry

Table of Contents

Session 01	03
Coordinate and Position Vector of a point	08
Position Vector of a Point Distance formula between two points	15
Distance of a Point from Co- ordinate Axis	20
Section Formula Centroid of a Triangle	26
	29
Session 02	36
Area of a triangle	37
Condition of collinearity	41
Volume of Tetrahedron Direction Cosines of a line	48
Direction Ratios and Direction Cosines of a line	60
Session 03	

Session 04	107
Equation of Angle Bisector of Two Lines	109
Equation of Angle Bisector of Two Straight Lines	111
Foot of Perpendicular from a Point to a Lines Image of a Point with Respect to a Line	128
Perpendicular Distance of a Point from a Line	131
Session 05	120
Skew lines Condition for lines to be	142
Coplanar	
Shortest Distance between	161
Parallel Lines	
Plane	

Session 07 204
Foot of perpendicular from a point to a 206plane
Image of point with respect to a plane 211
Distance of a Point from a Plane 217
Relative Position of Two Points with 220
20
Respect to a Plane:
Angle between a Line and a Plane 229
29
Session 08 234
Condition for a Line to Lie in a Plane 235
Equation of Plane Containing Two Lines 246
Intersection point of a line and a plane 256 6
Session 09 268
Angle between two planes 277
Equation of angle bisector of two planes 284
Session 10 297
Family of Planes 298
Non-Symmetrical Form of Line 309
sphere 325
Session 11 330
Miscellaneous Questions 330
 173446
8

Session 01

Introduction to three

dimensional geometry

Return to Top

Three Dimensional Geometry:

Definition:

It is a geometric setting, in which three different parameters (dimensions) x, y, z are required to determine position of a point.

Coordinate and Position Vector of a point: $X^{\prime} X, Y^{\prime} Y, Z^{\prime} Z$ are the three coordinate axes. Note:

Points A, B, C are orthogonal projections of P on the $X, Y \& Z$ axes.

Here,

- Point M is in $x y$ plane

- Point N is in $y z$ plane
- Point L is in $x z$ plane

Octant	$O X Y Z$	$O X^{\prime} Y Z$	$O X Y^{\prime} Z$	$O X Y Z^{\prime}$	$O X^{\prime} Y^{\prime} Z$	$O X^{\prime} Y Z^{\prime}$	$O X Y^{\prime} Z^{\prime}$	$O X^{\prime} Y^{\prime} Z^{\prime}$
Co-ordinate	$O X$	+	-	+	+	-	-	+
	-							
y	+	+	-	+	-	+	-	-
z	+	+	+	-	+	-	-	-

 along positive x, y and z - axis respectively and are of lengths $2,2 \& 3$ respectively. Then, the coordinates of other vertices are : along positive x, y and $z-$ axis respectively and are of lengths 2, 2 \& 3 respectively. Then, the coordinates of other vertices are :

$$
P \equiv(0,2,-1)
$$

Length of edges are 2, 2, 3
Other vertices are :

$$
\begin{aligned}
& A(0+2,2,-1+3) \equiv A(2,2,2) \\
& B(0,2,-1+3) \equiv B(02,2) \\
& C(0,+2,2,-1) \equiv C(22,-1) \\
& D(0,2+2,-1+3) \equiv D(04,2) \\
& E(0,2+2,-1) \equiv E(04,-1) \\
& F(0+2,2+2,-1) \equiv F(24,-1)
\end{aligned}
$$

Planes are drawn parallel to the coordinate planes through the points $(1,2,3)$ and $(2,4,7)$. Find the length of edges of cuboid so formed,

2, 2, 4 $(1,2,3)$ and $(2,4,7)$. Find the length of edges of cuboid so formed,

$$
\begin{aligned}
& P=|2-1|=1 \\
& P E=|4-2|=2 \\
& P B=|7-3|=4
\end{aligned}
$$

\therefore Length of edges are 1, 2, 4

Planes are drawn parallel to the coordinate planes through the points $(1,2,3)$ and $(2,4,7)$. Find the length of edges of cuboid so formed,

(B) $1,2,4$

E. KEYTAKEAWAYS

Position Vector of a Point:

Let O be origin, then the position vector of a point P is the vector $\overrightarrow{O P}$

$$
\begin{aligned}
\vec{r} & =\overrightarrow{O P}=\overrightarrow{O L}+\overrightarrow{L P} \\
& =(\overrightarrow{O A}+\overrightarrow{A L})+\overrightarrow{L P} \\
& =(\overrightarrow{O A}+\overrightarrow{O C})+\overrightarrow{O B} \\
& =x \hat{\imath}+z \hat{k}+y \hat{\jmath}
\end{aligned}
$$

$\vec{r}($ position vector of $P)=x \hat{\imath}+y \hat{\jmath}+z \hat{k}$

$$
\overrightarrow{O M}=x \hat{\imath}+y \hat{\jmath}
$$

Distance formula between two points :
Distance $=P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}$
$\overrightarrow{P Q}=\left(x_{2}-x_{1}\right) \hat{\imath}+\left(y_{2}-y_{1}\right) \hat{\jmath}+\left(z_{2}-z\right) \hat{k}$

The locus of a point P which moves such that $P A^{2}-P B^{2}=5$, where A and B are $(3,4,5)$ and $(-1,3,-7)$ respectively, is :

D

$$
8 x-2 y-24 z+13=0
$$

The locus of a point P which moves such that $P A^{2}-P B^{2}=5$, where A and B are $(3,4,5)$ and $(-1,3,-7)$ respectively, is :

Let $P \equiv(x, y, z), P A^{2}-P B^{2}=5$

$$
\begin{aligned}
& P A^{2}=(x-3)^{2}+(y-4)^{2}+(z-5)^{2} \\
& P B^{2}=(x+1)^{2}+(y-3)^{2}+(z+7)^{2} \\
& P A^{2}-P B^{2}=5 \quad \Rightarrow\left((x-3)^{2}+(y-4)^{2}+(z-5)^{2}\right) \\
& \quad-\left((x+1)^{2}+(y-3)^{2}+(z+7)^{2}\right)=5
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & \left(x^{2}-6 x+9+y^{2}-8 y+16+z^{2}-102+25\right) \\
& \quad-\left(x^{2}+2 x+1+y^{2}-6 y+9+z^{2}+14 z+49\right)=5 \\
\Rightarrow & -8 x-2 y-24 z-9=5
\end{aligned}
$$

$$
\therefore \text { Locus of } P: 8 x+2 y+24 z+14=0
$$

The locus of a point P which moves such that $P A^{2}-P B^{2}=5$, where A and B are $(3,4,5)$ and $(-1,3,-7)$ respectively, is :

D

$$
8 x-2 y-24 z+13=0
$$

Distance of a Point from Co-ordinate Axis:
Distance of P from x-axis $=P A$
$P A=\sqrt{(x-x)^{2}+y^{2}+z^{2}}=\sqrt{y^{2}+z^{2}}$
Distance of P from $y-$ axis $=P B$
$P B=\sqrt{x^{2}+(y-y)^{2}+z^{2}}=\sqrt{x^{2}+z^{2}}$
Distance of P from $\mathrm{z}-$ axis $=P C$
$P C=\sqrt{x^{2}+y^{2}+(z-z)^{2}}=\sqrt{x^{2}+y^{2}}$
Projection of point on $x-$ axis $\equiv A$
Projection of point on $y-a x i s \equiv B$
Projection of point on $\mathrm{z}-$ axis $\equiv C$

If the sum of the squares of the distances of a point from the three coordinate axes be 36, then its distance from origin is :

If the sum of the squares of the distances of a point from the three coordinate axes be 36 , then its distance from origin is :

A point moves so that the sum of the squares of its distances from the six faces of a cube given by $x= \pm 1, y= \pm 1, z= \pm 1$ is 10 units. Then the locus of the noint is
(A $x^{2}+y^{2}+z^{2}=1$

B $x+y+z=1$
(C) $x^{2}+y^{2}+z^{2}=2$

D

$$
x+y+z=2
$$

A point moves so that the sum of the squares of its distances from the six faces of a cube given by $x= \pm 1, y= \pm 1, z= \pm 1$ is 10 units. Then the locus of the point is :

Let $P \equiv(l, m, n)$
Distance of P from $x=1 \Rightarrow|l-1|$
$\Rightarrow(l+1)^{2}+(m+1)^{2}+(n+1)^{2} \rightarrow x=-1, y=-1, z=-1$
$+(l-1)^{2}+(m-1)^{2}+(n-1)^{2} \rightarrow x=1, y=1, z=1$

$$
=10
$$

$\Rightarrow l^{2}+2 l+1+m^{2}+2 m+1+n^{2}+2 n+1+l^{2}-2 l+1$
$+m^{2}-2 m+1+n^{2}-2 n+1=10$
$\Rightarrow 2\left(l^{2}+m^{2}+n^{2}\right)+6=10 \Rightarrow 2\left(l^{2}+m^{2}+n^{2}\right)=4$
Generalise, $l \rightarrow x, m \rightarrow y, n \rightarrow z$

$$
x^{2}+y^{2}+z^{2}=2
$$

A point moves so that the sum of the squares of its distances from the six faces of a cube given by $x= \pm 1, y= \pm 1, z= \pm 1$ is 10 units. Then the locus of the point is :
(A $x^{2}+y^{2}+z^{2}=1$
\square
(C) $x^{2}+y^{2}+z^{2}=2$

D

$$
x+y+z=2
$$

Section Formula :

Coordinate of a point M which divides the line segment joining points $P \& Q$ in $m: n$, is :

$$
\begin{aligned}
M & \equiv(x, y, z) \\
M & \equiv\left(\frac{m x_{2}+n x_{1}}{m+n}, \frac{m y_{2}+n y_{1}}{m+n}, \frac{m z_{1}+n z_{1}}{m+n}\right)
\end{aligned}
$$

If a point $R(4, y, z)$ lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$, then the distance of R from origin is :

Section Formula $R \equiv\left(\frac{8 \lambda+2}{\lambda+1}, \frac{0+(-3)}{\lambda+1}, \frac{10 \lambda+4}{\lambda+1}\right) \equiv(4, y, z)$
$\therefore \frac{8 \lambda+2}{\lambda+1}=4 \Rightarrow 8 \lambda+2=4 \lambda+4$
$4 \lambda=2 \Rightarrow \lambda=\frac{1}{2}$
Put λ in $R(4,-2,6)$

$$
O R=\sqrt{16+4+36}=\sqrt{56}=2 \sqrt{14}
$$

If a point $R(4, y, z)$ lies on the line segment joining the points $P(2,-3,4)$ and $Q(8,0,10)$, then the distance of R from origin is :

Centroid of a Triangle
Coordinate of centroid G is :

$$
G \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right)
$$

Let $A(3,0,-1), B(2,10,6) \& C(1,2,1)$ be the vertices of a triangle and M be the midpoint of $A C$. If G divides $B M$ in the ratio $2: 1$, then $\cos (\angle G O A)$, where 0 is the origin, is equal to

G is the centroid

$$
\begin{aligned}
& G \equiv\left(\frac{x_{1}+x_{2}+x_{3}}{3}, \frac{y_{1}+y_{2}+y_{3}}{3}, \frac{z_{1}+z_{2}+z_{3}}{3}\right) \\
& G \equiv\left(\frac{3+2+1}{3}, \frac{10+0+2}{3}, \frac{-1+6+1}{3}\right) \Rightarrow G \equiv(2,4,2) \\
& \left.\cos \theta=\widehat{O A} \cdot \widehat{O G}=\frac{\overrightarrow{B A} \cdot \overrightarrow{O G}}{\mid O A}|\cdot| O G \right\rvert\,
\end{aligned}
$$

$$
\begin{aligned}
& \overrightarrow{O A}=3 \hat{\imath}-\hat{k}, \overrightarrow{O G}=2 \hat{\imath}+4 \hat{\jmath}+2 \hat{k} \\
& \cos \theta=\frac{6-2}{\sqrt{10} \cdot \sqrt{24}}=\frac{4}{4 \sqrt{15}} \quad \therefore \cos \theta=\frac{1}{\sqrt{15}}
\end{aligned}
$$

Let $A(3,0,-1), B(2,10,6) \& C(1,2,1)$ be the vertices of a triangle and M be the midpoint of $A C$. If G divides $B M$ in the ratio $2: 1$, then $\cos (\angle G O A)$, where 0 is the origin, is equal to

```
JEE MAINS APR 2019
```

(A) $\frac{1}{\sqrt{15}}$
(B) $\frac{1}{6 \sqrt{10}}$

(D) $\frac{1}{2 \sqrt{15}}$

Incentre of a Triangle
Coordinate of incentre I is :

$$
G \equiv\left(\frac{a x_{1}+b x_{2}+c x_{3}}{a+b+c}, \frac{a y_{1}+b y_{2}+c y_{3}}{a+b+c}, \frac{a z_{1}+b z_{2}+c z_{3}}{a+b+c}\right)
$$

The vertices of a triangle are $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$. Then vector representing internal bisector of the angle A is :

\square

D
$2 \hat{\imath}+2 \hat{\jmath}+\hat{k}$

The vertices of a triangle are $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$. Then vector representing internal bisector of the angle A is :

$$
\begin{aligned}
& A B=\sqrt{3^{2}+2^{2}+1^{2}}=\sqrt{14} \\
& A C=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{14}
\end{aligned}
$$

$\Rightarrow A B C$ is an isosceles triangle.
\therefore Median acts as an angle bisector for angle A.
D divides $B C$ in ratio of $A B: A C$

$\Rightarrow D$ is mid point

$$
D \equiv(3,3,3) \Rightarrow \overrightarrow{A D}=\overrightarrow{O D}-\overrightarrow{O A}
$$

$$
=(3 \hat{\imath}+3 \hat{\jmath}+3 \hat{k})-(\hat{\imath}+\hat{\jmath}+2 \hat{k})
$$

$$
\therefore \overrightarrow{A D}=2 \hat{\imath}+2 \hat{\jmath}+\hat{k}
$$

The vertices of a triangle are $A(1,1,2), B(4,3,1)$ and $C(2,3,5)$. Then vector representing internal bisector of the angle A is :

(B) $2 \hat{\imath}-2 \hat{\jmath}+\hat{k}$

D
$2 \hat{\imath}+2 \hat{\jmath}+\hat{k}$

Session 02

Direction ratios and

direction cosines of a line

Area of a triangle

Let $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ be vertices of a triangle, then

$$
\text { Area }=\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}|
$$

$$
\text { Area }=\left|\frac{1}{2}\right| \begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}| |
$$

(i)

Area of a triangle
Let Δ_{x}, Δ_{y} and Δ_{z} be the area of the projections of the triangle to the $Y Z, X Z, X Y$ planes respectively.

$$
\text { Area of triangle }(\Delta)=\sqrt{\Delta_{x}{ }^{2}+\Delta_{y}{ }^{2}+\Delta_{z}{ }^{2}}
$$

$$
\Delta_{x}=\frac{1}{2}\left|\begin{array}{lll}
y_{1} & z_{1} & 1 \\
y_{2} & z_{2} & 1 \\
y_{3} & z_{3} & 1
\end{array}\right|, \Delta_{y}=\frac{1}{2}\left|\begin{array}{lll}
z_{1} & x_{1} & 1 \\
z_{2} & x_{2} & 1 \\
z_{3} & x_{3} & 1
\end{array}\right|
$$

$$
\Delta_{z}=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

The area of triangle formed by joining points $(2,-1,1),(1,-3,-5)$ $\&(3,-4,-4)$ is :

The area of triangle formed by joining points $(2,-1,1),(1,-3,-5)$ $\&(3,-4,-4)$ is :

Solution:

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}|\overrightarrow{A B} \times \overrightarrow{A C}| \\
\text { Area } & =\left|\frac{1}{2}\right| \begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}| | \\
\text { Area } & \left.=\left|\frac{1}{2}\right| \begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
-1 & -2 & -6 \\
1 & -3 & -5
\end{array} \right\rvert\, \\
& =\frac{\sqrt{210}}{2} \text { square unit }
\end{aligned}
$$

Condition of collinearity
The points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear if:
Using Distance formula :

i.e. $A B+B C=A C$
i.e. $A B-B C=A C$

$$
A B \pm B C=A C
$$

Condition of collinearity

The points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear if:
Using section formula :

Point B divides $A \& C$ in ration m : n

$$
x_{2}=\frac{m x_{3}+n x_{1}}{m+n}, y_{2}=\frac{m y_{3}+n y_{1}}{m+n}, z_{2}=\frac{m z_{3}+n z_{1}}{m+n}
$$

Condition of collinearity
The points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear if:
Using area of triangle :

$$
\text { Area } \left.=\left|\frac{1}{2}\right| \begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array} \right\rvert\,=0
$$

Condition of collinearity
The points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ are collinear if:
Using vectors:

$$
\begin{aligned}
& \overrightarrow{A C} \| \overrightarrow{A B} \\
& \overrightarrow{A C}=\lambda \overrightarrow{A B} \\
& \frac{x_{3}-x_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{y_{2}-y_{1}}=\frac{z_{3}-z_{1}}{z_{2}-z_{1}}
\end{aligned}
$$

$$
A\left(x_{1}, y_{1}, z_{1}\right) \quad B\left(x_{2}, y_{2}, z_{2}\right) \quad C\left(x_{3}, y_{3}, z_{3}\right)
$$

If the points $(4,5,1),(3,2,4) \&(-1,-10, p)$ are collinear , then value of p is:

If the points $(4,5,1),(3,2,4) \&(-1,-10, p)$ are collinear , then value of p is:

Solution:

$$
\begin{aligned}
& \frac{x_{3}-x_{1}}{x_{2}-x_{1}}=\frac{y_{3}-y_{1}}{y_{2}-y_{1}}=\frac{z_{3}-z_{1}}{z_{2}-z_{1}} \\
& \frac{-1-4}{3-4}=\frac{-10-5}{2-5}=\frac{p-1}{4-1} \\
& \Rightarrow 5=5=\frac{p-1}{3} \\
& \Rightarrow p-1=3 \times 5 \\
& \Rightarrow p=16
\end{aligned}
$$

If the points $(4,5,1),(3,2,4) \&(-1,-10, p)$ are collinear , then value of p is:

Volume of Tetrahedron

Let $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right), C\left(x_{3}, y_{3}, z_{3}\right)$ and $D\left(x_{4}, y_{4}, z_{4}\right)$ be vertices of a tetrahedron, then

$$
\begin{aligned}
& V=\frac{1}{6}|[\vec{a} \vec{b} \vec{c}]| \\
& V=\left|\frac{1}{6}\right| \begin{array}{lll}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1} \\
x_{4}-x_{1} & y_{4}-y_{1} & z_{4}-z_{1}
\end{array}| |
\end{aligned}
$$

Direction Cosines of a line

Let α, β, γ be the angles which the directed line makes with the positive directions of the axes of $x, y \& z$ respectively, then $\cos \alpha, \cos \beta \& \cos \gamma$ are called the direction cosines of the line (D.C.'s).

They are usually denoted by l, m, n.
$\cos \alpha=\frac{a}{r}=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\cos \beta=\frac{b}{r}=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}$
$\cos \gamma=\frac{c}{r}=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Note $\alpha+\beta+\gamma \neq 2 \pi$

Direction Cosines of a line

The D.C.'s are usually denoted by l, m, n.

$$
\begin{aligned}
& l=\cos \alpha=\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& m=\cos \beta=\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}} \\
& n=\cos \gamma=\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
l^{2}+m^{2}+n^{2} & =\frac{a^{2}}{a^{2}+b^{2}+c^{2}}+\frac{b^{2}}{a^{2}+b^{2}+c^{2}}+\frac{c^{2}}{a^{2}+b^{2}+c^{2}} \\
& =\frac{a^{2}+b^{2}+c^{2}}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

Return to $\quad \therefore l^{2}+m^{2}+n^{2}=1$
(i)

Direction Cosines of a line

The D.C.'s are usually denoted by l, m, n.
$>O P=r$
D.C.'s $=l, m, n$
$\Rightarrow P \equiv(l r, m r, n r)$

$\Rightarrow P Q=r$
D.C.'s $=l, m, n$
$P\left(x_{1}, y_{1}, z_{1}\right)$

$$
Q \equiv\left(x_{1}+l r, y_{1}+m r, z_{1}+n r\right)
$$

? Direction cosines (D.C.'s) of a line equally inclined with the positive direction of the coordinate axes, is \qquad -

$$
\text { A } 1,1,1
$$

$$
\text { (B) } \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

$$
\text { (C) } \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}
$$

$$
\text { (D) } \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}
$$

Direction cosines (D.C.'s) of a line equally inclined with the positive direction of the coordinate axes, is \qquad .

Solution:

$$
\alpha=\beta=\gamma \quad l=\cos \alpha, m=\cos \beta, n=\cos \gamma
$$

$$
l^{2}+m^{2}+n^{2}=1 \quad l=\cos \alpha=m=n
$$

B) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$

D $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
$\Rightarrow \cos \alpha=\frac{1}{\sqrt{3}}=l$
Thus, direction cosines: $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

Direction cosines (D.C.'s) of a line equally inclined with coordinate axes, is \qquad -.
(A) $1,1,1$
(B) $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
(C) $\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}$
(D) $\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$

If a line makes angles α, β, γ with positive x, y, z axes respectively, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is :

If a line makes angles α, β, γ with positive x, y, z axes respectively, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is :

Solution:
$l^{2}+m^{2}+n^{2}=1$
$\Rightarrow \cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$
$\Rightarrow 1-\sin ^{2} \alpha+1-\sin ^{2} \beta+1-\sin ^{2} \gamma=1$
$\Rightarrow \sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$

If a line makes angles α, β, γ with positive x, y, z axes respectively, then the value of $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma$ is :

Direction Ratios of a line
If a, b, c be proportional to the direction cosines (D.C.'s) l, m, n, then a, b, c are called direction ratios (D.R.'s).

Example Let the D.C.'s of a line be: $\frac{2}{3},-\frac{2}{3}, \frac{1}{3}$, then
DRs can be: $2,-2,1$

$$
\begin{aligned}
& \text { or }-6,6,-3 \\
& \text { or } 2 \sqrt{7},-2 \sqrt{7}, \sqrt{7}
\end{aligned}
$$

Direction Ratios of a line

Let (a, b, c) be the D.R.'s and l, m, n be the D.C's of a line, then

$$
\begin{aligned}
& \frac{a}{l}=\frac{b}{m}=\frac{c}{n}=\lambda \Rightarrow l=\frac{a}{\lambda}, m=\frac{b}{\lambda} \\
& l^{2}+m^{2}+n^{2} \Rightarrow \frac{a^{2}}{\lambda^{2}}+\frac{b^{2}}{\lambda^{2}}+\frac{c^{2}}{\lambda^{2}}=1 \Rightarrow \lambda^{2}=\left(a^{2}+b^{2}+c^{2}\right) \\
& \Rightarrow \lambda= \pm \sqrt{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

$$
l, m, n \equiv\left(\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}}, \frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
$$

or

$$
l, m, n \equiv\left(-\frac{a}{\sqrt{a^{2}+b^{2}+c^{2}}},-\frac{b}{\sqrt{a^{2}+b^{2}+c^{2}}},-\frac{c}{\sqrt{a^{2}+b^{2}+c^{2}}}\right)
$$

Direction Ratios and Direction Cosines of a line
$>$ If a, b, c be the D.R.'s of any line L, then
$a \hat{\imath}+b \hat{\jmath}+c \hat{k}$ will be a vector parallel to the line.
> If l, m, n be the D.C.'s of any line L, then
$l \hat{\imath}+m \hat{\jmath}+n \hat{k}$ will be a unit vector parallel to the line.

Direction Ratios and Direction Cosines of a line

If $P \equiv\left(x_{1}, y_{1}, z_{1}\right) \& Q \equiv\left(x_{2}, y_{2}, z_{2}\right)$, then
> The D.R.'s of line $P Q$ will be

$$
a=x_{2}-x_{1}, b=y_{2}-y_{1}, c=z_{2}-z_{1}
$$

$>$ The D.C.'s of line $P Q$ will be

$$
l=\frac{x_{2}-x_{1}}{|P Q|}, m=\frac{y_{2}-y_{1}}{|P Q|}, n=\frac{z_{2}-z_{1}}{|P Q|}
$$

Consider a cube whose edges are parallel to coordinate axes. Then the direction ratios (D.R.'s) and direction cosines (D.C.'s) of its body diagonals, is :

Solution:
Let side of cube be a
$O P$: D.R.'s : $(1,1,1)$

$$
\text { D.C.'s: }\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \text { or }\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)
$$

D.C.'s: $\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ or $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$

Consider a cube whose edges are parallel to coordinate axes. Then the direction ratios (D.R.'s) and direction cosines (D.C.'s) of its body diagonals, is :

Solution:

AN : D.R.'s : $(-1,1,1)$
D.C.'s: $\left(-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$ or $\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$

CM : D.R.'s : $(1,1,-1)$
D.C.'s: $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)$ or $\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

The direction cosines (D.C.'s) l, m, n of a line which are connected by the relations $l+m+n=0 ; 2 l m+2 m n-n l=0$, is:

$$
\begin{array}{ll}
\text { (A) }-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \\
\text { (B) } \frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} & \text { (C) } \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \\
\text { (D) }-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}
\end{array}
$$

$$
l+m+n=0 \quad \& ; 2 l m+2 m n-n l=0
$$

$$
\text { Put } n=-l-m
$$

$$
\Rightarrow 2 l m+(2 m-l)(n)=0
$$

$$
\Rightarrow 2 l m+(2 m-l)(-l-m)=0
$$

$$
\Rightarrow 2 l m-2 l m-2 m^{2}+l^{2}+l m=0
$$

$$
\Rightarrow l^{2}+l m-2 m^{2}=0
$$

$$
\Rightarrow(l+2 m)(l-m)=0
$$

The direction cosines (D.C.'s) l, m, n of a line which are connected by the relations $l+m+n=0 ; 2 l m+2 m n-n l=0$, is:

$$
\begin{array}{ll}
l+m+n=0 \quad \& ; 2 l m+2 m n-n l=0 \\
\Rightarrow(l+2 m)(l-m)=0 & \\
l=-2 m & \Rightarrow n \\
\Rightarrow n=-l-m & \Rightarrow n=-l-m \\
\Rightarrow n=m & \Rightarrow m: n:: m: m:-2 m \\
l: m: n::-2 m: m: m & \\
\Rightarrow \frac{l}{-2}=\frac{m}{1}=\frac{n}{1} & \Rightarrow \frac{l}{1}=\frac{m}{1}=\frac{n}{-2} \\
\text { DRS } \propto(-2,1,1) & \text { DRS } \propto(1,1,-2) \\
\therefore \text { D.C.'s can be: }-\frac{2}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}} \text { or }-\frac{1}{\sqrt{6}},-\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}}
\end{array}
$$

Angle between two lines

If two lines have D.R.'s a_{1}, b_{1}, c_{1} and a_{2}, b_{2}, c_{2} respectively (parallel vectors will be $a_{1} \hat{\imath}+b_{1} \hat{\jmath}+c_{1} \hat{k}$ and $a_{2} \hat{\imath}+b_{2} \hat{\jmath}+c_{2} \hat{k}$ respectively).
Let θ is the angle between them, then

$$
\theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}^{2}}}\right)
$$

Lines will be parallel, if

$$
\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}
$$

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

Lines will be perpendicular, if

$$
a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0
$$

Angle between two lines
If two lines have D.C.'s l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} respectively
(parallel unit vectors will be $l_{1} \hat{\imath}+m_{1} \hat{\jmath}+n_{1} \hat{k}$ and $l_{2} \hat{\imath}+m_{2} \hat{\jmath}+n_{2} \hat{k}$ respectively).
Let θ is the angle between them, then

$$
\theta=\cos ^{-1}\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)
$$

$$
\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}
$$

The angle between any two body diagonals of a cube, is :
(A) $\cos ^{-1}\left(\frac{4}{9}\right)$

(B) $\cos ^{-1}\left(\frac{1}{3}\right)$

$$
\theta=\cos ^{-1}\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)
$$

$O P$: Direction cosines: $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$
$B L$: Direction cosines : $\left(\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$

$$
\theta=\cos ^{-1}\left(\frac{1}{3}\right)
$$

?]
The angle between the lines whose direction cosines satisfy the equations $l+m+n=0 \& l^{2}=m^{2}+n^{2}$, is:

The angle between the lines whose direction cosines satisfy the equations $l+m+n=0 \& l^{2}=m^{2}+n^{2}$, is:

$$
\begin{aligned}
& l+m+n=0 \& l^{2}=m^{2}+n^{2} \\
& \Rightarrow l=-(m+n) \cdots(i)
\end{aligned}
$$

Squaring (i),
$\Rightarrow l^{2}=m^{2}+n^{2}+2 m n$
$\Rightarrow l^{2}=l^{2}+2 m n$
$\Rightarrow 2 m n=0$
For $m=0, l=\frac{1}{\sqrt{2}}, n=-\frac{1}{\sqrt{2}}$
$\Rightarrow m=0$ or $n=0$

$$
\text { For } n=0, l=\frac{1}{\sqrt{2}}, m=-\frac{1}{\sqrt{2}}
$$

The angle between the lines whose direction cosines satisfy the equations $l+m+n=0 \& l^{2}=m^{2}+n^{2}$, is:

$$
\Rightarrow m=0 \text { or } n=0\left\{\begin{array}{l}
\text { For } m=0, l=\frac{1}{\sqrt{2}}, n=-\frac{1}{\sqrt{2}} \\
\text { For } n=0, l=\frac{1}{\sqrt{2}}, m=-\frac{1}{\sqrt{2}}
\end{array}\right.
$$

\therefore D.C.'s will be : $\left(\frac{1}{\sqrt{2}}, 0,-\frac{1}{\sqrt{2}}\right)$ or $\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}, 0\right)$

$$
\theta=\cos ^{-1}\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right)
$$

$$
\Rightarrow \theta=\cos ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{3}
$$

The angle between the lines whose direction cosines satisfy the equations $l+m+n=0 \& l^{2}=m^{2}+n^{2}$, is:

The coordinates of points A, B, C, D are $(4, \alpha, 2),(5,-3,2),(\beta, 1,1) \&(3,3,-1)$ respectively. Line $A B$ would be perpendicular to line $C D$ when :

(B) $\alpha=2, \beta=-1$
(C) $\alpha=1, \beta=2$

D

$$
\alpha=2, \beta=2
$$

The coordinates of points A, B, C, D are $(4, \alpha, 2),(5,-3,2),(\beta, 1,1) \&(3,3,-1)$ respectively. Line $A B$ would be perpendicular to line $C D$ when :

Solution:
D.R.'s of line $A B: 1,-3-\alpha, 0$
D.R.'s of line $C D: 3-\beta, 2,-2$

Lines will be perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow 3-\beta-6-2 \alpha=0$
$\Rightarrow 2 \alpha+\beta=-3$

Possible when, $\alpha=-1, \beta=-1$
(i)

Projection of a Line Segment on Coordinate Axes:

Let a line segment has length r and has direction cosines l, m, n, then its projection on coordinate axes will be $l r, m r, n r$.

The projection of a vector on three coordinate axes are $6,-3 \& 2$ respectively. The direction cosines of the vector are :

$$
\text { (C) } \frac{6}{5},-\frac{3}{5}, \frac{2}{5}
$$

$$
\text { (D) }-\frac{6}{7},-\frac{3}{7}, \frac{2}{7}
$$

The projection of a vector on three coordinate axes are 6, -3 \& 2 respectively. The direction cosines of the vector are :

$$
\begin{aligned}
& l r=6 ; m r=-3 ; n r=2 \quad l^{2}+m^{2}+n^{2}=1 \\
& l^{2} r^{2}+m^{2} r^{2}+n^{2} r^{2}=6^{2}+3^{2}+2^{2} \\
& r^{2}\left(l^{2}+m^{2}+n^{2}\right)=49 \\
& \Rightarrow r=7 \\
& l \cdot 7=6 \Rightarrow \frac{6}{7} ; m=-\frac{3}{7} ; n=\frac{2}{7}
\end{aligned}
$$

Thus, direction cosines: $\frac{6}{7},-\frac{3}{7}, \frac{2}{7}$

The projection of a vector on three coordinate axes are 6, -3 \& 2 respectively. The direction cosines of the vector are :

$$
\text { (C) } \frac{6}{5},-\frac{3}{5}, \frac{2}{5}
$$

$$
\text { (D) }-\frac{6}{7},-\frac{3}{7}, \frac{2}{7}
$$

Projection of a Line Segment on Another Line

Projection of \vec{a} on \vec{b} is : $\vec{a} \cdot \frac{\vec{b}}{|\vec{b}|}$

Projection of a line segment joining points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ on a line L having direction cosines l, m, n, is:
$A^{\prime} B^{\prime}=\left(x_{2}-x_{1}\right) l+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n$

The projection of a line segment joining the points $(1,-1,3)$ and $(2,-4,11)$ on the line joining the points $(-1,2,3)$ and $(3,-2,10)$ is:

JEE MAIN JAN 2020
Solution:

The projection of a line segment joining the points $(1,-1,3)$ and $(2,-4,11)$ on the line joining the points $(-1,2,3)$ and $(3,-2,10)$ is:

Solution:

The DRs of line L with points $(-1,2,3) \&(3,-2,10): 4,-4,7$

$$
\therefore l=\frac{4}{9} ; m=-\frac{4}{9} ; n=\frac{7}{9}
$$

The projection of a line segment joining the points $(1,-1,3)$ and $(2,-4,11)$ on the line joining the points $(-1,2,3)$ and $(3,-2,10)$ is:

$$
\begin{aligned}
\therefore l= & \frac{4}{9} ; m=-\frac{4}{9} ; n=\frac{7}{9} \\
A^{\prime} B^{\prime}= & \left(x_{2}-x_{1}\right) l+\left(y_{2}-y_{1}\right) m+\left(z_{2}-z_{1}\right) n \\
& =\frac{4}{9}(2-1)-\frac{4}{9}(-4+1)+\frac{7}{9}(11-3) \\
& =\frac{4}{9}+\frac{12}{9}+\frac{56}{9} \\
& =8
\end{aligned}
$$

\therefore Projection $=8$

Equation of a Straight Line
(i) Equation of a line passing through a point $A\left(x_{1}, y_{1}, z_{1}\right)$ and having direction ratios a, b, c, is :

Parametric Vector Equation of a Straight Line

Vector equation of a straight line passing through a given point $A(\vec{a})$ and parallel to a given vector $B(\vec{b})$

$$
\vec{r}=\vec{a}+\lambda \vec{b}
$$

where λ is a scalar and for different values of λ, we get different positions of point R.

Equation of a Straight Line
(i) Equation of a line passing through a point $A\left(x_{1}, y_{1}, z_{1}\right)$ and
having direction ratios a, b, c, is:
$\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}=\lambda$

symmetric form of line

General point on a line:

General point P on this line can be taken as: $x=x_{1}+a \lambda$

$$
\begin{aligned}
& y=y_{1}+b \lambda \\
& z=z_{1}+c \lambda
\end{aligned}
$$

Equation of a Straight Line

Symmetric form
or $: \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$
Cartesian form

Vector form: $\quad \vec{r}=\left(x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k}\right)+\lambda(a \hat{i}+b \hat{j}+c \hat{k})$

Equation of a Straight Line

The equation of a straight line passing through the point $(3,-6,8)$ and parallel to the line $\frac{x-2}{1}=\frac{y+12}{4}=\frac{-z-7}{5}$, is :

Solution:

The equation of a straight line passing through the point $(3,-6,8)$ and parallel to the line $\frac{x-2}{1}=\frac{y+12}{4}=\frac{-z-7}{5}$, is :

Solution:

Given line : $\frac{x-2}{1}=\frac{y+12}{4}=\frac{z+7}{-5}$
DRs of required line will be : 1,4,-5
Thus, equation of the line: $\frac{x-3}{1}=\frac{y+6}{4}=\frac{z-8}{-5}$

The equation of a straight line passing through the point $(-5,2,4)$ and parallel to vector $2 \hat{i}-3 \hat{j}+\hat{k}$, is :
(A) $\frac{x+5}{2}=\frac{y-2}{-3}=\frac{z-4}{1}$
(B) $\frac{x-5}{2}=\frac{y+2}{3}=\frac{z-4}{1}$
(C) $\frac{x-5}{2}=\frac{y+2}{-3}=\frac{z-4}{2}$

D $\frac{x+5}{1}=\frac{y-2}{-3}=\frac{z-4}{2}$

The equation of a straight line passing through the point $(-5,2,4)$ and parallel to vector $2 \hat{i}-3 \hat{j}+\hat{k}$, is :
(A) $\frac{x+5}{2}=\frac{y-2}{-3}=\frac{z-4}{1}$
(B) $\frac{x-5}{2}=\frac{y+2}{3}=\frac{z-4}{1}$
(C) $\frac{x-5}{2}=\frac{y+2}{-3}=\frac{z-4}{2}$

D $\frac{x+5}{1}=\frac{y-2}{-3}=\frac{z-4}{2}$

The equation of a straight line passing through the point $(-5,2,4)$ and parallel to vector $2 \hat{i}-3 \hat{j}+\hat{k}$, is :

Solution:
Equation of the line : $\frac{x+5}{2}=\frac{y-2}{-3}=\frac{z-4}{1} \quad \frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}$

OR

Equation of the line in vector form:
$\vec{r}=(-5 \hat{i}+2 \hat{j}+4 \hat{k})+\lambda(2 \hat{i}-3 \hat{j}+\hat{k})$
? If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$ are perpendicular, then:

A $a b^{\prime}+b c^{\prime}+1=0$
(B) $b b^{\prime}+c c^{\prime}+1=0$
(C) $c c^{\prime}+a+a^{\prime}=0$
(D) $a a^{\prime}+c+c^{\prime}=0$

If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$ are perpendicular, then:

Solution:

Lines can be written as:

$$
\begin{aligned}
& \frac{x-b}{a}=\frac{y}{1}=\frac{z-d}{c} \cdots(i) \\
& \frac{x-b^{\prime}}{a^{\prime}}=\frac{y-d^{\prime}}{c^{\prime}}=\frac{z}{1} \cdots(i i)
\end{aligned}
$$

For perpendicular lines $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
$\Rightarrow a a^{\prime}+c^{\prime}+c=0$

If the lines $x=a y+b, z=c y+d$ and $x=a^{\prime} z+b^{\prime}, y=c^{\prime} z+d^{\prime}$ are perpendicular, then:

A $a b^{\prime}+b c^{\prime}+1=0$
(B) $b b^{\prime}+c c^{\prime}+1=0$

C $c c^{\prime}+a+a^{\prime}=0$
(D) $a a^{\prime}+c+c^{\prime}=0$

Straight Line
(ii) Equation of a line passing through points $A\left(x_{1}, y_{1}, z_{1}\right)$ and $B\left(x_{2}, y_{2}, z_{2}\right)$

$$
\frac{x-x_{1}}{a}=\frac{y-y_{1}}{b}=\frac{z-z_{1}}{c}
$$

DRs of the line will be: $\quad x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}$

Equation of the line : $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$

Straight Line

Example:

The equation of a straight line passing through the points ($1,-2,7$) and ($5,3,-1$) , is :

Equation of the line : $\frac{x-1}{4}=\frac{y+2}{5}=\frac{z-7}{-8}$

Which of the following does not represent equation of line passing through the points $(2,1,3) \&(-1,3,1)$?
(A) $\frac{x-2}{3}=\frac{y-1}{-2}=\frac{z-3}{2}$
(B) $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$
(C) $\vec{r}=8 \hat{i}-3 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$

D $\frac{x-5}{-3}=\frac{y+3}{2}=\frac{z-5}{-2}$

Which of the following does not represent equation of line passing through the points $(2,1,3) \&(-1,3,1)$?

$$
\text { Vector form : } \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \quad \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Cartesian equation : $\frac{x-2}{3}=\frac{y-1}{-2}=\frac{z-3}{2}$

Vector form: $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$

General point on this line is : $((2+3 \lambda),(1-2 \lambda),(3+2 \lambda))$
$2+3 \lambda=5$

Thus, another point will be: $(5,-1,5)$

Thus, equation can also be written as: $\frac{x-5}{-3}=\frac{y+1}{2}=\frac{z-5}{-2}$

Which of the following does not represent equation of line passing through the points $(2,1,3) \&(-1,3,1)$?

$$
\text { Vector form : } \vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a}) \quad \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}
$$

Cartesian equation : $\frac{x-2}{3}=\frac{y-1}{-2}=\frac{z-3}{2}$

Vector form: $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$

General point on this line is : $((2+3 \lambda),(1-2 \lambda),(3+2 \lambda))$
$2+3 \lambda=8 \Rightarrow \lambda=2$

Point on this line is $(8,-3,7)$
\therefore Equation can also be $: \vec{r}=8 \hat{i}-3 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$

Which of the following does not represent equation of line passing through the points $(2,1,3) \&(-1,3,1)$?
(A) $\frac{x-2}{3}=\frac{y-1}{-2}=\frac{z-3}{2}$
(B) $\vec{r}=-\hat{i}+3 \hat{j}+\hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$
(C) $\vec{r}=8 \hat{i}-3 \hat{j}+7 \hat{k}+\lambda(3 \hat{i}-2 \hat{j}+2 \hat{k})$

D $\frac{x-5}{-3}=\frac{y+3}{2}=\frac{z-5}{-2}$
? The line passing through the points $(5,1, a) \&(3, b, 1)$ crosses the y $-z$ plane at point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$, then:

$$
a=2, b=8
$$

$$
\text { (B) } a=4, b=6
$$

$$
\text { C } a=6, b=4
$$

$$
\text { D } a=8, b=2
$$

The line passing through the points $(5,1, a) \&(3, b, 1)$ crosses the y $-z$ plane at point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$, then:

Line passing through $(5,1, a) \&(3, b, 1)$
Cartesian equation: $\frac{x-5}{2}=\frac{y-1}{1-b}=\frac{z-a}{a-1}$

$$
\begin{aligned}
& (2 r+5,1+r(1-b), a+r(a-1)) \equiv\left(0, \frac{17}{2},-\frac{13}{2}\right) \\
& r=-\frac{5}{2}
\end{aligned}
$$

$$
\left(0,1-\frac{5}{2}(1-b), a-\frac{5}{2}(a-1)\right)
$$

$$
1-\frac{5}{2}(1-b)=\frac{17}{2} \& a-\frac{5}{2}(a-1)=-\frac{13}{2}
$$

$$
\frac{5 b}{2}=\frac{17}{2}+\frac{3}{2} \& \frac{-3 a}{2}=-\frac{18}{2}
$$

$$
\frac{5 b}{2}=10 \quad \& \quad \frac{-3 a}{2}=-\frac{18}{2}
$$

$$
b=4 \quad \& \quad a=6
$$

The line passing through the points $(5,1, a) \&(3, b, 1)$ crosses the y $-z$ plane at point $\left(0, \frac{17}{2},-\frac{13}{2}\right)$, then:

Session 04

Equation of angular

 bisectors of linesAngle θ between the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ and $\frac{x-1}{3}=\frac{y-2}{-1}=\frac{z-3}{4}$ is :

Solution:

$$
\text { (A) } \cos ^{-1}\left(\frac{2 \sqrt{3}}{\sqrt{26}}\right)
$$

Direction ratios of lines are: $(1,2,3) \&(3,-1,4)$

$$
\left(a_{1}, b_{1}, c_{1}\right)\left(a_{2}, b_{2}, c_{2}\right)
$$

$$
\text { (B) } \cos ^{-1}\left(\frac{\sqrt{13}}{2 \sqrt{7}}\right)
$$

$$
\theta=\cos ^{-1}\left(\frac{a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}} \sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right)
$$

$\therefore \theta=\cos ^{-1}\left(\frac{3-2+12}{\sqrt{14} \sqrt{26}}\right)$

$$
\text { (C) } \cos ^{-1}\left(\frac{\sqrt{6}}{2 \sqrt{7}}\right)
$$

$$
\text { (D) } \cos ^{-1}\left(\frac{\sqrt{21}}{2 \sqrt{29}}\right)
$$

$\Rightarrow \theta=\cos ^{-1}\left(\frac{13}{\sqrt{14} \sqrt{26}}\right)$
$\Rightarrow \theta=\cos ^{-1}\left(\frac{\sqrt{13}}{2 \sqrt{7}}\right)$

Equation of Angle Bisector of Two Lines :
Let the lines be :
$L_{1}: \frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \rightarrow \operatorname{Through}\left(x_{1}, y_{1}, z_{1}\right)$
$L_{1}=l_{1} i+m_{1} j+n_{1} k$
$L_{2}: \frac{x-x_{1}}{l_{2}}=\frac{y-y_{1}}{m_{2}}=\frac{z-z_{1}}{n_{2}} \rightarrow \operatorname{Through}\left(x_{2}, y_{2}, z_{3}\right)$
$L_{1}=l_{2} i+m_{2} j+n_{2} k$
where l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are direction cosines

(i)

Vector Equation of Angle Bisector Between Two Straight Lines :

Line 1: $\vec{r}=\vec{a}+\lambda \vec{b} \cdots(i)$

Internal angle bisector :

$$
\vec{r}=\vec{a}+s(\hat{b}+\hat{c})
$$

Line 2: $\vec{r}=\vec{a}+\mu \vec{c} \cdots(i i)$

External angle bisector:

$$
\vec{r}=\vec{a}+s(\hat{b}-\hat{c})
$$

Equation of Angle Bisector of Two Straight Lines :

Let the lines be :
$L_{1}: \frac{x-x_{1}}{l_{1}}=\frac{y-y_{1}}{m_{1}}=\frac{z-z_{1}}{n_{1}} \rightarrow L_{1}=l_{1} i+m_{1} j+n_{1} k$
$L_{2}: \frac{x-x_{1}}{l_{2}}=\frac{y-y_{1}}{m_{2}}=\frac{z-z_{1}}{n_{2}} \rightarrow L_{2}=l_{2} i+m_{2} j+n_{2} k$
$L_{1}+L_{2}=\left(l_{1}+l_{2}\right) i+\left(m_{1}+m_{2}\right) j+\left(n_{1}+n_{2}\right) k$
$\rightarrow D R^{\prime}$ s of $B_{1} \alpha\left(l_{1}+l_{2}\right),\left(m_{1}+m_{2}\right),\left(n_{1}+n_{2}\right)$

where l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2} are direction cosines
\therefore Equation of bisectors will be :

$$
\frac{x-x_{1}}{l_{1}+l_{2}}=\frac{y-y_{1}}{m_{1}+m_{2}}=\frac{z-z_{1}}{n_{1}+n_{2}}
$$

\& $\frac{x-x_{1}}{l_{1}-l_{2}}=\frac{y-y_{1}}{m_{1}-m_{2}}=\frac{z-z_{1}}{n_{1}-n_{2}}$

Equation of Angle Bisector of Two Straight Lines :

Acute and obtuse angle bisectors :

$$
\begin{aligned}
& \cos \theta=\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right) \\
& B_{1}: \frac{x-x_{1}}{l_{1}+l_{2}}=\frac{y-y_{1}}{m_{1}+m_{2}}=\frac{z-z_{1}}{n_{1}+n_{2}} \\
& B_{2}: \frac{x-x_{1}}{l_{1}-l_{2}}=\frac{y-y_{1}}{m_{1}-m_{2}}=\frac{z-z_{1}}{n_{1}-n_{2}}
\end{aligned}
$$

If $\cos \theta>0$
$\Rightarrow B_{1}$ is acute angle bisector and B_{2} is obtuse bisector.
If $\cos \theta<0$
? Equation of the angle bisector of the angle between the lines $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{-1}$ is :
(A) $x=1 ; \frac{y-2}{1}=\frac{z-3}{1}$
(B) $\frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}$
(C) $\frac{x-1}{2}=\frac{y-2}{2} ; z=3$
(D) $\frac{x-1}{2}=\frac{y-2}{3} ; z=3$

Equation of the angle bisector of the angle between the lines $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{-1}$ is :

Solution:
$\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1}$ and $\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{-1}$
$L_{1}=i+j+k, \quad L_{2}=i+j-k$
$\hat{L}_{1}=\frac{i+j+k}{\sqrt{3}} \quad \hat{L}_{2}=\frac{i+j-k}{\sqrt{3}}$
\rightarrow DR's of bisector $B_{1} \alpha\left(\hat{L}_{1}+\hat{L}_{2}\right) \alpha\left(\frac{2}{\sqrt{3}}, \frac{2}{\sqrt{3}}, 0\right)$
\rightarrow DR's of bisector $B_{2} \alpha\left(\hat{L}_{1}-\hat{L}_{2}\right) \alpha\left(0,0, \frac{2}{\sqrt{3}}\right)$
\rightarrow DR's of bisector $B_{1} \alpha(2,2,0)$
\rightarrow DR's of bisector $B_{2} \alpha(0,0,2)$
The equation of bisector is :
$\Rightarrow \frac{x-1}{2}=\frac{y-2}{2} ; z=3$

Equation of the angle bisector of the angle between the lines

$$
\frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{1} \text { and } \frac{x-1}{1}=\frac{y-2}{1}=\frac{z-3}{-1} \text { is : }
$$

$$
\text { (A) } x=1 ; \frac{y-2}{1}=\frac{z-3}{1}
$$

$$
\text { (B) } \frac{x-1}{1}=\frac{y-2}{2}=\frac{z-3}{3}
$$

$$
\text { (C) } \frac{x-1}{2}=\frac{y-2}{2} ; z=3
$$

(D) $\frac{x-1}{2}=\frac{y-2}{3} ; z=3$

The direction cosines of the lines bisecting the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}, and the angle between these lines is θ, are :
(A) $\frac{l_{1}+l_{2}}{\left.\cos ()_{2}\right)} \cdot \frac{m_{1}+m_{2}}{\cos \left(\frac{2}{2}\right)}, \frac{n_{1}+n_{2}}{\cos \left(\frac{(\pi}{z}\right)}$

	Cos	

The direction cosines of the lines bisecting the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}, and the angle between these lines is θ, are :

Solution:

$$
\left.\frac{x-x_{1}}{l_{1}+l_{2}}=\frac{y-y_{1}}{m_{1}+m_{2}}=\frac{z-z_{1}}{n_{1}+n_{2}}\right) \& \quad \frac{x-x_{1}}{l_{1}-l_{2}}=\frac{y-y_{1}}{m_{1}-m_{2}}=\frac{z-z_{1}}{n_{1}-n_{2}}
$$

DRs of bisectors are: $l_{1}+l_{2}, m_{1}+m_{2}, n_{1}+n_{2} \& l_{1}-l_{2}, m_{1}-m_{2}, n_{1}-n_{2}$

$$
\begin{aligned}
& \text { Now, }\left(l_{1}+l_{2}\right)^{2}+\left(m_{1}+m_{2}\right)^{2}+\left(n_{1}+n_{2}\right)^{2} \\
& =l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+l_{2}^{2}+m_{2}^{2}+n_{2}^{2}+2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right) \\
& =2+2 \cos \theta \\
& \Rightarrow\left(l_{1}-l_{2}\right)^{2}+\left(m_{1}-m_{2}\right)^{2}+\left(n_{1}-n_{2}\right)^{2} \\
& =l_{1}^{2}+m_{1}^{2}+n_{1}^{2}+l_{2}^{2}+m_{2}^{2}+n_{2}^{2}-2\left(l_{1} l_{2}+m_{1} m_{2}+n_{1} n_{2}\right) \\
& =2-2 \cos \theta
\end{aligned}
$$

The direction cosines of the lines bisecting the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}, and the angle between these lines is θ, are :

Solution:
DCs of bisectors are :
$\frac{l_{1}+l_{2}}{\sqrt{\left(l_{1}+l_{2}\right)^{2}+\left(m_{1}+m_{2}\right)^{2}+\left(n_{1}+n_{2}\right)^{2}}}, \frac{m_{1}+m_{2}}{\sqrt{\left(l_{1}+l_{2}\right)^{2}+\left(m_{1}+m_{2}\right)^{2}+\left(n_{1}+n_{2}\right)^{2}}}, \frac{n_{1}+n_{2}}{\sqrt{\left(l_{1}+l_{2}\right)^{2}+\left(m_{1}+m_{2}\right)^{2}+\left(n_{1}+n_{2}\right)^{2}}}$
$\frac{\text { and }}{\sqrt{\left(l_{1}-l_{2}\right)^{2}+\left(m_{1}-m_{2}\right)^{2}+\left(n_{1}-n_{2}\right)^{2}}}, \frac{l_{1}-l_{2}}{\sqrt{\left(l_{1}-l_{2}\right)^{2}+\left(m_{1}-m_{2}\right)^{2}+\left(n_{1}-n_{2}\right)^{2}}}$

$$
\frac{l_{1}+l_{2}}{\sqrt{2+2 \cos \theta}}, \frac{m_{1}+m_{2}}{\sqrt{2+2 \cos \theta}}, \frac{n_{1}+n_{2}}{\sqrt{2+2 \cos \theta}} \Rightarrow \frac{l_{1}+l_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{m_{1}+m_{2}}{2 \cos \left(\frac{\theta}{2}\right)}, \frac{n_{1}+n_{2}}{2 \cos \left(\frac{\theta}{2}\right)}
$$

and

$$
\frac{l_{1}-l_{2}}{\sqrt{2-2 \cos \theta}}, \frac{m_{1}-m_{2}}{\sqrt{2-2 \cos \theta}}, \frac{n_{1}-n_{2}}{\sqrt{2-2 \cos \theta}} \Rightarrow \frac{l_{1}-l_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{m_{1}-m_{2}}{2 \sin \left(\frac{\theta}{2}\right)}, \frac{n_{1}-n_{2}}{2 \sin \left(\frac{\theta}{2}\right)}
$$

The direction cosines of the lines bisecting the angle between the lines whose direction cosines are l_{1}, m_{1}, n_{1} and l_{2}, m_{2}, n_{2}, and the angle between these lines is θ, are :
(A) $\frac{l_{1}+l_{2}}{\cos \left(\frac{V_{2}}{2}\right.}=\frac{m_{1}+m_{l}}{\cos \left(\frac{l_{2}}{2}\right)}=\frac{n_{1}+n_{2}}{\cos \left(\frac{\text { E. }}{2}\right)}$

(C) $\frac{l_{1}+l_{2}}{2 \cos \left(\frac{\theta}{2}\right)}=\frac{m_{1}+m_{2}}{2 \cos \left(\frac{\theta}{2}\right)}=\frac{n_{1}+n_{2}}{2 \cos \left(\frac{\theta}{2}\right)}$

$\frac{l_{1}-l_{2}}{2 \sin \left(\frac{\theta}{2}\right)}=\frac{m_{1}-m_{2}}{2 \sin \left(\frac{\theta}{2}\right)}=\frac{n_{1}-n_{2}}{2 \sin \left(\frac{\theta}{2}\right)}$

Foot of Perpendicular from a Point to a Lines :
Let point $A\left(x_{1}, y_{1}, z_{1}\right)$ and Line $L: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Let P is the foot of perpendicular from point A on the line L.

So, $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}=\lambda$
$\therefore P \equiv\left(x_{0}+a \lambda, y_{0}+b \lambda, z_{0}+c \lambda\right)$

DRs of AP: $x_{0}+a \lambda-x_{1}, y_{0}+b \lambda-y_{1}, z_{0}+c \lambda-z_{1}$
DRs of $L: a, b, c$
$\because A P$ is \perp to L

$$
a\left(x_{0}+a \lambda-x_{1}\right)+b\left(y_{0}+b \lambda-y_{1}\right)+c\left(z_{0}+c \lambda-z_{1}\right)=0
$$

Foot of Perpendicular from a Point to a Lines :
Line $L: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

$$
\begin{aligned}
& P \equiv\left(x_{0}+a \lambda, y_{0}+b \lambda, z_{0}+c \lambda\right) \\
& a\left(x_{0}+a \lambda-x_{1}\right)+b\left(y_{0}+b \lambda-y_{1}\right)+c\left(z_{0}+c \lambda-z_{1}\right)=0 \\
& \Rightarrow \lambda=\frac{a\left(x_{1}-x_{0}\right)+b\left(y_{1}-y_{0}\right)+c\left(z_{1}-z_{0}\right)}{a^{2}+b^{2}+c^{2}}
\end{aligned}
$$

Substitute value of λ to get point P
? The foot of perpendicular from the point $(1,6,3)$ on the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is :

$$
(0,1,2)
$$

$(1,3,5)$
(D) $(-2,-3,-4)$

The foot of perpendicular from the point $(1,6,3)$ on the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is :

Solution:

$$
\begin{aligned}
& \frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\lambda \\
& P \equiv(\lambda, 1+2 \lambda, 2+3 \lambda)
\end{aligned}
$$

DRs of $A P \alpha(\lambda-1,2 \lambda-5,3 \lambda-1)$
DRs of $L \alpha(1,2,3)$
$\because A P$ is \perp to L

$\Rightarrow 1(\lambda-1)+2(2 \lambda-5)+3(3 \lambda-1)=0$
$\Rightarrow \lambda=1$
$\therefore P \equiv(1,3,5)$

The foot of perpendicular from the point $(1,6,3)$ on the line $\frac{x}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ is :

(D) $(-2,-3,-4)$

If foot of perpendicular drawn from the point $(1,0,3)$ on a line passing through $(\alpha, 7,1)$ is $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$, then α is equal to :

If foot of perpendicular drawn from the point $(1,0,3)$ on a line passing through $(\alpha, 7,1)$ is $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$, then α is equal to :

If foot of perpendicular drawn from the point $(1,0,3)$ on a line passing through $(\alpha, 7,1)$ is $\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)$, then α is equal to :

JEE MAINS JAN 2020
Solution:
DRs of $A P \alpha\left(\frac{5}{3}-1, \frac{7}{3}-0, \frac{17}{3}-3\right) \alpha\left(\frac{2}{3}, \frac{7}{3}, \frac{8}{3}\right)$
DRs of $L \alpha\left(\alpha-\frac{5}{3}, 7-\frac{7}{3}, 1-\frac{17}{3}\right) \alpha\left(\alpha-\frac{5}{3}, \frac{14}{3},-\frac{14}{3}\right)$
$\because A P$ is \perp to L

$$
\begin{array}{lll}
A(1,0,3) \\
B(\alpha, 7,1) & P
\end{array}
$$

$$
\begin{aligned}
& \Rightarrow\left(\frac{5}{3}-1\right)\left(\alpha-\frac{5}{3}\right)+\left(\frac{7}{3}-0\right)\left(7-\frac{7}{3}\right)+\left(\frac{17}{3}-3\right)\left(1-\frac{17}{3}\right) \\
& =0 \\
& \Rightarrow \frac{2}{3}\left(\alpha-\frac{5}{3}\right)+\frac{7}{3} \times \frac{14}{3}+\left(\frac{8}{3} \times-\frac{14}{3}\right)=0 \\
& \Rightarrow 3 \alpha-5+49-56=0 \\
& \Rightarrow 3 \alpha-12=0 \Rightarrow \alpha=4
\end{aligned}
$$

$$
\left(\frac{5}{3}, \frac{7}{3}, \frac{17}{3}\right)
$$

E) KEYTAKEAWAYS

Image of a Point with Respect to a Line :
Let point $A\left(x_{1}, y_{1}, z_{1}\right) \&$ Line $L: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Let $A^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is image of point A with respect to line L
and, P is the mid point of the line segment $A A^{\prime}$ as well as the foot of perpendicular from the point A on the line L

To find point $P\left(x_{p}, y_{p}, z_{p}\right)$, apply mid point formula

$$
\begin{aligned}
& x_{p}=\frac{x_{1}+x^{\prime}}{2} \quad y_{p}=\frac{y_{1}+y^{\prime}}{2} \quad z_{p}=\frac{z_{1}+z^{\prime}}{2} \\
& \therefore A^{\prime}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \equiv\left(\left(2 x_{p}-x_{1}\right),\left(2 y_{p}-y_{1}\right),\left(2 z_{p}-z_{1}\right)\right)
\end{aligned}
$$

P is mid point of $A A^{\prime}$ To get $A^{\prime} \rightarrow$ find P
Then apply mid point formula

If (a, b, c) is the image of the point $(1,2,-3)$ in the line,
$\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}$, then $a+b+c$ is equal to :
Solution:
JEE MAINS JAN 2020

P is a point on the foot of perpendicular of the line L

$$
\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}=\lambda
$$

$$
\Rightarrow P \equiv(-1+2 \lambda, 3-2 \lambda,-\lambda)
$$

If (a, b, c) is the image of the point $(1,2,-3)$ in the line,
$\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1}$, then $a+b+c$ is equal to :
Solution:
$\frac{x+1}{2}=\frac{y-3}{-2}=\frac{z}{-1} \quad P \equiv(-1+2 \lambda, 3-2 \lambda,-\lambda)$
DRs of $A P \alpha(2 \lambda-2,1-2 \lambda, 3-\lambda)$
DRs of $L \alpha(2,-2,-1)$
$\because A P$ is \perp to $L \quad \therefore \cos \theta=0$
$\Rightarrow 2(2 \lambda-2)-2(1-2 \lambda)-(-\lambda+3)=0$
\Rightarrow Put $\lambda=1 \quad \therefore P \equiv(1,1,-1)$
Use mid point formula,

$$
\begin{array}{lll}
\frac{a+1}{2}=1 & \frac{b+2}{2}=1 & \frac{c-3}{2}=-1 \\
\Rightarrow a=1 & \Rightarrow b=0 & \Rightarrow c=1 \quad \Rightarrow a+b+c=2
\end{array}
$$

E. KEYTAKEAWAYS

Perpendicular Distance of a Point from a Line :

Let point $A\left(x_{1}, y_{1}, z_{1}\right) \&$ Line $L: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Let P is the foot of perpendicular from point A.
Method 1 :
Find point $P\left(x_{p}, y_{p}, z_{p}\right)$, and then evaluate distance $A P$

Method 2 :
$C P=|(\vec{a}-\vec{c}) \cdot \hat{b}|$
$A P=\sqrt{A C^{2}-C P^{2}}=\sqrt{|\vec{a}-\vec{c}|^{2}-|\vec{a}-\vec{c}|^{2} \cos ^{2} \theta}$
$A P=|\vec{a}-\vec{c}| \sqrt{1-\cos ^{2} \theta}$
$\underset{\mathrm{OD}}{A P}=|\vec{a}-\vec{c}| \sin \theta \quad A P=|(\vec{a}-\vec{c}) \times \hat{b}|$

Computing Distance between two parallel Lines :
$L_{1}: \vec{r}=\vec{a}+\lambda \vec{b}$
$L_{2}: \vec{r}=\vec{c}+\mu \vec{b}$
Area of $\triangle A B C=\frac{1}{2}|(\vec{a}-\vec{c}) \times \vec{b}|$

$$
=\frac{1}{2}|\vec{b}| \cdot A D
$$

$A D=$ Shortest Distance $=\frac{|(\vec{a}-\vec{c}) \times \vec{b}|}{|\vec{b}|}$
$\operatorname{Get} C D=|(\vec{a}-\vec{c}) \cdot \hat{b}|$
Use Pythagoras to find $A D$
$A D=$ Shortest Distance

Perpendicular Distance of a point from a Line:
Let point $A\left(x_{1}, y_{1}, z_{1}\right)$ and Line $L: \frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$
Let P is the foot of perpendicular from point A.

Method 1

Find point $P\left(x_{p}, y_{p}, z_{p}\right)$, and then evaluate distance $A P$

Method 2

Let point $A(\vec{a})$ and Line $L: \vec{r}=\vec{c}+\lambda \vec{b}$
Using formula $A P=\left|\frac{(a-\vec{c}) \times \vec{b}}{|\vec{b}|}\right|\left\{\begin{array}{l}\vec{a}=x_{1} \hat{i}+y_{1} \hat{j}+z_{1} \hat{k} \\ \vec{c}=x_{0} \hat{i}+y_{0} \hat{j}+z_{0} \hat{k} \\ \vec{b}=a \hat{i}+b \hat{j}+c \hat{k}\end{array}\right.$

The length of perpendicular from the point $(2,-1,4)$ on the straight line, $\frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1}$ is :

A Greater than 3 but less than 4
 straight line, $\frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1}$ is :
Solution:

$$
\begin{aligned}
& \frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1} \\
& \vec{a}=2 \hat{i}-\hat{j}+4 \hat{k} \quad \vec{b}=10 \hat{i}-7 \hat{j}+\hat{k} \quad \vec{c}=-3 \hat{i}+2 \hat{j} \\
& \vec{a}-\vec{c}=5 \hat{i}-3 \hat{j}+4 \hat{k} \\
& A P=|(\vec{a}-\vec{c}) \times \hat{b}| \quad \hat{b}=\frac{(10 \hat{i}-7 \hat{j}+\hat{k})}{\sqrt{150}}
\end{aligned}
$$

JEE MAINS Apr 2019

$|(\vec{a}-\vec{c}) \times \vec{b}|=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 5 & -3 & 4 \\ 10 & -7 & 1\end{array}\right|$
$A P=\frac{| | \vec{a}-\vec{c}) \times \bar{b} \mid}{|\vec{b}|}=\frac{\sqrt{25^{2}+35^{2}+5^{2}}}{\sqrt{150}}=\frac{5}{\sqrt{2}}$

The length of perpendicular from the point $(2,-1,4)$ on the straight line, $\frac{x+3}{10}=\frac{y-2}{-7}=\frac{z}{1}$ is :

? The vertices B and C of $\triangle A B C$ lie on the line $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$, such that $B C=5$ units . Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is :

The vertices B and C of $\triangle A B C$ lie on the line $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$, such that $B C=5$ units . Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is :

Solution:

$$
\begin{aligned}
& \frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4} \\
& \vec{a}=\hat{i}-\hat{j}+2 \hat{k} \\
& \vec{b}=3 \hat{i}+4 \hat{k} \\
& \vec{c}=-2 \hat{i}+\hat{j} \\
& A P=\left|\frac{((\hat{i}-\hat{j}+2 \hat{k})-(-2 \hat{i}+\hat{j})) \times(3 \hat{i}+4 \hat{k})}{|3 \hat{i}+4 \hat{k}|}\right| A P=\left|\frac{(\vec{a}-\vec{c}) \times \vec{b}}{|\vec{b}|}\right| \\
& A P=\left|\frac{(3 \hat{i}-2 \hat{j}+2 \hat{k}) \times(3 \hat{i}+4 \hat{k})}{|3 \hat{i}+4 \hat{k}|}\right|
\end{aligned}
$$

The vertices B and C of $\triangle A B C$ lie on the line $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$, such that $B C=5$ units. Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is :

Solution:

```
JEE MAINS Apr 2019
```

```
JEE MAINS Apr 2019
```

$$
\begin{aligned}
& \begin{aligned}
A P & =\left|\frac{(3 \hat{\imath}-2 \hat{\jmath}+2 \hat{k}) \times(3 \hat{i}+4 \hat{k})}{|3 \hat{i}+4 \hat{k}|}\right| \\
& =\left|\frac{(-8 \hat{i}-6 \hat{j}+6 \hat{k})}{5}\right| \\
& =\frac{2 \sqrt{34}}{5} \\
\begin{aligned}
\therefore \text { Area } & =\frac{1}{2} \cdot 5 \cdot \frac{2 \sqrt{34}}{5} \\
& =\sqrt{34}
\end{aligned} & \left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
3 & -2 & 2 \\
3 & 0 & 4
\end{array}\right| \\
& =\hat{\imath}(-8-0)-\hat{\jmath}(12-6)+\hat{k}(0+6) \\
& =-8 \hat{i}-6 \hat{j}+6 \hat{k})
\end{aligned}
\end{aligned}
$$

The vertices B and C of $\triangle A B C$ lie on the line $\frac{x+2}{3}=\frac{y-1}{0}=\frac{z}{4}$, such that $B C=5$ units . Then the area (in sq. units) of this triangle, given that the point $A(1,-1,2)$, is :

Session 05

Introduction to plane in
3 -D

Skew lines:

Neither parallel nor intersecting straight lines.

Non - coplanar

$P Q\left(\perp^{r}\right.$ to both $\left.L_{1} \& L_{2}\right)$ is the shortest distance between lines $L_{1} \& L_{2}$.

Shortest distance between 2 skew lines:
$L_{1}: \vec{r}=\vec{a}+\lambda \vec{p}$
$L_{2}: \vec{r}=\vec{b}+\mu \vec{q}$

Shortest distance $=\mid$ Projection of $\overrightarrow{A B}$ on $\vec{n} \mid$

$$
\begin{aligned}
& =\left|\frac{\overrightarrow{A B} \cdot \vec{n}}{|\vec{n}|}\right| \\
& =\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{a})}{|\vec{p} \times \vec{q}|}\right|
\end{aligned}
$$

Shortest distance between 2 skew lines:

Distance $P Q$ is the shortest distance between lines $L_{1} \& L_{2}$.

Let the lines be:

$L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
$\left|\frac{(\vec{b}-\vec{a}) \cdot(\vec{p} \times \vec{q})}{|\vec{p} \times \vec{q}|}\right|$
$L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
$\vec{b}-\vec{a}=\left(x_{2}-x_{1}\right) \hat{\imath}+\left(y_{2}-y_{1}\right) \hat{\jmath}+\left(z_{2}-z_{1}\right) \hat{k}$
$\therefore P Q=\left|\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\sum\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}}\right|$
Note: If lines are skew, $\frac{\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|}{\sqrt{\sum\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}} \neq 0$
Top

The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is:

(B) $\frac{7}{2} \sqrt{30}$

The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is:

Solution:

$$
\begin{aligned}
& \frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1} \\
& \frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}
\end{aligned}\left|\quad \therefore P Q=\left|\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\sum\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}}\right|\right|
$$

$\therefore P Q=\left|\frac{\left|\begin{array}{ccc}6 & 15 & -3 \\ 3 & -1 & 1 \\ -3 & 2 & 4\end{array}\right|}{\sqrt{(-6)^{2}+(15)^{2}+(3)^{2}}}\right|$
$\Rightarrow P Q=\frac{270}{\sqrt{270}}$
$\Rightarrow P Q=3 \sqrt{30}$

The shortest distance between the lines $\frac{x-3}{3}=\frac{y-8}{-1}=\frac{z-3}{1}$ and $\frac{x+3}{-3}=\frac{y+7}{2}=\frac{z-6}{4}$ is:

Let λ be an integer. If the shortest distance between the lines $x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is \qquad .

Let λ be an integer. If the shortest distance between the lines $x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is \qquad .

JEE MAINS FEB 2021

$L_{1}: \frac{x-\lambda}{1}=\frac{y-\frac{1}{2}}{\frac{1}{2}}=\frac{z}{-\frac{1}{2}} \quad \lambda \in \mathbb{I}$
$L_{2}: \frac{x}{1}=\frac{y+2 \lambda}{1}=\frac{z-\lambda}{1}$

$$
\therefore P Q=\left|\frac{\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|}{\sqrt{\sum\left(b_{1} c_{2}-b_{2} c_{1}\right)^{2}}}\right|
$$

$$
P Q=\left|\frac{\left|\begin{array}{ccc}
\lambda & \frac{1}{2}+2 \lambda & -\lambda \\
1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 1 & 1
\end{array}\right|}{\sqrt{1^{2}+\left(\frac{3}{2}\right)^{2}+\left(\frac{1}{2}\right)^{2}}}\right|=\frac{\sqrt{7}}{2 \sqrt{2}}
$$

$$
\left|\begin{array}{ccc}
\lambda & \frac{1}{2}+2 \lambda & -\lambda \\
1 & \frac{1}{2} & -\frac{1}{2} \\
1 & 1 & 1
\end{array}\right|=\lambda\left(\frac{1}{2}+\frac{1}{2}\right)-\left(\frac{1}{2}+2 \lambda\right)\left(1+\frac{1}{2}\right)-\lambda\left(1-\frac{1}{2}\right)
$$

Let λ be an integer. If the shortest distance between the lines $x-\lambda=2 y-1=-2 z$ and $x=y+2 \lambda=z-\lambda$ is $\frac{\sqrt{7}}{2 \sqrt{2}}$, then the value of $|\lambda|$ is \qquad .
$\Rightarrow\left|\begin{array}{ccc}\lambda & \frac{1}{2}+2 \lambda & -\lambda \\ 1 & \frac{1}{2} & -\frac{1}{2} \\ 1 & 1 & 1\end{array}\right|=\lambda-\left(\frac{1}{2}+2 \lambda\right)\left(\frac{3}{2}\right)-\frac{\lambda}{2}=-\frac{5 \lambda}{2}-\frac{3}{4}$
$\Rightarrow \frac{\left|\frac{-5 \lambda}{2}-\frac{3}{4}\right|}{\sqrt{\frac{7}{2}}}=\frac{\sqrt{7}}{2 \sqrt{2}}$
$\Rightarrow|-10 \lambda-3|=7$
$\Rightarrow-10 \lambda-3= \pm 7$
$\Rightarrow \lambda=\frac{2}{5},-1$
$\therefore|\lambda|=1$

Condition for lines to be Coplanar:

Two lines which are either intersecting or parallel,

$L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
If lines are parallel, they have same direction cosines.

If lines are intersecting, shortest distance between them is 0 .

辰 KEYTAKEAWAYS

Condition for lines to be Coplanar:

Condition for co planar lines :

$$
\left|\begin{array}{ccc}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

?
If for some $\alpha \in \mathbb{R}$, the lines $L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line L_{2} passes through the point:

JEE MAINS SEPT 2020

(B)
$(10,2,2)$$(10,-2,-2)$

D
$(2,-10,-2)$

If for some $\alpha \in \mathbb{R}$, the lines $L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line L_{2} passes through the point:

JEE MAINS SEPT 2020
Solution:

$$
\left.\begin{array}{l}
L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1} \\
L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}
\end{array}\right\} \text { coplanar } \quad \begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
1 & 3 & 2 \\
2 & -1 & 1 \\
\alpha & 5-\alpha & 1
\end{array}\right|=0 \\
& \Rightarrow 1(-1-(5-\alpha))-3(2-\alpha)+2(2(5-\alpha)+\alpha)=0 \\
& \Rightarrow \alpha=-4
\end{aligned}
$$

$$
\therefore L_{2}: \frac{x+2}{-4}=\frac{y+1}{9}=\frac{z+1}{1}
$$

If for some $\alpha \in \mathbb{R}$, the lines $L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line L_{2} passes through the point:

JEE MAINS SEPT 2020
Solution:
$\therefore L_{2}: \frac{x+2}{-4}=\frac{y+1}{9}=\frac{z+1}{1}$
Any point on line L_{2} can be $(-4 \lambda-2,9 \lambda-1, \lambda-1)$
For $\lambda=-1$, it passes through $(2,-10,-2)$.

If for some $\alpha \in \mathbb{R}$, the lines $L_{1}: \frac{x+1}{2}=\frac{y-2}{-1}=\frac{z-1}{1}$ and $L_{2}: \frac{x+2}{\alpha}=\frac{y+1}{5-\alpha}=\frac{z+1}{1}$ are coplanar, then the line L_{2} passes through the point:

$(10,2,2)$$(10,-2,-2)$

D
$(2,-10,-2)$
? If the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}, \frac{x-1}{3}=\frac{y-2}{-1}=\frac{z-3}{4}$ and $\frac{x+k}{3}=\frac{y-1}{2}=\frac{z-2}{h}$ are concurrent, then:
(A) $h=-2, k=-6$

B $\quad h=\frac{1}{2}, k=-2$
(C) $h=6, k=2$

D

$$
h=2, k=\frac{1}{2}
$$

If the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}, \frac{x-1}{3}=\frac{y-2}{-1}=\frac{z-3}{4}$ and $\frac{x+k}{3}=\frac{y-1}{2}=\frac{z-2}{h}$ are concurrent, then:

Solution:

Point on $L_{1}(\lambda, 2 \lambda, 3 \lambda)$
Point on $L_{2}(3 \mu+1,-\mu+2,4 \mu+3)$
$\left.\begin{array}{l}\lambda=3 \mu+1 \\ 2 \lambda=-\mu+2 \\ 3 \lambda=4 \mu+3\end{array}\right\} \Rightarrow \lambda=1, \mu=0$
Point of intersection is $(1,2,3)$

If the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}, \frac{x-1}{3}=\frac{y-2}{-1}=\frac{z-3}{4}$ and $\frac{x+k}{3}=\frac{y-1}{2}=\frac{z-2}{h}$ are concurrent, then:

Solution:

Point of intersection is $(1,2,3)$
L_{3} passes through $(1,2,3)$
Putting in $L_{3}: \frac{1+k}{3}=\frac{2-1}{2}=\frac{3-2}{h}$
$\Rightarrow h=2, k=\frac{1}{2}$

If the lines $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}, \frac{x-1}{3}=\frac{y-2}{-1}=\frac{z-3}{4}$ and $\frac{x+k}{3}=\frac{y-1}{2}=\frac{z-2}{h}$ are concurrent, then:
(A) $h=-2, k=-6$
(B) $h=\frac{1}{2}, k=-2$
(C) $h=6, k=2$
(D) $h=2, k=\frac{1}{2}$

Shortest Distance between Parallel Lines:

Distance $P Q$ is the shortest distance between lines between lines $L_{1} \& L_{2}$.

Let the lines be:

$L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
$L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
E. KEYTAKEAWAYS

Computing distance between two parallel lines:

$$
\begin{aligned}
& L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} \\
& L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
\end{aligned}
$$

$$
\text { Area of } \triangle A B C=\frac{1}{2}|(\vec{a}-\vec{c}) \times \vec{b}|
$$

$$
=\frac{1}{2}|\vec{b}| \cdot A D
$$

$$
A D=\text { Shortest Distance }=\frac{|(\vec{a}-\vec{c}) \times \vec{b}|}{|\vec{b}|}
$$

$$
C D=|(\vec{a}-\vec{c}) \cdot \hat{b}| \quad A D=\sqrt{A C^{2}-C D^{2}}=|(\vec{a}-\vec{c}) \times \hat{b}|
$$

辰 KEYTAKEAWAYS

Shortest Distance between Parallel Lines:

Distance $P Q$ is the shortest distance between lines between lines $L_{1} \& L_{2}$.

Let the lines be:
$L_{1}: \frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$

$L_{2}: \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$

The shortest distance between the lines $L_{1}: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{2}$ and $L_{2}: \frac{x-2}{4}=\frac{y}{-2}=\frac{z+1}{4}$, is:
(A) $\sqrt{26}$

D 5

Solution:

$$
\begin{aligned}
& L_{1}: \frac{x-1}{2}=\frac{y+1}{-1}=\frac{z}{2} \\
& L_{2}: \frac{x-2}{4}=\frac{y}{-2}=\frac{z+1}{4}
\end{aligned}
$$

$$
P Q=\left|\frac{\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right|
$$

$$
P Q=\left|\frac{\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & -1 \\
2 & -1 & 2
\end{array}\right|}{\sqrt{2^{2}+(-1)^{2}+2^{2}}}\right|=\left|\frac{\hat{\imath}-4 \hat{\jmath}-3 \hat{k}}{3}\right|=\frac{\sqrt{26}}{3}
$$

If a line joining any two points on a surface lies completely on it, then the surface is a plane.
Or

If the line joining any two points on a surface is
 perpendicular to some fixed straight line.

Then, the surface is called a plane and a fixed straight line is called normal to the plane.
E. KEYTAKEAWAYS

Equation of plane passing through a point:

Given: Direction ratio of normal of plane a, b, c and a point $A\left(x_{1}, y_{1}, z_{1}\right)$ on it.

Equation: $a\left(x-x_{1}\right)+b\left(y-y_{1}\right)+c\left(z-z_{1}\right)=0$

$$
A P \perp \text { Normal }
$$

DRs of Normal $\propto(a, b, c)$
DRs of AP $\propto\left(x-x_{1}, y-y_{1}, c-c_{1}\right)$
$\Rightarrow \cos \theta$

General form of Equation of Plane:
Let direction ratio of normal of plane be a, b, c.

Equation of plane: $a x+b y+c z=d$

Consider the three planes: $P_{1}: 3 x+15 y+21 z=9 ; P_{2}: x-3 y-z=5$; $P_{3}: 2 x+10 y+14 z=5$. Then, which one of the following is true?

B $\quad P_{2}$ and P_{3} are parallel

D
P_{1}, P_{2} and P_{3} are parallel

Consider the three planes: $P_{1}: 3 x+15 y+21 z=9 ; P_{2}: x-3 y-z=5$; $P_{3}: 2 x+10 y+14 z=5$. Then, which one of the following is true?
(A) P_{1} and P_{3} are parallel
(B) P_{2} and P_{3} are parallel
(C) P_{1} and P_{2} are parallel

D
P_{1}, P_{2} and P_{3} are parallel

Consider the three planes : $P_{1}: 3 x+15 y+21 z=9 ; P_{2}: x-3 y-z=5$; $P_{3}: 2 x+10 y+14 z=5$. Then, which one of the following is true?

```
JEE MAINS FEB 2021
```

Solution:

$$
\begin{aligned}
& P_{1}: x+5 y+7 z=3 \\
& P_{2}: x-3 y-z=5 \\
& P_{3}: x+5 y+7 z=\frac{5}{2}
\end{aligned}
$$

P_{1} and P_{3} are parallel.

The equation of a plane which passes through $(2,-3,1)$ and is perpendicular to the line joining points $(3,4,-1) \&(2,-1,5)$, is :

$$
\text { A } x+5 y-6 z+19=0
$$

$$
\text { B } x-5 y+6 z-19=0
$$

$$
\text { C } x+5 y+6 z+19=0
$$

$$
\text { (D) } x-5 y-6 z-19=0
$$

Solution:

The equation of a plane which passes through $(2,-3,1)$ and is perpendicular to the line joining points $(3,4,-1) \&(2,-1,5)$, is :

Solution:

DRs of the line joining $A B:-1,-5,6$

DRs of the plane will be: $-1,-5,6$

So, the equation of plane is:

$$
\begin{aligned}
& -(x-2)-5(y+3)+6(z-1)=0 \\
& \Rightarrow x+5 y-6 z+19=0
\end{aligned}
$$

Find the vector and cartesian equations of the plane which passes through the points $(5,2,-4)$ and perpendicular to the line with direction ratios $2,3,-1$

Find the vector and cartesian equations of the plane which passes through the points $(5,2,-4)$ and perpendicular to the line with direction ratios 2, 3, -1

Solution:

We have the position vector of point $(5,2,-4)$ as $\vec{a}=5 \hat{\imath}+2 \hat{\jmath}-4 \hat{k}$ and the normal vector \vec{N} perpendicular to the plane as \vec{N} $=2 \hat{\imath}+3 \hat{\jmath}-\hat{k}$

Therefore, the vector equation of the
plane is given by $(\vec{r}-\vec{a}) \cdot \vec{N}=\theta$

or $[\vec{r}-(5 \hat{\imath}+2 \hat{\jmath}-4 \hat{k})] \cdot(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})=0 \cdots$
Transforming (1) into cartesian form, we have
$[(x-5) \hat{\imath}+(y-2) \hat{\jmath}+(z+4) \hat{k}] \cdot(2 \hat{\imath}+3 \hat{\jmath}-\hat{k})=0$
or $2(x-5)+3(y-2)-(z+4)=0$

Find the vector and cartesian equations of the plane which passes through the points $(5,2,-4)$ and perpendicular to the line with direction ratios 2, 3, -1

Solution:
or $2(x-5)+3(y-2)-(z+4)=0$
i.e. $2 x+3 y-z=20$

Which is the cartesian equation of the plane

Session 06

Representation of

 equation of planeThe equation of the plane which contains y-axis and passes through the point $(1,2,3)$ is :

D

$$
x+3 z=0
$$ through the point $(1,2,3)$ is :

Solution: Let the equation of plane $a x+b y+c z=d$
Then point must pass thru $(0,0,0)$
$0+0+0=d \Rightarrow d=0$
Equation of the plane passing through $(1,2,3)$ is:
$a+2 b+3 c=0$
(a, b, c) normal $\perp y-$ axis $(0,1,0)$
$\Rightarrow \cos \theta=0 \Rightarrow a \cdot 0+b \cdot 1+c \cdot 0=0$
$\Rightarrow b=0$
$\Rightarrow a+3 c=0 \Rightarrow a=-3 c$
\therefore Equation of the plane is : $a x+c z=0$ through the point $(1,2,3)$ is :

Solution: $\quad \Rightarrow a=-3 c$
\therefore Equation of the plane is: $a x+c z=0$

$$
\Rightarrow-3 c x+c z=0
$$

\therefore Equation of the plane is: $3 x-z=0$

$$
y \text {-axis }
$$

$(1,2,3)$

The equation of the plane which contains y-axis and passes through the point $(1,2,3)$ is :

Let the plane $a x+b y+c z+d=0$ bisects the line joining the points $(4,-3,1)$ and $(2,3,-5)$ at right angles. If a, b, c, d are integers, then the minimum value $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ is:

JEE MAINS Mar 2021
Solution: \quad DRs of normal to plane \equiv DRs of $P Q \equiv(2,-6,6) \equiv(1,-3,3)$
Let A be the midpoint of $P \& Q$ and lie on the plane.
$\therefore A \equiv(3,0,-2)$
$\min \left(a^{2}+b^{2}+c^{2}+d^{2}\right)=? ; a, b, c, d \in \mathbb{I}$

$$
\Rightarrow x-3 y+3 z+d=0
$$

It passes through the point $(3,0,-2)$
$\Rightarrow 3-0-6+d=0$
$\Rightarrow d=3$
\therefore Equation of the plane is : $x-3 y+3 z+3=0$

Let the plane $a x+b y+c z+d=0$ bisects the line joining the points $(4,-3,1)$ and $(2,3,-5)$ at right angles. If a, b, c, d are integers, then the minimum value $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)$ is :

JEE MAINS Mar 2021
Solution: \quad DRs of normal to plane \equiv DRs of $P Q \equiv(2,-6,6) \equiv(1,-3,3)$
$\Rightarrow d=3$
\therefore Equation of the plane is : $x-3 y+3 z+3=0$
Minimum value of $\left(a^{2}+b^{2}+c^{2}+d^{2}\right)=28$

Let $(\lambda, 2,1)$ be a point on the plane which passes through the point $(4,-2,2)$. If the plane is perpendicular to the line joining the points $(-2,-21,29)$ and $(-1,-16,23)$, then $\left(\frac{\lambda}{11}\right)^{2}-\left(\frac{4 \lambda}{11}\right)-4$ is equal to \qquad
JEE MAINS Feb 2021
Solution:
DRs of $P Q: \quad-1,-5,6$

DRs of $A B: \quad 4-\lambda,-4,1$
$A B$ is perpendicular to $P Q$

$$
\Rightarrow(-1)(4-\lambda)+(-5)(-4)+(6)(1)=0
$$

$$
\Rightarrow \lambda=-22
$$

$$
\Rightarrow\left(\frac{\lambda}{11}\right)^{2}-\left(\frac{4 \lambda}{11}\right)-4=8
$$

Intercept form of equation of plane:
General form of equation of plane is : $a x+b y+c z=d$

$$
\begin{aligned}
& \Rightarrow \frac{a x}{d}+\frac{b y}{d}+\frac{c z}{d}=1 \Rightarrow \frac{x}{d / a}+\frac{y}{d / b}+\frac{z}{d / c}=1 \\
& X_{\text {int }}=\frac{d}{a} \quad, Y_{i n t}=\frac{d}{b} \quad, Z_{i n t}=\frac{d}{c}
\end{aligned}
$$

Thus, intercept form, is :
$\frac{x}{X_{i n t}}+\frac{y}{Y_{i n t}}+\frac{z}{Z_{i n t}}=1$

DRs of normal is : $\frac{1}{X_{\text {int }}}, \frac{1}{Y_{\text {int }}}, \frac{1}{Z_{\text {int }}}$

The equation of a plane parallel to $x+5 y-4 z+5=0$ and cutting intercepts on the axes whose sum is 38 , is:

(C) $x+5 y-4 z=10$

D

$$
x+5 y-4 z=40
$$

The equation of a plane parallel to $x+5 y-4 z+5=0$ and cutting intercepts on the axes whose sum is 38 , is:

As the plane are parallel \Rightarrow DRs of normal remains same \Rightarrow coeff of x, y, z
Solution:
Equation of parallel plane: $x+5 y-4 z=d \quad \frac{x}{d}+\frac{y}{\left(\frac{d}{5}\right)}+\frac{z}{\left(-\frac{d}{4}\right)}=1$

$$
X_{\text {int. }}=d \quad Y_{\text {int. }}=\frac{d}{5} \quad Z_{\text {int. }}=-\frac{d}{4}
$$

Given: $X_{i n t}+Y_{i n t}+Z_{i n t}=38$
Sum $=d+\frac{d}{5}-\frac{d}{4}=38$
$\Rightarrow d=40$
Equation of plane : $x+5 y-4 z=40$

The equation of a plane parallel to $x+5 y-4 z+5=0$ and cutting intercepts on the axes whose sum is 38 , is:

If (x, y, z) be an arbitrary point lying on a plane P which passes through the points $(42,0,0),(0,42,0) \&(0,0,42)$, then the value of the expression $3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}$ $+\frac{z-12}{(x-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(z-12)}$ is equal to:

```
JEE MAINS Mar 2021
```

Solution: By intercept form, Equation of plane P : $x+y+z=42$

$$
\begin{aligned}
& \Rightarrow(\underbrace{x-11)}_{p}+\underbrace{(y-19)}_{q}+\underbrace{(z-12)}_{r}=0 \Rightarrow p+q+r=0 \\
= & 3+\frac{x-11}{\frac{(y-19)^{2}(z-12)^{2}}{(y-12} \frac{y-19}{(x-11)^{2}(z-12)^{2}}}+\frac{z-12}{(x-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(z-12)} \\
= & 3+\frac{p}{(q)^{2}(r)^{2}}+\frac{q}{(p)^{2}(r)^{2}}+\frac{r}{(p)^{2}(q)^{2}}-\frac{p+q+r+42}{14(p)(q)(r)} \\
= & 3+\frac{(p)^{3}+(q)^{3}+(r)^{3}}{(p)^{2}(q)^{2}(r)^{2}}-\frac{42}{14(p)(q)(r)} \quad p+q+r=0
\end{aligned}
$$

If (x, y, z) be an arbitrary point lying on a plane P which passes through the points $(42,0,0),(0,42,0) \&(0,0,42)$, then the value of the expression $3+\frac{x-11}{(y-19)^{2}(z-12)^{2}}+\frac{y-19}{(x-11)^{2}(z-12)^{2}}$
$+\frac{z-12}{(x-11)^{2}(y-19)^{2}}-\frac{x+y+z}{14(x-11)(y-19)(z-12)}$ is equal to:
JEE MAINS Mar 2021

$$
\begin{aligned}
& =3+\frac{(p)^{3}+(q)^{3}+(r)^{3}}{(p)^{2}(q)^{2}(r)^{2}}-\frac{42}{14(p)(q)(r)} \\
& p+q+r=0 \\
& =3+\frac{3 p q r}{(p)^{2}(q)^{2}(r)^{2}}-\frac{3}{(p)(q)(r)} \\
& \Rightarrow(p)^{3}+(q)^{3}+(r)^{3}=3 p q r \\
& =3
\end{aligned}
$$

A plane P meets the coordinate axes at $A, B \& C$ respectively. The centroid of $\triangle A B C$ is given to be $(1,1,2)$. Then the equation of the line through this centroid and perpendicular to the plane P is:
$(\mathrm{A}) \frac{x-1}{1}=\frac{y-1}{2}=\frac{z-2}{2}$
(B) $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$
$\left(\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-2}{1}\right.$
(D) $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{2}$

A plane P meets the coordinate axes at $A, B \& C$ respectively. The centroid of $\triangle A B C$ is given to be $(1,1,2)$. Then the equation of the line through this centroid and perpendicular to the plane P is:

Solution:
JEE MAINS Sept 2020
Centroid of $\triangle A B C:\left(\frac{a}{3}, \frac{b}{3}, \frac{c}{3}\right)=(1,1,2)$
$\Rightarrow a=3, b=3, c=6$
Equation of plane : $\frac{x}{3}+\frac{y}{3}+\frac{z}{6}=1$
$\Rightarrow 2 x+2 y+z=6$

DRs of line perpendicular to the plane : $2,2,1$

Point on line is: $(1,1,2)$
Thus, equation of line is: $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$

A plane P meets the coordinate axes at $A, B \& C$ respectively. The centroid of $\triangle A B C$ is given to be $(1,1,2)$. Then the equation of the line through this centroid and perpendicular to the plane P is:
$\left(\frac{x-1}{1}=\frac{y-1}{2}=\frac{z-2}{2}\right.$
(B) $\frac{x-1}{2}=\frac{y-1}{2}=\frac{z-2}{1}$
(C) $\frac{x-1}{2}=\frac{y-1}{1}=\frac{z-2}{1}$
(D) $\frac{x-1}{1}=\frac{y-1}{1}=\frac{z-2}{2}$

Normal Form of Plane:

$$
l x+m y+n z=p \quad\left\{\begin{array}{l}
l, m, n \text { are DCs of normal. } \\
p=\text { distance of plane from origin. }
\end{array}\right.
$$

Conversion of general form to normal form:

General form : $a x+b y+c z=d$

Divide both sides by $\sqrt{a^{2}+b^{2}+c^{2}}$

Normal form: $\quad \frac{a x}{\sqrt{a^{2}+b^{2}+c^{2}}}+\frac{b y}{\sqrt{a^{2}+b^{2}+c^{2}}}+\frac{c z}{\sqrt{a^{2}+b^{2}+c^{2}}}=\frac{d}{\sqrt{a^{2}+b^{2}+c^{2}}}$

Note Constant term on right side should be positive .

Equation of plane upon which the length of normal from origin is 10 and direction ratios of this normal are $3,2,6$, is:

$$
\text { A } 3 x+2 y+6 z=70
$$

$$
\text { (B) } 3 x+2 y-6 z=70
$$

$$
\text { (C) } 3 x-2 y-6 z=70
$$

$$
\text { (D) } 3 x+2 y+6 z=-70
$$

Equation of plane upon which the length of normal from origin is 10 and direction ratios of this normal are $3,2,6$, is:

Solution:
DRs of normal are: $\quad(3,2,6)$

DCs of normal are: $\quad\left(\frac{3}{7}, \frac{2}{7}, \frac{6}{7}\right)$

Equation of plane : $\quad \frac{3}{7} x+\frac{2}{7} y+\frac{6}{7} z=10 \quad l x+m y+n z=p$

$$
3 x+2 y+6 z=70 \quad p=10
$$

Equation of plane upon which the length of normal from origin is 10 and direction ratios of this normal are $3,2,6$, is:

$$
3 x+2 y+6 z=70
$$

$$
\text { (B) } 3 x+2 y-6 z=70
$$

$$
\text { (C) } 3 x-2 y-6 z=70
$$

$$
\text { (D) } 3 x+2 y+6 z=-70
$$

E. KEYTAKEAWAYS

Equation of plane passing through three points:

Equation of plane passing through points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right)$ and $C\left(x_{3}, y_{3}, z_{3}\right)$ is :
$P(x, y, z)$ is the general point on plane $\overrightarrow{A P}, \overrightarrow{A B}, \overrightarrow{A C}$, are coplanar

$$
\begin{aligned}
& {\left[\begin{array}{lll}
\overrightarrow{A P} & \overrightarrow{A B} & \overrightarrow{A C}
\end{array}\right]=0} \\
& {\left[\begin{array}{lll}
\vec{r}-\vec{a} & \vec{b}-\vec{a} & \vec{c}-\vec{a}
\end{array}\right]=0}
\end{aligned}
$$

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

Equation of plane : $\left[\begin{array}{lll}\vec{r}-\vec{a} & \vec{b} & \vec{c}\end{array}\right]=0$

Equation of plane passing through the points $(1,1,1),(2,1,-1)$ $\&(3,3,0)$ is:

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1}
\end{array}\right|=0
$$

$$
\begin{aligned}
& \left(x_{1}, y_{1}, z_{1}\right) \equiv(1,1,1) \\
& \left(x_{2}, y_{2}, z_{2}\right) \equiv(2,1,-1) \\
& \left(x_{3}, y_{3}, z_{3}\right) \equiv(3,3,0)
\end{aligned}
$$

Equation of plane :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-1 & y-1 & z-1 \\
1 & 0 & -2 \\
2 & 2 & -1
\end{array}\right|=0 \\
& \Rightarrow(x-1)(4)-(y-1)(3)+(z-1)(2)=0 \\
& \Rightarrow 4 x-4-3 y+3+2 z-2=0 \\
& 4 x-3 y+2 z=3
\end{aligned}
$$

Condition for four points to be coplanar:
Given points $A\left(x_{1}, y_{1}, z_{1}\right), B\left(x_{2}, y_{2}, z_{2}\right), C\left(x_{3}, y_{3}, z_{3}\right)$ and $D\left(x_{4}, y_{4}, z_{4}\right)$
$\overrightarrow{A B}, \overrightarrow{A C}, \overrightarrow{A D}$, are coplanar

$$
\begin{aligned}
& \overrightarrow{A B}=\left(x_{2}-x_{1}\right) \hat{\imath}+\left(y_{2}-y_{1}\right) \hat{\jmath}+\left(z_{2}-z_{1}\right) \hat{k} \\
& \overrightarrow{A C}=\left(x_{3}-x_{1}\right) \hat{\imath}+\left(y_{3}-y_{1}\right) \hat{\jmath}+\left(z_{3}-z_{1}\right) \hat{k} \\
& \overrightarrow{A D}=\left(x_{4}-x_{1}\right) \hat{\imath}+\left(y_{4}-y_{1}\right) \hat{\jmath}+\left(z_{4}-z_{1}\right) \hat{k}
\end{aligned}
$$

Condition for them to lie in a plane :

$$
\left|\begin{array}{lll}
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
x_{3}-x_{1} & y_{3}-y_{1} & z_{3}-z_{1} \\
x_{4}-x_{1} & y_{4}-y_{1} & z_{4}-z_{1}
\end{array}\right|=0
$$

Condition: $[\vec{p} \vec{q} \vec{r}]=0$

If $(1,5,35),(7,5,5),(1, \lambda, 7) \&(2 \lambda, 1,2)$ are coplanar, then the sum of all possible values of λ is:

$\Rightarrow 5 \lambda^{2}-44 \lambda+39=0 \Rightarrow$ Sum of values of $\lambda: \frac{44}{5}$

If the point $(2, \alpha, \beta)$ lies on the plane which passes through the points $(3,4,2) \&(7,0,6)$ and is perpendicular to the plane $2 x$ $-5 y=15$, then $2 \alpha-3 \beta$ is equal to:

If the point $(2, \alpha, \beta)$ lies on the plane which passes through the points $(3,4,2) \&(7,0,6)$ and is perpendicular to the plane $2 x$ $-5 y=15$, then $2 \alpha-3 \beta$ is equal to:

Solution:

$$
2 \alpha-3 \beta=?
$$

Normal vector to the plane $: \vec{n}=\vec{a} \times \vec{b}$

$$
\vec{n}=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & \alpha-4 & \beta-2 \\
4 & -4 & 4
\end{array}\right|
$$

$$
\vec{n}=4(\alpha+\beta-6) \hat{i}+4(\beta-1) \hat{j}+4(-\alpha+5) \hat{k}
$$

\because it is perpendicular to the plane $2 x-5 y=15$
$\Rightarrow 8(\alpha+\beta-6)-20(\beta-1)=0$

$$
\Rightarrow 2 \alpha-3 \beta=7
$$

If the point $(2, \alpha, \beta)$ lies on the plane which passes through the points $(3,4,2) \&(7,0,6)$ and is perpendicular to the plane $2 x$ $-5 y=15$, then $2 \alpha-3 \beta$ is equal to:

Session 07

A point and a plane

The equation of the plane passing through the point $(1,2,-3)$ and perpendicular to the planes $3 x+y-2 z=5$ and $2 x-5 y-z=7$, is:

Solution: $P_{1}: \quad 3 x+y-2 z=5 \quad \overrightarrow{n_{1}}: 3 \hat{i}+\hat{j}-2 \hat{k}$
JEE MAINS FEB 2021

$$
P_{2}: 2 x-5 y-z=7 \quad \overrightarrow{n_{2}}: 2 \hat{i}-5 \hat{j}-\hat{k}
$$

plane passing through the point $(1,2,-3)$
B) $11 x+y+17 z+38=0$

Let normal vector to the plane be $\vec{n}=\overrightarrow{n_{1}} \times \overrightarrow{n_{2}}$

$$
\text { (A) } 3 x-10 y-2 z+11=0
$$

C $6 x-5 y-2 z-2=0$
$\Rightarrow \vec{n}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 3 & 1 & -2 \\ 2 & -5 & -1\end{array}\right|=-11 \hat{i}-\hat{j}-17 \hat{k}$
D) $6 x-5 y+2 z+10=0$

So, equation of the plane: $-11(x-1)-(y-2)-17(z+3)=0$

$$
\Rightarrow 11 x+y+17 z+38=0
$$

Foot of perpendicular from a point to a plane:

Let the equation of the plane : $a x+b y+c z=d$
$A P$ is parallel to normal to the plane,

$$
\begin{aligned}
& \frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=\lambda \cdots(i) \\
& \Rightarrow x_{p}=x_{1}+a \lambda ; \quad y_{p}=y_{1}+b \lambda ; \quad z_{p}=z_{1}+c \lambda
\end{aligned}
$$

Since, P lies on plane

$$
a\left(x_{1}+a \lambda\right)+b\left(y_{1}+b \lambda\right)+c\left(z_{1}+c \lambda\right)=d \Rightarrow \lambda=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

Foot of perpendicular from a point to a plane:

Let the equation of the plane : $a x+b y+c z=d$
$\frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=\lambda \cdots(i)$
$\Rightarrow \lambda=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}$

Substituting the value in (i)

$$
\frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

2 The foot of perpendicular of point $(1,0,2)$ to the plane $2 x+y+z=5$, is:

(B) $\left(\frac{1}{6}, \frac{4}{3}, \frac{10}{3}\right)$
(C) $\left(\frac{4}{3}, \frac{1}{6}, \frac{13}{6}\right)$

$(2,0,1)$

$$
\begin{aligned}
& \frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)} \\
& \frac{x_{p}-1}{2}=\frac{y_{p}}{1}=\frac{z_{p}-2}{1}=-\frac{(2(1)+0+2-5)}{(6)} \\
& x_{p}=\frac{4}{3} ; y_{p}=\frac{1}{6} ; z_{p}=\frac{13}{6}
\end{aligned}
$$

Thus foot of perpendicular is: $\left(\frac{4}{3}, \frac{1}{6}, \frac{13}{6}\right)$

The foot of perpendicular of point $(1,0,2)$ to the plane $2 x+y+z=5$, is:

$\left(\frac{4}{3}, \frac{1}{6}, \frac{13}{6}\right)$

$(2,0,1)$

Image of point with respect to a plane :
Let the equation of the plane : $a x+b y+c z=d$

$$
\begin{aligned}
& x^{\prime}=2 x_{p}-x_{1} ; y^{\prime}=2 y_{p}-y_{1} ; z^{\prime}=2 z_{p}-z_{1} \\
& \frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=\lambda \cdots(i) \\
& \lambda=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}
\end{aligned}
$$

$$
\frac{x^{\prime}-x_{1}}{a}=\frac{2 x_{p}-2 x_{1}}{a}=2 \lambda
$$

$$
\frac{x^{\prime}-x_{1}}{a}=\frac{y^{\prime}-y_{1}}{b}=\frac{z^{\prime}-z_{1}}{c}=-2 \frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}
$$

If the mirror image of the point $(1,3,5)$ with respect to the plane $4 x-5 y+2 z=8$ is (α, β, γ), then $5(\alpha+\beta+\gamma)$ equals: \qquad .

Solution: $\frac{x \prime-x_{1}}{a}=\frac{y \prime-y_{1}}{b}=\frac{z \prime-z_{1}}{c}=-2 \frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}$

$$
\Rightarrow \frac{\alpha-1}{4}=\frac{\beta-3}{-5}=\frac{\gamma-5}{2}=-2 \frac{(4(1)-5(3)+2(5)-8)}{\left(4^{2}+(-5)^{2}+2^{2}\right)}
$$

$$
\Rightarrow \alpha=\frac{13}{5} ; \beta=1 ; \gamma=\frac{29}{5}
$$

$$
\Rightarrow 5(\alpha+\beta+\gamma)=13+5+29=47
$$

The mirror image of the point $(1,2,3)$ in a plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$. Which of the following points lies on this plane?

(A) $(1,-1,1)$
(B) $(-1,-1,1)$

(C) $(1,1,1)$
(D) $(-1,-1,-1)$

The mirror image of the point $(1,2,3)$ in a plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$. Which of the following points lies on this plane?

Solution:
Mirror image of the point $(1,2,3)$ in a plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$
DRs of normal to the plane is:

$$
\left(1+\frac{7}{3}, 2+\frac{4}{3}, 3+\frac{1}{3}\right) \equiv(1,1,1)
$$

Point P is : $\left(-\frac{2}{3}, \frac{1}{3}, \frac{4}{3}\right)$

Equation of plane :

$\Rightarrow 1 \cdot\left(x+\frac{2}{3}\right)+1 \cdot\left(y-\frac{1}{3}\right)+1 \cdot\left(z-\frac{4}{3}\right)=0$

The mirror image of the point $(1,2,3)$ in a plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$. Which of the following points lies on this plane?

JEE MAINS JAN 2020
Equation of plane :
$\Rightarrow 1 \cdot\left(x+\frac{2}{3}\right)+1 \cdot\left(y-\frac{1}{3}\right)+1 \cdot\left(z-\frac{4}{3}\right)=0$
$\Rightarrow x+y+z=1$

Thus, point $(1,-1,1)$ lies on the plane

The mirror image of the point $(1,2,3)$ in a plane is $\left(-\frac{7}{3},-\frac{4}{3},-\frac{1}{3}\right)$. Which of the following points lies on this plane?

(A) $(1,-1,1)$
(B) $(-1,-1,1)$

(C) $(1,1,1)$
(D) $(-1,-1,-1)$

Distance of a Point from a Plane:

Let equation of plane: $\quad a x+b y+c z=d$
where a, b, c are DRs of normal.

$$
D=\frac{|\vec{\alpha} \cdot \vec{n}-d|}{|\vec{n}|}
$$

$$
D=\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

The equation of the planes parallel to the plane $x-2 y+2 z-3=0$ which are at a unit distance from the point $(1,2,3)$ is $a x+b y+c z+d=0$. If $(b-d)=K(c-a)$, then the positive value of K is \qquad

Solution:

The equation of the planes parallel to the plane $x-2 y+2 z-3=0$ which are at a unit distance from the point $(1,2,3)$ is $a x+b y+c z+d=0$. If $(b-d)=K(c-a)$, then the positive value of K is \qquad

Solution:

Let equation of required plane : $x-2 y+2 z+d=0$

$$
\begin{aligned}
& \left|\frac{1-2(2)+2(3)+d}{\sqrt{1^{2}+(-2)^{2}+2^{2}}}\right|=1 \\
& \Rightarrow d=0,-6 \\
& (b-d)=-2 \text { or } 4,(c-a)=1 \\
& \Rightarrow K=-2 \text { or } 4 \\
& \therefore K=4
\end{aligned}
$$

$$
D=\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

Relative Position of Two Points with Respect to a Plane:

Let equation of plane : $a x+b y+c z-d=0$ where a, b, c are DRs of normal.

Two points $A\left(x_{1}, y_{1}, z_{1}\right) \& B\left(x_{2}, y_{2}, z_{2}\right)$ are on:

$$
A\left(x_{1}, y_{1}, z_{1}\right)
$$

$B\left(x_{2}, y_{2}, z_{2}\right)$

Ratio in which the plane divides line joining points $A \& B$ is :

$$
-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a x_{2}+b y_{2}+c z_{2}-d\right)}
$$

Relative Position of Two Points with Respect

 to a Plane:Ratio in which the plane divides line joining points A \& B is :

$$
-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a x_{2}+b y_{2}+c z_{2}-d\right)}
$$

(i) Same side of plane,

$$
\begin{aligned}
& -\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a x_{2}+b y_{2}+c z_{2}-d\right)}<0 \\
& \Rightarrow \frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a x_{2}+b y_{2}+c z_{2}-d\right)}>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { the signs of } a x_{1}+b y_{1}+c z_{1}-d \text { and } \\
& a x_{2}+b y_{2}+c z_{2}-d \text { are same. }
\end{aligned}
$$

Relative Position of Two Points with Respect to a Plane:
(ii) Opposite side of plane,
the signs of $a x_{1}+b y_{1}+c z_{1}-d$ and $a x_{2}+b y_{2}$ $+c z_{2}-d$ are opposite.

- $A\left(x_{1}, y_{1}, z_{1}\right)$

$$
\text { c } B\left(x_{2}, y_{2}, z_{2}\right)
$$

Ratio in which the plane $2 x-y+3 z+4=0$ divides the line joining the points $(1,2,-4) \&(-3,1,-7)$ is:

Ratio in which the plane $2 x-y+3 z+4=0$ divides the line joining the points $(1,2,-4) \&(-3,1,-7)$ is:

Solution:

$$
\begin{aligned}
\text { Ratio } & =-\frac{(2(1)-(2)+3(-4)+4)}{(2(-3)-1+3(-7)+4)} \\
& =-\frac{1}{3}
\end{aligned}
$$

Division is 1: 3 external.

Ratio in which the plane $2 x-y+3 z+4=0$ divides the line joining the points $(1,2,-4) \&(-3,1,-7)$ is:

Points $(1,2,3) \&(2,-1,4)$ with respect to the plane $x+4 y+z-3=0$ lie on:

D One lie on plane and other doesn't

Points $(1,2,3) \&(2,-1,4)$ with respect to the plane $x+4 y+z-3=0$ lie on:

D One lie on plane and other doesn't

Points $(1,2,3) \&(2,-1,4)$ with respect to the plane $x+4 y+z-3=0$ lie on:

Solution:

Let $A(1,2,3) \& B(2,-1,4)$

Equation of plane: $x+4 y+z-3=0$

For point $A: \quad 1+4(2)+3-3>0$

For point $B: \quad 2+4(-1)+4-3<0$
\therefore Points $A \& B$ lie on opposite side.

Angle between a Line and a Plane:
Let equation of plane: $\quad a x+b y+c z=d$ where a, b, c are DRs of normal.

Let equation of line : $\quad \frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{b_{1}}=\frac{z-z_{0}}{c_{1}}$
where a_{1}, b_{1}, c_{1} are DRs of line.

$$
\begin{aligned}
& \cos \left(90^{\circ}-\theta\right)=\frac{a a_{1}+b b_{1}+c c_{1}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}{ }^{2}}} \\
& \theta=\sin ^{-1}\left(\frac{a a_{1}+b b_{1}+c c_{1}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{{a_{1}^{2}}^{2}+{b_{1}{ }^{2}+c_{1}^{2}}^{2}}}\right)
\end{aligned}
$$

Angle between a Line and a Plane:
Let equation of plane: $\quad a x+b y+c z=d$

Let equation of line : $\quad \frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{b_{1}}=\frac{z-z_{0}}{c_{1}}$

$$
\theta=\sin ^{-1}\left(\frac{a a_{1}+b b_{1}+c c_{1}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{{a_{1}^{2}}^{2}+{b_{1}^{2}}^{2}+c_{1}^{2}}}\right)
$$

(i) Condition for line to be parallel to plane:

$$
a a_{1}+b b_{1}+c c_{1}=0
$$

(ii) Condition for line to be perpendicular to plane:

$$
\frac{a}{a_{1}}=\frac{b}{b_{1}}=\frac{c}{c_{1}}
$$

2 If an angle between the line, $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane, $x-2 y-k z=3$ is $\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$, then a value of k is :
$\left(\begin{array}{ll|}(\mathrm{B}) & -\frac{3}{5} \\ \hline \sqrt{\frac{3}{5}} \\ \hline\end{array}\right.$
$(\mathrm{C}) \sqrt{\frac{5}{3}}$
$\left(-\frac{5}{3}\right.$

If an angle between the line, $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane, $x-2 y-k z=3$ is $\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$, then a value of k is:

JEE MAINS JAN 2019
Solution:
Let angle $\theta=\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$
$\Rightarrow \theta=\quad \sin ^{-1} \sqrt{1-\left(\frac{2 \sqrt{2}}{3}\right)}=\sin ^{-1}\left(\frac{1}{3}\right)$

$$
\theta=\sin ^{-1}\left(\frac{a a_{1}+b b_{1}+c c_{1}}{\sqrt{a^{2}+b^{2}+c^{2}} \sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right)
$$

$\Rightarrow \frac{1}{3}=\frac{2(1)+1(-2)-2(-k)}{\sqrt{2^{2}+1^{2}+(-2)^{2}} \sqrt{1^{2}+(-2)^{2}+(-k)^{2}}}$
$\Rightarrow \frac{1}{3}=\frac{2 k}{3 \sqrt{5+(k)^{2}}} \quad \Rightarrow \sqrt{5+(k)^{2}}=2 k$
Squaring
$\Rightarrow 3 k^{2}=5 \quad \Rightarrow k= \pm \sqrt{\frac{5}{3}}$

If an angle between the line, $\frac{x+1}{2}=\frac{y-2}{1}=\frac{z-3}{-2}$ and the plane, $x-2 y-k z=3$ is $\cos ^{-1}\left(\frac{2 \sqrt{2}}{3}\right)$, then a value of k is :

(B) $\sqrt{\frac{3}{5}}$
(C) $\sqrt{\frac{5}{3}}$
(D) $-\frac{5}{3}$

Session 08

A line and a plane

Condition for a Line to Lie in a Plane

Let equation of plane: $a x+b y+c z=d$
where a, b, c are DRs of normal.
and equation of line : $\frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{b_{1}}=\frac{z-z_{0}}{c_{1}}$
where a_{1}, b_{1}, c_{1} are DRs of line.

For, line to lie in a plane :
(i) $a x_{0}+b y_{0}+c z_{0}=d$
(ii) $a a_{1}+b b_{1}+c c_{1}=0$, (Line \perp^{r} to the normal to the plane)

If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$, lies in the plane $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to ${ }^{-1}$:

Line $\frac{x-3}{2}=\frac{y-(-2)}{-1}=\frac{z-(-4)}{3}$
Line passes through a point $(3,-2,-4) \&$ DRs of line $\alpha(2,-1,3)$
DRs of normal to plane $\propto(l, m,-1)$

1) Point $A(3,-2,-4)$ lies on $l x+m y-z=9$
$\Rightarrow 3 l-2 m+4=9 \Rightarrow 3 l-2 m=5$
Line \perp^{r} to normal $\Rightarrow 2 l-m-3=0 \Rightarrow 2 l-m=3$

If the line $\frac{x-3}{2}=\frac{y+2}{-1}=\frac{z+4}{3}$, lies in the plane $l x+m y-z=9$, then $l^{2}+m^{2}$ is equal to :
$\Rightarrow 3 l-2 m+4=9 \Rightarrow 3 l-2 m=5$
Line \perp^{r} to normal $\Rightarrow 2 l-m-3=0 \Rightarrow 2 l-m=3$

$$
l=1, m=-1 \Rightarrow l^{2}+m^{2}=1^{2}+(-1)^{2}=2
$$

? Let P be a plane $l x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}$ $=\frac{z+2}{3}$. If the plane divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio $k: 1$, then the value of k is:
3

Let P be a plane $l x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}$ $=\frac{z+2}{3}$. If the plane divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio $k: 1$, then the value of k is:

Solution:

```
JEE Main Feb 2021
```

Equation of line: $\frac{x-1}{-1}=\frac{y-(-4)}{2}=\frac{z-(-2)}{3}$ lies on the plane

Point $A^{\prime}(1,-4,-2)$ lies on $l x+m y+n z=0$
$l-4 m-2 n=0$
DRs of line $\propto(-1,2,3)$
DRs of normal $\propto(l, m, n)$
Line perpendicular to plane $\Rightarrow-l+2 m+3 n=0$
$\Rightarrow-2 m+n=0 \Rightarrow n=2 m$

Let P be a plane $l x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}$ $=\frac{z+2}{3}$. If the plane divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio $k: 1$, then the value of k is:

Solution:
JEE Main Feb 2021

Equation of line: $\frac{x-1}{-1}=\frac{y-(-4)}{2}=\frac{z-(-2)}{3}$
Line perpendicular to plane

$$
\begin{aligned}
& \Rightarrow-l+2 m+3 n=0 \\
& \Rightarrow-2 m+n=0 \Rightarrow n=2 m
\end{aligned}
$$

Put $n=2 m$ in $-l+2 m+3 n=0$
$\therefore l=8 m$
\therefore Equation of plane : $8 m x+m y+2 m z=0$
$8 x+y+2 z=0$

Let P be a plane $l x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}$ $=\frac{z+2}{3}$. If the plane divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio $k: 1$, then the value of k is:

JEE Main Feb 2021
Solution: Equation of line: $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$
\therefore Equation of plane : $8 x+y+2 z=0$

$$
\begin{aligned}
& \text { Ratio }=\frac{k}{1} \\
& \Rightarrow-\frac{(8(-3)+(-6)+2(1))}{(8(2)+(4)+2(-3))}=\frac{k}{1} \quad \text { Ratio }=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a x_{2}+b y_{2}+c z_{2}-d\right)} \\
& \Rightarrow \frac{28}{14}=\frac{k}{1} \\
& \Rightarrow k=2
\end{aligned}
$$

Let P be a plane $l x+m y+n z=0$ containing the line, $\frac{1-x}{1}=\frac{y+4}{2}=\frac{z+2}{3}$. If the plane divides the line segment $A B$ joining points $A(-3,-6,1)$ and $B(2,4,-3)$ in ratio $k: 1$, then the value of k is:

Equation of Plane Containing Two Parallel Lines

Equation of lines : $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$

$$
\frac{x-x_{2}}{a_{1}}=\frac{y-y_{2}}{b_{1}}=\frac{z-z_{2}}{c_{1}}
$$

$\overrightarrow{A R}, \overrightarrow{A B}$ \& \vec{p} are coplanar
$\Rightarrow\left[\begin{array}{lll}\overrightarrow{A R} & \overrightarrow{A B} & \vec{p}\end{array}\right]=0$

$[\overrightarrow{A R} \overrightarrow{A B} \vec{p}]=0$

$$
\Rightarrow\left[\begin{array}{lll}
\vec{r}-\vec{a} & \vec{b}-\vec{a} & \vec{p}
\end{array}\right]=0
$$

So, equation of plane is:

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|=0
$$

? The equation of plane containing the lines, $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z-0}{5}$, is :

Solution:

The equation of plane containing the lines, $\frac{x-4}{1}=\frac{y-3}{-4}=\frac{z-2}{5}$ and $\frac{x-3}{1}=\frac{y+2}{-4}=\frac{z-0}{5}$, is :

Solution:
$L_{1} \| L_{2} \Rightarrow \vec{p}=\hat{\imath}-4 \hat{\jmath}+5 \hat{k}$
L_{1} passes through point $A=(4,3,2)$
L_{2} passes through point $B=(3,-2,0)$

The equation of plane :

$$
\begin{aligned}
& \left|\begin{array}{ccc}
x-4 & y-3 & z-2 \\
-1 & -5 & -2 \\
1 & -4 & 5
\end{array}\right|=0 \quad\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\
a_{1} & b_{1} & c_{1}
\end{array}\right|=0 \\
& \Rightarrow(x-4)(-25-8)-(y-3)(-5+2)+(z-2)(4+5)=0 \\
& \Rightarrow-33 x+3 y+9 z+105=0
\end{aligned}
$$

$$
\Rightarrow 11 x-y-3 z=35 \quad \therefore \text { Equation of plane }: 11 x-y-3 z=35
$$

Equation of Plane Containing Two Lines

Equation of lines: $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$

$$
\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}
$$

[$\overrightarrow{A R} \vec{p} \vec{q}$] are coplanar
$\Rightarrow[\overrightarrow{A R} \vec{p} \vec{q}]=0$

So, equation of plane is:

$$
\left|\begin{array}{ccc}
x-x_{1} & y-y_{1} & z-z_{1} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|=0
$$

Let P be a plane containing the line $\frac{x-1}{3}=\frac{y+6}{4}=\frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4}=\frac{y-2}{-3}=\frac{z+5}{7}$. If the point $(1,-1, \alpha)$ lies on the plane P, then the value of $|5 \alpha|$ is equal to

JEE Main March 2021
Solution:
L_{1} passes through point $(1,-6,-5)$
$L_{1} \equiv 3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}, L_{2} \equiv 3 \hat{\imath}+4 \hat{\jmath}+2 \hat{k}$
Equation of plane is :

$$
\left|\begin{array}{ccc}
x-1 & y+6 & z+5 \\
3 & 4 & 2 \\
4 & -3 & 7
\end{array}\right|=0
$$

$\Rightarrow(1,-1, \alpha)$ lies on it

$$
\begin{aligned}
\Rightarrow\left|\begin{array}{ccc}
0 & 5 & \alpha+5 \\
3 & 4 & 2 \\
4 & -3 & 7
\end{array}\right|=0 & \Rightarrow 5(13)+25(\alpha+5)=0 \\
& \Rightarrow 5 \alpha+38=0 \\
& \Rightarrow|5 \alpha|=38
\end{aligned}
$$

Let P be a plane containing the line $\frac{x-1}{3}=\frac{y+6}{4}=\frac{z+5}{2}$ and parallel to the line $\frac{x-3}{4}=\frac{y-2}{-3}=\frac{z+5}{7}$. If the point $(1,-1, \alpha)$ lies on the plane P, then the value of $|5 \alpha|$ is equal to \qquad
JEE Main March 2021
Solution:
Equation of plane is :
$\left|\begin{array}{ccc}x-1 & y+6 & z+5 \\ 3 & 4 & 2 \\ 4 & -3 & 7\end{array}\right|=0$
$\Rightarrow(1,-1, \alpha)$ lies on it

$\Rightarrow\left|\begin{array}{ccc}0 & 5 & \alpha+5 \\ 3 & 4 & 2 \\ 4 & -3 & 7\end{array}\right|=0$
$\Rightarrow 5(13)+25(\alpha+5)=0$
$\Rightarrow 5 \alpha+38=0$
$\Rightarrow|5 \alpha|=38$
? Let a plane P contains two lines $\vec{r}=\hat{i}+\lambda(\hat{i}+\hat{j}), \lambda \in \mathbb{R}$ and $\vec{r}=-\hat{j}+\mu(\hat{j}-\hat{k}), \mu \in \mathbb{R}$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn form the point $M(1,0,1)$ to P, then $3(\alpha+\beta+\gamma)$ equals

Let a plane P contains two lines $\vec{r}=\hat{i}+\lambda(\hat{i}+\hat{j}), \lambda \in \mathbb{R}$ and $\vec{r}=-\hat{j}+\mu(\hat{j}-\hat{k}), \mu \in \mathbb{R}$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn form the point $M(1,0,1)$ to P, then $3(\alpha+\beta+\gamma)$ equals

Solution:
Equation of plane is
$\left[\begin{array}{lll}\vec{r}-\vec{a} & \vec{p} & \vec{q}\end{array}\right]=0$ where $\vec{p}=\hat{\imath}+\hat{\jmath}$ and $\vec{q}=\hat{\jmath}-\hat{k}$

Equation of plane is: $\left|\begin{array}{ccc}x-1 & y & z \\ 1 & 1 & 0 \\ 0 & 1 & -1\end{array}\right|=0 \quad\left|\begin{array}{ccc}x-x_{1} & y-y_{1} & z-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$

$$
\Rightarrow x-y-z=1
$$

$\frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}$

Let a plane P contains two lines $\vec{r}=\hat{i}+\lambda(\hat{i}+\hat{j}), \lambda \in \mathbb{R}$ and $\vec{r}=-\hat{j}+\mu(\hat{j}-\hat{k}), \mu \in \mathbb{R}$. If $Q(\alpha, \beta, \gamma)$ is the foot of the perpendicular drawn form the point $M(1,0,1)$ to P, then $3(\alpha+\beta+\gamma)$ equals

Solution:

$$
\begin{aligned}
& \frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)} \\
& \Rightarrow \frac{\alpha-1}{1}=\frac{\beta-0}{-1}=\frac{\gamma-1}{-1}=-\frac{(1-0-1-1)}{\left(1^{2}+(-1)^{2}+(-1)^{2}\right)}=\frac{1}{3} \\
& \Rightarrow \alpha=\frac{4}{3}, \beta=-\frac{1}{3}, \gamma=\frac{2}{3} \\
& \Rightarrow 3(\alpha+\beta+\gamma)=3\left(\frac{4}{3}+\left(-\frac{1}{3}\right)+\frac{2}{3}\right)=5
\end{aligned}
$$

A plane passing through the point $(3,1,1)$ contains two lines whose direction ratios are $1,-2,2$ and $2,3,-1$ respectively. If this plane also passes through the point ($\alpha,-3,5$), then α is equal to :

JEE Main Sep 2021

A plane passing through the point $(3,1,1)$ contains two lines whose direction ratios are $1,-2,2$ and $2,3,-1$ respectively. If this plane also passes through the point $(\alpha,-3,5)$, then α is equal to :

JEE Main Sep 2021
DRs of line $L_{1}:(1,-2,2)$
DRs of line $L_{2}:(2,3,-1)$
DRs of line $L_{1}:(1,-2,2) \equiv \overrightarrow{L_{1}}$.
DRs of line $L_{1}:(2,3,-1) \equiv \overrightarrow{L_{2}}$.

- $(\alpha,-3,5)$
$\overrightarrow{A R}, \overrightarrow{L_{1}}, \overrightarrow{L_{2}}$ are coplanar
$\left[\overrightarrow{A R} \overrightarrow{L_{1}} \overrightarrow{L_{2}}\right]=0$

$$
\left|\begin{array}{ccc}
x-3 & y-1 & z-1 \\
1 & -2 & 2 \\
2 & 3 & -1
\end{array}\right|=0
$$

Point $(\alpha,-3,5)$ lies on above plane

A plane passing through the point $(3,1,1)$ contains two lines whose direction ratios are $1,-2,2$ and $2,3,-1$ respectively. If this plane also passes through the point $(\alpha,-3,5)$, then α is equal to :

JEE Main Sep 2021
Solution: $\left|\begin{array}{ccc}x-3 & y-1 & z-1 \\ 1 & -2 & 2 \\ 2 & 3 & -1\end{array}\right|=0$
Point $(\alpha,-3,5)$ lies on above plane

$$
\left|\begin{array}{ccc}
\alpha-3 & -4 & 4 \\
1 & -2 & 2 \\
2 & 3 & -1
\end{array}\right|=0
$$

$(3,1,1)$

- $(\alpha,-3,5)$

$$
R_{1} \rightarrow \frac{R_{1}}{2} \Rightarrow\left|\begin{array}{ccc}
\frac{\alpha-3}{2} & -2 & 2 \\
1 & -2 & 2 \\
2 & 3 & -1
\end{array}\right|=0
$$

$$
\Rightarrow \frac{\alpha-3}{2}=1 \Rightarrow \alpha-3=2
$$

$$
\Rightarrow \alpha=5
$$

A plane passing through the point $(3,1,1)$ contains two lines whose direction ratios are $1,-2,2$ and $2,3,-1$ respectively. If this plane also passes through the point ($\alpha,-3,5$), then α is equal to :

JEE Main Sep 2021

Intersection point of a line and a plane

Let equation of plane: $a x+b y+c z=d$
where a, b, c are direction ratios of normal.
and equation of line: $\frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{b_{1}}=\frac{z-z_{0}}{c_{1}}=\lambda$
 where a_{1}, b_{1}, c_{1} are direction ratios of the line.

Let A is the point on the line
$\Rightarrow A \equiv\left(x_{0}+a_{1} \lambda, y_{0}+b_{1} \lambda, z_{0}+c_{1} \lambda\right) \cdots(i)$
A also lies on plane,
$\Rightarrow a\left(x_{0}+a_{1} \lambda\right)+b\left(y_{0}+b_{1} \lambda\right)+c\left(z_{0}+c_{1} \lambda\right)=d$

Intersection point of a line and a plane

Let equation of plane: $a x+b y+c z=d$ and equation of line: $\frac{x-x_{0}}{a_{1}}=\frac{y-y_{0}}{b_{1}}=\frac{z-z_{0}}{c_{1}}=\lambda$
$\Rightarrow A \equiv\left(x_{0}+a_{1} \lambda, y_{0}+b_{1} \lambda, z_{0}+c_{1} \lambda\right) \cdots(i)$
$\Rightarrow a\left(x_{0}+a_{1} \lambda\right)+b\left(y_{0}+b_{1} \lambda\right)+c\left(z_{0}+c_{1} \lambda\right)=d$
$\therefore \lambda=\frac{d-a x_{0}-b y_{0}-c z_{0}}{a a_{1}+b b_{1}+c c_{1}}$

Substitute value of λ in (i) to get point A.

The equation of line passing through the point of intersection of line $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$ and the plane $x+y+z-2=0$ is
(A) $\frac{x-4}{1}=\frac{y-5}{1}=\frac{z-5}{-1}$

C $\frac{x-2}{2}=\frac{y-3}{2}=\frac{z+3}{3}$

B $\frac{x+3}{3}=\frac{4-y}{3}=\frac{z+1}{-2}$
D) $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$

Equation of line: $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}=\lambda$
Let A be a point on the line $\Rightarrow A \equiv(4+2 \lambda, 5+2 \lambda, 3+\lambda)$
A also lies on plane $x+y+z-2=0$
$\Rightarrow 4+2 \lambda+5+2 \lambda+3+\lambda-2=0$
$\Rightarrow \lambda=-2$
$\therefore A \equiv(0,1,1)$ So, point $A(0,1,1)$ lies on the line $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$

The point of intersection of line $\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-6}{-2}$ and the plane $x-7 y$ $+3 z=15$ is:

(C) $(3,2,-14)$
(D) $(13,12,14)$

The point of intersection of line $\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-6}{-2}$ and the plane $x-7 y$ $+3 z=15$ is:

(C) $(3,2,-14)$
(D) $(13,12,14)$

The point of intersection of line $\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-6}{-2}$ and the plane $x-7 y$ $+3 z=15$ is:

Solution:
Any given on the line $\frac{x-3}{4}=\frac{y+2}{-1}=\frac{z-6}{-2}$ can be taken as
$\Rightarrow(x, y, z)=(4 t+3,-t-2,-2 t+6)$
Now for the intersection with the given plane, $(4 t+3,-t-2,-2 t+6)$ must lie on the plane $x-7 y+3 z=15$

$$
\begin{aligned}
& \Rightarrow(4 t+3)-7(-t-2)+3(-2 t+6)=15 \\
\Rightarrow & 5 t+35=15 \\
\Rightarrow & 5 t=-20 \\
\Rightarrow & t=-4
\end{aligned}
$$

Hence, the point of intersection is $(3-16,4-2,8+6)=(-13,2,14)$

The distance of point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and the plane $x+y+z-17=0$ is:

JEE Main Feb 2021
(B) $19 \sqrt{2}$
(C) $\sqrt{38}$
(D) 38

The distance of point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and the plane $x+y+z-17=0$ is:

JEE Main Feb 2021
Solution:

Equation of line: $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}=\lambda$

Let A be a point on the line
$\Rightarrow A \equiv(3+\lambda, 4+2 \lambda, 5+2 \lambda)$

A also lies on plane,
$3+\lambda+4+2 \lambda+5+2 \lambda-17=0$

$$
\Rightarrow \lambda=1 \quad A \equiv(4,6,7)
$$

The distance of point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and the plane $x+y+z-17=0$ is:

Solution:

$$
A \equiv(4,6,7)
$$

Distance $=\sqrt{(4-1)^{2}+(6-1)^{2}+(9-7)^{2}}$

$$
\begin{aligned}
& =\sqrt{3^{2}+5^{2}+2^{2}} \\
& =\sqrt{38}
\end{aligned}
$$

The distance of point $(1,1,9)$ from the point of intersection of the line $\frac{x-3}{1}=\frac{y-4}{2}=\frac{z-5}{2}$ and the plane $x+y+z-17=0$ is:

JEE Main Feb 2021
(B) $19 \sqrt{2}$

$\sqrt{38}$38

A plane has equation $x-y+z-5=0$ and a line has direction ratios as $(2,3,-6)$, then the distance of point $P(1,3,5)$ along the line from the given plane is:

JEE Main Aug 2021

Solution:

Equation of line $P Q$:

$$
\frac{x-1}{2}=\frac{y-3}{3}=\frac{z-5}{-6}=\lambda
$$

$$
Q \equiv(1+2 \lambda, 3+3 \lambda, 5-6 \lambda)
$$

A plane has equation $x-y+z-5=0$ and a line has direction ratios as $(2,3,-6)$, then the distance of point $P(1,3,5)$ along the line from the given plane is:

Solution:
Q also lies on plane: $x-y+z-5=0$
$\Rightarrow 1+2 \lambda-(3+3 \lambda)+5-6 \lambda-5=0$
$\Rightarrow \lambda=-\frac{2}{7}$
$P Q=\sqrt{(1+2 \lambda-1)^{2}+(3+3 \lambda-3)^{2}+(5-6 \lambda-5)^{2}}$
$=\sqrt{4 \lambda^{2}+9 \lambda^{2}+36 \lambda^{2}}$
$\Rightarrow P Q=\sqrt{49 \lambda^{2}}$
Return to Top $\quad=\sqrt{49 \cdot \frac{4}{49}}=2$

Session 09

Angle bisector of two planes
? The distance of point $P(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+17=0$ is:

7 unit measured parallel to the plane $3 x+2 y-2 z+17=0$ is:

Equation of line: $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}=\lambda$
Point $Q \equiv(1+2 \lambda, 3+4 \lambda, 2+3 \lambda)$
Direction ratios of $P Q: \quad 2 \lambda-2,4 \lambda-5,3 \lambda$
$\because P Q$ is parallel to plane
$\Rightarrow 3(2 \lambda-2)+2(4 \lambda-5)-2(3 \lambda)=0$
$\Rightarrow \lambda=2$
$\Rightarrow Q \equiv(5,11,8)$

$$
P Q=\sqrt{(5-3)^{2}+(11-8)^{2}+(8-2)^{2}}=7
$$

$$
P Q=?
$$

The distance of point $P(3,8,2)$ from the line $\frac{x-1}{2}=\frac{y-3}{4}=\frac{z-2}{3}$ measured parallel to the plane $3 x+2 y-2 z+17=0$ is:

Perpendiculars are drawn form points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$. The feet of perpendiculars lie on the line:

JEE Adv 2013
Equation of line: $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}=\lambda$

Any point P on the given line is

$$
(2 \lambda-2,-\lambda-1,3 \lambda)
$$

The point P lies on the given plane for some λ.
$\Rightarrow(2 \lambda-2)+(-\lambda-1)+3 \lambda=3$
$\Rightarrow 4 \lambda=6$
(A) $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$

B $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$
$\Rightarrow \lambda=\frac{3}{2}$
$\Rightarrow P \equiv\left(1,-\frac{5}{2}, \frac{9}{2}\right)$
D $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$

Perpendiculars are drawn form points on the line $\frac{x+2}{2}=\frac{y+1}{-1}=\frac{z}{3}$ to the plane $x+y+z=3$. The feet of perpendiculars lie on the line:

JEE Adv 2013
$\Rightarrow P \equiv\left(1,-\frac{5}{2}, \frac{9}{2}\right)$
The foot of the perpendicular from the point $(-2,-1,0)$ on the plane is the point Q.

$$
\frac{x_{2}-x_{1}}{a}=\frac{y_{2}-y_{1}}{b}=\frac{z_{2}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}+d\right)}{a^{2}+b^{2}+c^{2}}
$$

$$
\Rightarrow \frac{x_{1}+2}{1}=\frac{x_{2}+1}{1}=\frac{x_{3}-0}{1}=-\frac{(1(-2)+1(-1)+1(0)-3)}{1^{2}+1^{2}+1^{2}}=2
$$

A $\frac{x}{5}=\frac{y-1}{8}=\frac{z-2}{-13}$

$$
Q \equiv(0,1,2)
$$

B $\frac{x}{4}=\frac{y-1}{3}=\frac{z-2}{-7}$

The direction ratio of $P Q:\left(-1, \frac{7}{2},-\frac{5}{2}\right)=(2,-7,5)$
C) $\frac{x}{2}=\frac{y-1}{3}=\frac{z-2}{-5}$

Hence, the equation of the line is $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$
D $\frac{x}{2}=\frac{y-1}{-7}=\frac{z-2}{5}$
? The image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z=26$ is:

$$
\text { A } \frac{x-4}{9}=\frac{y}{-1}=\frac{z+3}{-3}
$$

$$
\text { (B) } \frac{x-4}{9}=\frac{y+1}{-1}=\frac{z-7}{-3}
$$

$$
\text { (C) } \frac{x}{9}=\frac{y}{-1}=\frac{z}{-3}
$$

$$
\text { (D) } \frac{x+2}{9}=\frac{y-5}{-1}=\frac{z}{-3}
$$

The image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z=26$ is:
Solution: Plane : $3 x-3 y+10 z=26$
Line : $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$
$9 \cdot 3+(-1) \cdot(-3)+(-3) \cdot 10=0$
\therefore Line is parallel to the plane.

Let image of point P with respect to plane is Q.

$$
\begin{aligned}
& \frac{x-1}{3}=\frac{y-2}{-3}=\frac{z+3}{10}=-2\left(\frac{3(1)-3(2)+10(-3)-26}{118}\right) \\
& \Rightarrow \frac{x-1}{3}=\frac{y-2}{-3}=\frac{z+3}{10}=1 \\
& \Rightarrow Q \equiv(4,-1,7) \\
& \therefore \text { Image: } \frac{x-4}{9}=\frac{y+1}{-1}=\frac{z-7}{-3}
\end{aligned}
$$

The image of the line $\frac{x-1}{9}=\frac{y-2}{-1}=\frac{z+3}{-3}$ in the plane $3 x-3 y+10 z=26$ is:
(A) $\frac{x-4}{9}=\frac{y}{-1}=\frac{z+3}{-3}$
(B) $\frac{x-4}{9}=\frac{y+1}{-1}=\frac{z-7}{-3}$
(C) $\frac{x}{9}=\frac{y}{-1}=\frac{z}{-3}$
(D) $\frac{x+2}{9}=\frac{y-5}{-1}=\frac{z}{-3}$

Angle between two planes:

Let equations of planes be: $a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

Angle between planes is same as angle between their normals

Let angle between planes is θ, then

$$
\cos \theta=\frac{\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)}{\sqrt{{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}^{{a_{2}^{2}+b_{2}^{2}+c_{2}{ }^{2}}^{2}}}, \frac{r^{2}}{}}
$$

(i) Planes are perpendicular, if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
(ii) Planes are parallel, if $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}$

The direction ratios of normal to the plane through the points $(0,-1,0)$ and $(0,0,1)$ and making an angle $\frac{\pi}{4}$ with the plane $y-z+5=0$ are:

JEE Main Jan 2019
Solution: Let equation of plane be $a(x-0)+b(y+1)+c(z-0)=0$

$$
\begin{aligned}
& \text { passes through }(0,0,1) \\
& \Rightarrow a(0)+b(1)+c(1)=0 \\
& \Rightarrow b+c=0 \\
& \overrightarrow{n_{1}}=a \hat{\imath}+b \hat{\jmath}+c \hat{k} \\
& \overrightarrow{n_{2}}=\hat{\jmath}-\hat{k} \\
& \cos \frac{\pi}{4}=\widehat{n_{1}} \cdot \widehat{n_{2}}=\frac{b-c}{\sqrt{a^{2}+b^{2}+c^{2}} \cdot \sqrt{2}}=\frac{1}{\sqrt{2}} \\
& \Rightarrow \sqrt{a^{2}+b^{2}+c^{2}}=b-c=2 b \\
& \Rightarrow a^{2}+2 b^{2}=4 b^{2} \\
& \Rightarrow a= \pm \sqrt{2} b \quad \text { and } c=-b
\end{aligned}
$$

A

$$
2, \sqrt{2},-\sqrt{2}
$$

$$
B
$$

$$
\text { (C) } \sqrt{2}, 1,-1
$$

Direction ratios: $(\sqrt{2}, 1,-1)$ or $(2, \sqrt{2},-\sqrt{2})$ $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is:
 $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is:

Solution: Angle between the faces $O P Q \& P Q R$ is same as angle between their normal.

Let normal vector to the face $P Q R=\overrightarrow{n_{1}}$
$\vec{b}=-\hat{i}+\hat{j}-2 \hat{k} \quad \vec{a}=-3 \hat{i}-\hat{k}$
$\overrightarrow{n_{1}}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -3 & 0 & -1 \\ -1 & 1 & -2\end{array}\right|$

$$
\Rightarrow \overrightarrow{n_{1}}=\hat{i}-5 \hat{j}-3 \hat{k}
$$

Let normal vector to the face $O P Q=\overrightarrow{n_{2}}$

$$
\begin{aligned}
& \vec{c}=\hat{i}+2 \hat{j}+\hat{k} \\
& \vec{d}=2 \hat{i}+\hat{j}+3 \hat{k}
\end{aligned}
$$ $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is:

Solution:

$$
\left.\begin{array}{l}
\vec{c}=\hat{i}+2 \hat{j}+\hat{k} \\
\vec{d}=2 \hat{i}+\hat{j}+3 \hat{k} \\
\overrightarrow{n_{2}}=\left|\begin{array}{lll}
\hat{i} & \hat{j} & \hat{k} \\
1 & 2 & 1 \\
2 & 1 & 3
\end{array}\right| \\
\Rightarrow \overrightarrow{n_{2}}=5 \hat{i}-\hat{j}-3 \hat{k} \\
\theta
\end{array}=\cos ^{-1}\left(\frac{(\hat{i}-5 \hat{j}-3 \hat{k}) \cdot(5 \hat{-}-\hat{j}-3 \hat{k})}{\sqrt{35} \cdot \sqrt{35}}\right) \quad \cos \theta=\frac{\overrightarrow{n_{1}} \cdot \overrightarrow{n_{2}}}{\left|\overrightarrow{n_{1}}\right| \overrightarrow{\mid \overrightarrow{2}} \mid}\right)
$$ $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is:

A tetrahedron has vertices $P(1,2,1), Q(2,1,3), R(-1,1,2)$ and $O(0,0,0)$. The angle between the faces $O P Q$ and $P Q R$ is:

Equation of angle bisector of two planes:

Let equation of planes be: $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

Equation of angle bisector planes:

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}\right)= \pm\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right)
$$

Equation of angle bisector of two planes containing a point:

Let equation of planes be: $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

(i) If sign of $a_{1} \alpha+b_{1} \beta+c_{1} \gamma-d_{1}$ and $a_{2} \alpha+b_{2} \beta+c_{2} \gamma-d_{2}$ is same, then equation of bisector containing point (α, β, γ) will be :

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right)=+\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)
$$

Equation of angle bisector of two planes containing a point:

Let equation of planes be: $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

(ii) If sign of $a_{1} \alpha+b_{1} \beta+c_{1} \gamma-d_{1}$ and $a_{2} \alpha+b_{2} \beta+c_{2} \gamma-d_{2}$ is opposite, then equation of bisector containing point (α, β, γ) will be :

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right)=-\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)
$$

Equation of acute/obtuse angle bisector of two planes:

Let equation of planes be: $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

(i) If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}>0$,

Then equation of acute angle bisector

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}\right)=-\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right)
$$

and equation of obtuse angle bisector

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right)=+\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}{ }^{2}}}\right)
$$

Equation of acute/obtuse angle bisector of two planes:

Let equation of planes be: $\quad a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

(ii) If $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}<0$,

Then equation of acute angle bisector

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}\right)=+\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}\right)
$$

and equation of obtuse angle bisector

$$
\left(\frac{a_{1} x+b_{1} y+c_{1} z-d_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}\right)=-\left(\frac{a_{2} x+b_{2} y+c_{2} z-d_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}\right)
$$

Distance between parallel Planes:

Let equation of planes be: $P_{1}: a x+b y+c z=d_{1} \quad$ and $\quad P_{2}: a x+b y+c z=d_{2}$

Let A lies on P_{2}
$D=\left|\frac{a_{1} x_{0}+b_{1} y_{0}+c_{1} z_{0}-d_{1}}{\sqrt{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}}\right|$
$a x_{0}+b y_{0}+c z_{0}=d_{2}$
$D=\left|\frac{d_{2}-d_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$

If the plane, $2 x-y+2 z+3=0$ has the distances $\frac{1}{3}$ and $\frac{2}{3}$ units from the planes $4 x-2 y+4 z+\lambda=0$ and $2 x-y+2 z+\mu=0$, respectively, then the maximum value of $\lambda+\mu$ is equal to:

Solution:
JEE Main Apr 2019

$$
\begin{equation*}
P_{0}: 2 x-y+2 z+3=0 \tag{A 13}
\end{equation*}
$$

$D=\left|\frac{d_{2}-d_{1}}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|$

$$
P_{1}: 2 x-y+2 z+\frac{\lambda}{2}=0
$$

$$
\frac{1}{3}=\left|\frac{\frac{\lambda}{2}-3}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}}}\right|
$$

$$
\frac{2}{3}=\left|\frac{\mu-3}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}}}\right|
$$

B
9515

$$
P_{2}: 2 x-y+2 z+\mu=0
$$

If the plane, $2 x-y+2 z+3=0$ has the distances $\frac{1}{3}$ and $\frac{2}{3}$ units from the planes $4 x-2 y+4 z+\lambda=0$ and $2 x-y+2 z+\mu=0$, respectively, then the maximum value of $\lambda+\mu$ is equal to:

Solution:

$$
\begin{array}{ll}
\frac{1}{3}=\left|\frac{\frac{\lambda}{2}-3}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}}}\right| & \frac{2}{3}=\left|\frac{\mu-3}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}}}\right| \\
\Rightarrow 1=\left|\frac{\lambda}{2}-3\right| \\
\Rightarrow \lambda=8,4 \\
\frac{2}{3}=\left|\frac{\mu-3}{\sqrt{2^{2}+(-1)^{2}+(2)^{2}}}\right| \\
\Rightarrow 2=|\mu-3| \\
\Rightarrow \mu=1,5 \\
(\lambda+\mu)_{\text {max }}=13
\end{array}
$$

JEE Main Apr 2019
? If the distance between the plane, $23 x-10 y-2 z+48=0$ and the plane containing the lines $\frac{x+1}{2}=\frac{y-3}{4}=\frac{z+1}{3}$ and $\frac{x+3}{2}=\frac{y+2}{6}$
$=\frac{z-1}{\lambda}(\lambda \in \mathbb{R})$ is equal to $\frac{k}{\sqrt{633}}$, then k is equal to:

If the distance between the plane, $23 x-10 y-2 z+48=0$ and the plane containing the lines $\frac{x+1}{2}=\frac{y-3}{4}=\frac{z+1}{3}$ and $\frac{x+3}{2}=\frac{y+2}{6}$
$=\frac{z-1}{\lambda}(\lambda \in \mathbb{R})$ is equal to $\frac{k}{\sqrt{633}}$, then k is equal to:

Perpendicular distance between plane
Required distance $=23 x-10 y-2 z+48=0$ either from point $(-1,3,-1)$ or $(-3,-2,1)$

$$
\begin{aligned}
D & =\left|\frac{23(-1)-10(3)-2(-1)+48}{\sqrt{23^{2}+(-10)^{2}+(-2)^{2}}}\right|=\frac{3}{\sqrt{529+100+4}} \\
\Rightarrow D & =\frac{3}{\sqrt{633}}
\end{aligned}
$$

$$
\therefore k=3
$$

? A plane which bisects the angle between the two planes $2 x-y$ $+2 z-4=0$ and $x+2 y+2 z-2=0$, passes through the point:

A plane which bisects the angle between the two planes $2 x-y$ $+2 z-4=0$ and $x+2 y+2 z-2=0$, passes through the point:

$(2,4,1)$

$$
(2,-4,1)
$$

Session 10

Family of planes and equation of sphere

Family of Planes :
Equation of a plane passing through the line of intersection of non parallel planes P_{1} and P_{2}, is:

$$
P_{1}+\lambda P_{2}=0, \lambda \in R
$$

Let equation of planes be: $P_{1}: a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } P_{2}: a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

So, equation of required plane:

$$
\left(a_{1} x+b_{1} y+c_{1} z-d_{1}\right)+\lambda\left(a_{2} x+b_{2} y+c_{2} z-d_{2}\right)=0
$$

If the equation of the plane passing through the line of intersection of the planes $2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$ is $a x+b y+c z-7=0$, then the value of $2 a+b+c-7$ is:

If the equation of the plane passing through the line of intersection of the planes $2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$ is $a x+b y+c z-7=0$, then the value of $2 a+b+c-7$ is:

JEE MAINS Mar 2021

Solution:
Required plane has equation:

$$
\begin{aligned}
& 2 x-7 y+4 z-3+\lambda(3 x-5 y+4 z+11)=0 \\
& x(2+3 \lambda)-y(7+5 \lambda)+4 z(1+\lambda)-3+11 \lambda=0 \cdots(i)
\end{aligned}
$$

It passes through the point $(-2,1,3)$,
$(-2)(2+3 \lambda)-1(7+5 \lambda)+12(1+\lambda)-3+11 \lambda=0$
$\Rightarrow \lambda=\frac{1}{6}$

If the equation of the plane passing through the line of intersection of the planes $2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$ is $a x+b y+c z-7=0$, then the value of $2 a+b+c-7$ is:

JEE MAINS Mar 2021

Solution:
$x(2+3 \lambda)-y(7+5 \lambda)+4 z(1+\lambda)-3+11 \lambda=0 \cdots(i)$
$\Rightarrow \lambda=\frac{1}{6}$

Substituting in (i)

Thus, the plane: $15 x-47 y+28 z-7=0$
$a=15, b=-47, c=28$
$\Rightarrow 2 a+b+c-7=4$

If the equation of the plane passing through the line of intersection of the planes $2 x-7 y+4 z-3=0,3 x-5 y+4 z+11=0$ and the point $(-2,1,3)$ is $a x+b y+c z-7=0$, then the value of $2 a+b+c-7$ is:

If the equation of a plane P, passing through the intersection of the planes, $x+4 y-z+7=0$ and $3 x+y+5 z-8=0$ is $a x+b y+6 z-15=0$, for some $a, b \in \mathbb{R}$, then the distance of the point $(3,2,-1)$ form the plane P is:

```
JEE MAINS Sept 2020
```

Required plane has equation:

$$
\begin{align*}
& x+4 y-z+7+\lambda(3 x+y+5 z-8)=0 \\
& x(1+3 \lambda)+y(4+\lambda)+z(-1+5 \lambda)+7-8 \lambda=0 \tag{i}
\end{align*}
$$

Comparing with the given equation:

$$
\begin{aligned}
a x+b y+6 z- & 15=0 \\
\frac{6}{(-1+5 \lambda)}=\frac{-15}{7-8 \lambda} & \Rightarrow 14-16 \lambda=5-25 \lambda \\
& \Rightarrow 9 \lambda=-9 \Rightarrow \lambda=-1
\end{aligned}
$$

If the equation of a plane P, passing through the intersection of the planes, $x+4 y-z+7=0$ and $3 x+y+5 z-8=0$ is $a x+b y+6 z-15=0$, for some $a, b \in \mathbb{R}$, then the distance of the point $(3,2,-1)$ form the plane P is:

```
JEE MAINS Sept 2020
```

$x(1+3 \lambda)+y(4+\lambda)+z(-1+5 \lambda)+7-8 \lambda=0 \cdots(i)$
$\Rightarrow \lambda=-1$

Substituting in (i)

Thus, the plane: $-2 x+3 y-6 z+15=0$

$$
\begin{aligned}
D & =\left|\frac{-6+6+6+15}{\sqrt{(-2)^{2}+3^{2}+(-6)^{2}}}\right| \\
& =\left|\frac{21}{\sqrt{49}}\right|=3
\end{aligned}
$$

The vector equation of the plane through the line of intersection of the planes $x+y+z-1=0$ and $2 x+3 y+4 z-5=0$ which is perpendicular to the plane $x-y+z=0$, is:
(A) $\vec{r} \cdot(\hat{i}-\hat{k})-2=0$

B $\vec{r} \times(\hat{i}+\hat{k})+2=0$
(C) $\vec{r} \cdot(\hat{i}-\hat{k})+2=0$

D $\vec{r} \times(\hat{i}+\hat{k})-2=0$

The vector equation of the plane through the line of intersection of the planes $x+y+z-1=0$ and $2 x+3 y+4 z-5=0$ which is perpendicular to the plane $x-y+z=0$, is:

```
JEE MAINS April }201
```


Solution:

Required plane has equation:

$$
\begin{aligned}
& x+y+z-1+\lambda(2 x+3 y+4 z-5)=0 \\
& x(1+2 \lambda)+y(1+3 \lambda)+z(1+4 \lambda)-1-5 \lambda=0 \cdots(i)
\end{aligned}
$$

Since it is perpendicular to the plane:

$$
\begin{aligned}
& x-y+z=0 \\
& 1(1+2 \lambda)-(1+3 \lambda)+(1+4 \lambda)=0 \\
& \Rightarrow \lambda=-\frac{1}{3}
\end{aligned}
$$

The vector equation of the plane through the line of intersection of the planes $x+y+z-1=0$ and $2 x+3 y+4 z-5=0$ which is perpendicular to the plane $x-y+z=0$, is:

```
JEE MAINS April }201
```


Solution:

$x(1+2 \lambda)+y(1+3 \lambda)+z(1+4 \lambda)-1-5 \lambda=0 \cdots(i)$
$\Rightarrow \lambda=-\frac{1}{3}$
Substituting in (i)

$\frac{x}{3}-\frac{z}{3}+\frac{2}{3}=0$
$\Rightarrow x-z+2=0$

Thus, vector equation of plane: $\vec{r} \cdot(\hat{i}-\hat{k})+2=0$

The vector equation of the plane through the line of intersection of the planes $x+y+z-1=0$ and $2 x+3 y+4 z-5=0$ which is perpendicular to the plane $x-y+z=0$, is:
(A) $\vec{r} \cdot(\hat{i}-\hat{k})-2=0$

B $\vec{r} \times(\hat{i}+\hat{k})+2=0$
(C) $\vec{r} \cdot(\hat{i}-\hat{k})+2=0$

D $\vec{r} \times(\hat{i}+\hat{k})-2=0$

Non-Symmetrical Form of Line

A straight line in space is characterized by intersection of two planes, which are not parallel.

Let equation of planes be: $P_{1}: a_{1} x+b_{1} y+c_{1} z=d_{1}$

$$
\text { and } P_{2}: a_{2} x+b_{2} y+c_{2} z=d_{2}
$$

Equation of line of intersection of planes P_{1} and P_{2}, is:

$$
a_{1} x+b_{1} y+c_{1} z-d_{1}=0=a_{2} x+b_{2} y+c_{2} z-d_{2}
$$

(Non - symmetric form)

Non-Symmetrical Form of Line

Equation of line of intersection of planes P_{1} and P_{2}, is:

$$
\begin{array}{r}
a_{1} x+b_{1} y+c_{1} z-d_{1}=0=a_{2} x+b_{2} y+c_{2} z-d_{2} \\
\text { (Non - symmetric form) }
\end{array}
$$

To convert to symmetric form of line:

Step 1 : Get direction ratios:

Let a, b, c be the direction ratios

Line of intersection lies on both $P_{1} \& P_{2}$, then

$$
a, b, c=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|
$$

Non-Symmetrical Form of Line

Equation of line of intersection of planes P_{1} and P_{2}, is:

$$
\begin{aligned}
a_{1} x+b_{1} y+c_{1} z-d_{1}= & 0=a_{2} x+b_{2} y+c_{2} z-d_{2} \\
& (\text { Non }- \text { symmetric form) }
\end{aligned}
$$

To convert to symmetric form of line:

Step 1 : Get direction ratios:
Step 2 : Point on the line: If $a \neq 0$, take a point on $y-z$ plane
i.e. $P\left(0, y_{1}, z_{1}\right)$, and substitute it in the equation of planes

So, solving the simultaneous equations

$$
b_{1} y_{1}+c_{1} z_{1}=d_{1} \quad b_{2} y_{1}+c_{2} z_{1}=d_{2}, \text { to get point } P .
$$

Reduce the equation of line $4 x+4 y-5 z-12=0 \& 8 x+12 y-13 z-32=0$ in symmetric form:

Reduce the equation of line $4 x+4 y-5 z-12=0 \& 8 x+12 y-13 z-32=0$ in symmetric form:

Solution:

Line of intersection of planes:
$4 x+4 y-5 z-12=0 \cdots(i)$
$8 x+12 y-13 z-32=0 \cdots(i i)$

Direction ratio: $a, b, c=2,3,4$

Putting $z=0$, in $(i) \&(i i)$

$$
\begin{gathered}
x+y=3 \\
2 x+3 y=8
\end{gathered}
$$

Point on the line: $x=1, y=2, z=0$

Reduce the equation of line $4 x+4 y-5 z-12=0 \& 8 x+12 y-13 z-32=0$ in symmetric form:

Solution:

Direction ratio: $a, b, c=2,3,4$

Point on the line: $x=1, y=2, z=0$

Thus, equation of line: $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z}{4}$

A plane P contains the line $x+2 y+3 z+1=0=x-y-z-6$, and is perpendicular to the plane $-2 x+y+z+8=0$. Then which of the following points lies on P ?

$$
(1,0,1)
$$

$$
(2,-1,1)
$$

$$
(0,1,1)
$$

$(-1,1,2)$

A plane P contains the line $x+2 y+3 z+1=0=x-y-z-6$, and is perpendicular to the plane $-2 x+y+z+8=0$. Then which of the following points lies on P ?

Solution:

Required plane is a plane passing through the line of intersection of planes
$P_{1} \equiv x+2 y+3 z+1=0$
And $P_{2} \equiv x-y-z-6=0$
Its equation: $P_{1}+\lambda P_{2}=0$
(A $(1,0,1)$
B) $(2,-1,1)$
(C) $(0,1,1)$
$(-1,1,2)$
$\Rightarrow(x+2 y+3 z+1)+\lambda(x-y-z-6)=0$
$\Rightarrow(1+\lambda) x+(2-\lambda) y+(3-\lambda) z+1-6 \lambda=0$
\because Perpendicular to $-2 x+y+z+8=0$
$\therefore-2(1+\lambda)+(2-\lambda)+(3-\lambda)=0$

A plane P contains the line $x+2 y+3 z+1=0=x-y-z-6$, and is perpendicular to the plane $-2 x+y+z+8=0$. Then which of the following points lies on P ?

Solution:
$\therefore-2(1+\lambda)+(2-\lambda)+(3-\lambda)=0$
$\Rightarrow \lambda=\frac{3}{4}$
\Rightarrow Required plane is $7 x+5 y+9 z=14$
Checking the option show that
(A) $(1,0,1)$

B $(2,-1,1)$
(C) $(0,1,1)$
$(-1,1,2)$
$(0,1,1)$ Satisfies it.

A plane P contains the line $x+2 y+3 z+1=0=x-y-z-6$, and is perpendicular to the plane $-2 x+y+z+8=0$. Then which of the following points lies on P ?

$(1,0,1)$

$$
(2,-1,1)
$$

$(0,1,1)$
$(-1,1,2)$

The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0 \& 2 x-y+z+3=0$ is:

JEE MAINS Sept 2020

Solution:

Line of intersection of planes:

$$
\begin{gathered}
x+y+z+1=0 \cdots(i) \\
2 x-y+z+3=0 \cdots(i i)
\end{gathered}
$$

$$
\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
1 & 1 & 1 \\
2 & -1 & 1
\end{array}\right|=2 \hat{i}+\hat{j}-3 \hat{k}
$$

$$
\text { (B) } 1
$$

(D) $\frac{1}{2}$
$x+y+1=0$
$2 x-y+3=0$

The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0 \& 2 x-y+z+3=0$ is:

JEE MAINS Sept 2020
Solution:

$$
x+y+1=0 \quad 2 x-y+3=0
$$

Direction ratio: $a, b, c=2,1,-3$

Point on the line: $x=-\frac{4}{3}, y=\frac{1}{3}, z=0$
Thus, equation of line : $\frac{x+\frac{4}{3}}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z}{-3}$

(D) $\frac{1}{2}$

The shortest distance between the lines $\frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1}$ and $x+y+z+1=0 \& 2 x-y+z+3=0$ is:

JEE MAINS Sept 2020
Solution:

$$
\begin{aligned}
& \frac{x-1}{0}=\frac{y+1}{-1}=\frac{z}{1} \quad \frac{x+\frac{4}{3}}{2}=\frac{y-\frac{1}{3}}{1}=\frac{z}{-3} \\
& c \times d=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
2 & 1 & -3 \\
0 & -1 & 1
\end{array}\right|=-2 \hat{i}-2 \hat{j}-2 \hat{k}
\end{aligned}
$$

$$
\text { S.D. }=\left|\frac{(b-a) \cdot(c \times d)}{|c \times d|}\right|
$$

(D) $\frac{1}{2}$

If for some α and β in \mathbb{R}, the intersection of the following three planes
$x+4 y-2 z-1=0, x+7 y-5 z-\beta=0$ and $x+5 y+\alpha z=5$ is a line in \mathbb{R}^{3}, then $\alpha+\beta$ is:

If for some α and β in \mathbb{R}, the intersection of the following three planes $x+4 y-2 z-1=0, x+7 y-5 z-\beta=0$ and $x+5 y+\alpha z=5$ is a line in \mathbb{R}^{3}, then $\alpha+\beta$ is:

Solution:

Plane intersect in a line: \Rightarrow there should be infinite solution of the given system of equations for infinite solutions.
$\Delta=\left|\begin{array}{ccc}1 & 4 & -2 \\ 1 & 7 & -5 \\ 1 & 5 & \alpha\end{array}\right|=0 \quad \Rightarrow \alpha=-3$
Also, $\Delta_{1}=\left|\begin{array}{lll}1 & 4 & -2 \\ \beta & 7 & -5 \\ 5 & 5 & -3\end{array}\right|=0$
$\Rightarrow \beta=13$
$\therefore \alpha+\beta=10$

If for some α and β in \mathbb{R}, the intersection of the following three planes
$x+4 y-2 z-1=0, x+7 y-5 z-\beta=0$ and $x+5 y+\alpha z=5$ is a line in \mathbb{R}^{3}, then $\alpha+\beta$ is:

Sphere

Center radius form: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$

Center $\equiv(-u,-v,-w)$

$$
\text { Radius }=\sqrt{u^{2}+v^{2}+w^{2}-d}
$$

Diametric form:

$$
\left(x-x_{1}\right)\left(x-x_{2}\right)+\left(y-y_{1}\right)\left(y-y_{2}\right)+\left(z-z_{1}\right)\left(z-z_{2}\right)=0
$$

The equation of sphere having center at $(1,2,3)$ and touching the plane $x+2 y+3 z=0$, is:

Solution:

Radius = distance of center from the plane

$$
\begin{aligned}
& r=\left|\frac{1+4+9}{\sqrt{1^{2}+2^{2}+3^{2}}}\right| \\
& \Rightarrow r=\sqrt{14}
\end{aligned}
$$

So, equation: $(x-a)^{2}+(y-b)^{2}+(z-c)^{2}=r^{2}$

$$
(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=14
$$

Plane $x+2 y-z=4$, cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$. Then the radius of the circle formed is:

(B) 2 units
(C) 3 units
(D) 4 units

Plane $x+2 y-z=4$, cuts the sphere $x^{2}+y^{2}+z^{2}-x+z-2=0$. Then the radius of the circle formed is:
(A) 1 unit
(B) 2 units
(C) 3 units
(D) 4 units

Session 11

Miscellaneous Questions

The number of 3×3 matrices A whose entries are either 0 or 1
and for which the system $A\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ has exactly two distinct solutions:

IIT-JEE 2010

Solution:

Let the matrix $A=\left[\begin{array}{ccc}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right]$

$$
A\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \Rightarrow \begin{aligned}
& a_{1} x+b_{1} y+c_{1} z=1 \\
& a_{2} x+b_{2} y+c_{2} z=0 \\
& a_{3} x+b_{3} y+c_{3} z=0
\end{aligned}
$$

Three planes can never intersect at exactly two points .

If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$, is 5 , then the foot of perpendicular from P to the plane , is :

$$
\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)
$$

(B) $\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$

$$
\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)
$$$\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, where $\alpha>0$, is 5 , then the foot of perpendicular from P to the plane , is :

IIT-JEE 2010

Let A be the foot of the perpendicular.

Distance of P from the plane $=5$
$\Rightarrow\left|\frac{1-4-2-\alpha}{\sqrt{1^{2}+2^{2}+(-2)^{2}}}\right|=\left|\frac{\alpha+5}{3}\right|=5$
$\Rightarrow \alpha=10,-20 \quad$ (not possible)

\therefore Equation of plane is: $x+2 y-2 z=10$

$$
D=\left|\frac{a x_{1}+b y_{1}+c z_{1}-d}{\sqrt{a^{2}+b^{2}+c^{2}}}\right|
$$

If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, Where $\alpha>0$, is 5 , then the foot of perpendicular from P to the plane , is :

IIT-JEE 2010

\therefore Equation of plane is: $x+2 y-2 z=10$

Let the coordinates of A is (p, q, r)
$\therefore \frac{p-1}{1}=\frac{q+2}{2}=\frac{r-1}{-2}=\frac{-(1-4-2-10)}{9}$
$\Rightarrow p=\frac{8}{3}, q=\frac{4}{3}, r=-\frac{7}{3}$

So, point $A \equiv\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$

If the distance of the point $P(1,-2,1)$ from the plane $x+2 y-2 z=\alpha$, Where $\alpha>0$, is 5 , then the foot of perpendicular from P to the plane , is :

$$
\left(\frac{4}{3},-\frac{4}{3}, \frac{1}{3}\right)
$$$\left(\frac{8}{3}, \frac{4}{3},-\frac{7}{3}\right)$

$\left(\frac{1}{3}, \frac{2}{3}, \frac{10}{3}\right)$$\left(\frac{2}{3},-\frac{1}{3}, \frac{5}{2}\right)$

Non zero value of a for which the lines $2 x-y+3 z+4=0=$ $\alpha x+y-z+2$ and $x-3 y+z=0=x+2 y+z+1$ are coplanar is :

Solution:

$$
\left.\begin{array}{l}
2 x-y+3 z+4=0=\alpha x+y-z+2 \\
x-3 y+z=0=x+2 y+z+1 \\
2 x-y+3 z+4=0 \\
\alpha x+y-z+2=0
\end{array}\right\} \text { Coplanar, } \alpha \neq 0
$$

\square
B 4

Let $\overrightarrow{n_{1}}$ is along L_{1}
$\therefore \overrightarrow{n_{1}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & -1 & 3 \\ \alpha & 1 & -1\end{array}\right| \Rightarrow \overrightarrow{n_{1}}=-2 \hat{\imath}+(2+3 \alpha) \hat{\jmath}+(2+\alpha) \hat{k}$

$$
\text { If } \left.x=0, y-z+2=0 \quad \begin{array}{r}
\\
-y+3 z+4=0
\end{array}\right\} z=-3, y=-5
$$

$$
\therefore L_{1}: \frac{x}{-2}=\frac{y+5}{2+3 \alpha}=\frac{z+3}{2+\alpha}
$$

Non zero value of a for which the lines $2 x-y+3 z+4=0=$ $\alpha x+y-z+2$ and $x-3 y+z=0=x+2 y+z+1$ are coplanar is :

Solution:

$$
\left.\begin{array}{rl}
\text { If } x=0, & y-z+2=0 \\
-y+3 z+4=0
\end{array}\right\} \begin{aligned}
& z=-3, y=-5 \\
& \therefore L_{1}: \frac{x}{-2}=\frac{y+5}{2+3 \alpha}=\frac{z+3}{2+\alpha}
\end{aligned}
$$

(D) 0
$x-3 y+z=0$

$$
x+2 y+z+1=0
$$

Let $\overrightarrow{n_{2}}$ is along L_{2}

$$
\therefore \overrightarrow{n_{2}}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & -3 & 1 \\
1 & 2 & 1
\end{array}\right| \Rightarrow \overrightarrow{n_{2}}=-5 \hat{\imath}+5 \hat{k}
$$

$$
\left.\begin{array}{rl}
\text { If } x=0, & -3 y+z=0 \\
2 y+z+1 & =0
\end{array}\right\} \quad y=-\frac{1}{5}, z=-\frac{3}{5}
$$

Non zero value of a for which the lines $2 x-y+3 z+4=0=$ $\alpha x+y-z+2$ and $x-3 y+z=0=x+2 y+z+1$ are coplanar is :

Solution:

$$
\text { If } \left.x=0, \quad-3 y+z=0 \quad \begin{array}{l}
2 y+z+1=0
\end{array}\right\} \quad y=-\frac{1}{5}, z=-\frac{3}{5}
$$

$$
\therefore L_{2}: \frac{x}{-1}=\frac{y+\frac{1}{5}}{0}=\frac{z+\frac{3}{5}}{1}
$$

For 2 lines to be coplanar, $\left[\overrightarrow{d_{1}} \quad \overrightarrow{d_{2}} \overrightarrow{A B}\right]=0$

$\Rightarrow\left|\begin{array}{ccc}-1 & 0 & 1 \\ -2 & 2+3 \alpha & 2+\alpha \\ 0 & -5+\frac{1}{5} & -3+\frac{3}{5}\end{array}\right|=0$
$\Rightarrow-1\left((2+3 \alpha)\left(-\frac{12}{5}\right)+(2+\alpha)\left(\frac{24}{5}\right)\right)+1\left(\frac{48}{5}\right)=0$

Non zero value of a for which the lines $2 x-y+3 z+4=0=$ $\alpha x+y-z+2$ and $x-3 y+z=0=x+2 y+z+1$ are coplanar is :

Solution:

For 2 lines to be coplanar, $\left[\overrightarrow{d_{1}} \overrightarrow{d_{2}} \overrightarrow{A B}\right]=0$

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
-1 & 0 & 1 \\
-2 & 2+3 \alpha & 2+\alpha \\
0 & -5+\frac{1}{5} & -3+\frac{3}{5}
\end{array}\right|=0 \\
& \Rightarrow-1\left((2+3 \alpha)\left(-\frac{12}{5}\right)+(2+\alpha)\left(\frac{24}{5}\right)\right)+1\left(\frac{48}{5}\right)=0
\end{aligned}
$$

$$
A\left(0,-\frac{1}{5}, 5\right) \frac{d_{1}(-1,0,1)}{d_{1}}
$$

$$
\Rightarrow \frac{12}{5}(2+3 \alpha-4-2 \alpha+4)=0
$$

$$
\Rightarrow \frac{12}{5}(2+\alpha)=0 \quad \Rightarrow \alpha=-2
$$

From the point $P(\lambda, \lambda, \lambda)$, perpendiculars $P Q$ and $P R$ are drawn on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is/are:

Solution:

JEE Advanced 2014
$L_{1}: y=x, z=1 \quad L_{2}: y=-x, z=-1$
Let $Q \equiv(q, q, 1)$
$P Q$ is perpendicular to the line :
$\frac{x}{1}=\frac{y}{1}=\frac{z-1}{0}$

B) $\sqrt{2}$

C
6

D 0
$(\lambda-q)+(\lambda-q) 1+(\lambda-1)(0)=0 \Rightarrow q=\lambda$
$\therefore Q \equiv(\lambda, \lambda, 1)$

Let $R \equiv(r,-r,-1)$

From the point $P(\lambda, \lambda, \lambda)$, perpendiculars $P Q$ and $P R$ are drawn on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is/are:

Solution:

JEE Advanced 2014
$L_{1}: y=x, z=1 \quad L_{2}: y=-x, z=-1$
$\therefore Q \equiv(\lambda, \lambda, 1)$
Let $R \equiv(r,-r,-1)$
$P Q$ is perpendicular to the line :

$$
\begin{aligned}
& \frac{x}{1}=\frac{y}{-1}=\frac{z+1}{0} \\
& (\lambda-r)-(\lambda+r) 1+(\lambda+1)(0)=0 \Rightarrow r=0 \\
& \therefore R \equiv(0,0,-1)
\end{aligned}
$$

From the point $P(\lambda, \lambda, \lambda)$, perpendiculars $P Q$ and $P R$ are drawn on the lines $y=x, z=1$ and $y=-x, z=-1$. If P is such that $\angle Q P R$ is a right angle, then the possible value(s) of λ is/are:

Solution:

JEE Advanced 2014

$$
L_{1}: y=x, z=1 \quad L_{2}: y=-x, z=-1
$$

$$
\therefore Q \equiv(\lambda, \lambda, 1) \quad \therefore R \equiv(0,0,-1)
$$

$$
P Q \perp P R
$$

$$
\Rightarrow 0 \cdot(\lambda-0)+0 \cdot(\lambda-0)+(\lambda+1)(\lambda-1)=0
$$

B) $\sqrt{2}$
C)

6

D 0
$\Rightarrow \lambda^{2}-1=0$
$\Rightarrow \lambda= \pm 1$
$\lambda=1$ is rejected as it will lie on the given line

In R^{3}, let L be a straight line passing through origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of feet of perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?

$$
\text { (A) }\left(0,-\frac{5}{6},-\frac{2}{3}\right)
$$

$$
\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)
$$

$$
\text { (C) }\left(-\frac{5}{6}, 0, \frac{1}{6}\right)
$$$\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

In R^{3}, let L be a straight line passing through origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of feet of perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?
L is parallel to the planes $P_{1} \& P_{2}$

Let vector parallel to the line is \vec{a}

$$
\vec{a}=\left|\begin{array}{ccc}
\hat{\imath} & \hat{\jmath} & \hat{k} \\
1 & 2 & -1 \\
2 & -1 & 1
\end{array}\right|=\hat{\imath}-3 \hat{\jmath}-5 \hat{k}
$$

\therefore Direction ratio will be $1,-3,-5$

In R^{3}, let L be a straight line passing through origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of feet of perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?

```
JEE Advanced 2015
```

\therefore Direction ratio will be $1,-3,-5$

$$
L: \quad \frac{x}{1}=\frac{y}{-3}=\frac{z}{-5}
$$

Feet of perpendicular of $(0,0,0)$ on the plane P_{1} is :

$$
\begin{aligned}
& \frac{x_{p}-x_{1}}{a}=\frac{y_{p}-y_{1}}{b}=\frac{z_{p}-z_{1}}{c}=-\frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)} \\
& \frac{x_{p}-0}{1}=\frac{y_{p}-0}{2}=\frac{z_{p}-0}{-1}=-\frac{(1)}{\left(1^{2}+2^{2}+(-1)^{2}\right)}=-\frac{1}{6}
\end{aligned}
$$

In R^{3}, let L be a straight line passing through origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of feet of perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?

JEE Advanced 2015
$L: \quad \frac{x}{1}=\frac{y}{-3}=\frac{z}{-5}$
$\frac{x_{p}-0}{1}=\frac{y_{p}-0}{2}=\frac{z_{p}-0}{-1}=-\frac{1}{6}$
$\Rightarrow x_{p}=-\frac{1}{6}, y_{p}=-\frac{1}{3}, z_{p}=\frac{1}{6}$
Equation of line $M: \frac{x+\frac{1}{6}}{1}=\frac{y+\frac{1}{3}}{-3}=\frac{z_{p}-\frac{1}{6}}{-5}$

Points $\left(0,-\frac{5}{6},-\frac{2}{3}\right)$ and $\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)$ lie on the line M.

In R^{3}, let L be a straight line passing through origin. Suppose that all the points on L are at a constant distance from the two planes $P_{1}: x+2 y-z+1=0$ and $P_{2}: 2 x-y+z-1=0$. Let M be the locus of feet of perpendiculars drawn from the points on L to the plane P_{1}. Which of the following points lie(s) on M ?

$$
\text { (A) } \quad\left(0,-\frac{5}{6},-\frac{2}{3}\right)
$$

$$
\left(-\frac{1}{6},-\frac{1}{3}, \frac{1}{6}\right)
$$

$$
\text { (C) }\left(-\frac{5}{6}, 0, \frac{1}{6}\right)
$$

(D) $\left(-\frac{1}{3}, 0, \frac{2}{3}\right)$

Equation of plane which passes through the point of intersection of lines $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ and at greatest distance from the point $(0,0,0)$, is :

Solution:

$$
\begin{aligned}
& L_{1}: \frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}=\lambda \\
& L_{2}: \frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}=\mu
\end{aligned}
$$

Point on $L_{1}:(1+3 \lambda, 2+\lambda, 3+2 \lambda) \cdots(i)$

Point on $L_{2}:(3+\mu, 1+2 \mu, 2+3 \mu) \cdots(i i)$
D $x+7 y-5 z=2$

To get intersection point ,

$$
\left.\begin{array}{l}
1+3 \lambda=3+\mu \\
2+\lambda=1+2 \mu
\end{array}\right\} \Rightarrow \lambda=\mu=1
$$

Equation of plane which passes through the point of intersection of lines $\frac{x-1}{3}=\frac{y-2}{1}=\frac{z-3}{2}$ and $\frac{x-3}{1}=\frac{y-1}{2}=\frac{z-2}{3}$ and at greatest distance from the point $(0,0,0)$, is :

Solution:

\therefore The intersecting point will be $P(4,3,5)$

$$
O P \geq O Q
$$

The equation of plane at greatest distance from origin and passing through point $(4,3,5)$
 will have normal direction ratios as $4,3,5$.

$$
\Rightarrow 4(x-4)+3(y-3)+5(z-5)=0
$$

$$
\Rightarrow 4 x+3 y+5 z=50
$$

let P be a image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is :

JEE Advanced 2016

(B) $3 x+z=0$
(C) $x-4 y+7 z=0$

D
$2 x-y=0$ $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is :

JEE Advanced 2016
$L: \frac{x}{1}=\frac{y}{2}=\frac{z}{1}$

Let $P \equiv\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$
$\frac{x^{\prime}-x_{1}}{a}=\frac{y^{\prime}-y_{1}}{b}=\frac{z^{\prime}-z_{1}}{c}=-2 \frac{\left(a x_{1}+b y_{1}+c z_{1}-d\right)}{\left(a^{2}+b^{2}+c^{2}\right)}$

$$
\begin{aligned}
\frac{x^{\prime}-3}{1}=\frac{y^{\prime}-1}{-1}=\frac{z^{\prime}-7}{1} & =-2 \frac{(3-1+7-3)}{\left(1^{2}+(-1)^{2}+1^{2}\right)} \\
& =-4
\end{aligned}
$$

$$
P \equiv(-1,5,3)
$$ $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is:

JEE Advanced 2016

$$
L: \frac{x}{1}=\frac{y}{2}=\frac{z}{1} \quad P \equiv(-1,5,3)
$$

Let \vec{n} be the normal vector to the plane
\vec{n} is perpendicular to line $\overrightarrow{O P}$ \& given line L

$\vec{n}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ -1 & 5 & 3 \\ 1 & 2 & 1\end{array}\right|=-\hat{\imath}+4 \hat{\jmath}-7 \hat{k}$
\therefore Equation of plane is : $x-4 y+7 z=0$
let P be a image of the point $(3,1,7)$ with respect to the plane $x-y+z=3$. Then the equation of the plane passing through P and containing the straight line $\frac{x}{1}=\frac{y}{2}=\frac{z}{1}$ is :

JEE Advanced 2016
(A) $x+y-3 z=0$
(B) $3 x+z=0$
(C) $x-4 y+7 z=0$

D
$2 x-y=0$

Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.
Then which of the following statements(s) is (are) true?

D The line of intersection of P_{1} and P_{2} has direction ratios 1,2,-1

B
The line $\frac{3 x-4}{9}=\frac{1-3 y}{9}=\frac{z}{3}$ is perpendicular to the line of intersection of P_{1} and P_{2}.

C
The acute angle between P_{1} and P_{2} is 60°.

If P_{3} is the plane passing through the point $(4,2,-2)$ and
D perpendicular to the line of intersection of P_{1} and P_{2}, then the distance of the point $(2,1,1)$ from the plane P_{3} is $\frac{2}{\sqrt{3}}$.

Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.
Then which of the following statements(s) is (are) true ?
Solution:
Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.
Let $\overrightarrow{n_{1}}$ is along the line of intersection.
$\Rightarrow \overrightarrow{n_{1}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 1 & -1 \\ 1 & 2 & 1\end{array}\right|=3 \hat{\imath}-3 \hat{\jmath}+3 \hat{k}$

The line of intersection of P_{1} and P_{2} has direction ratios: $1,-1,1$

The line $\frac{x-\frac{4}{3}}{3}=\frac{y-\frac{1}{3}}{-3}=\frac{z}{3}$ is parallel to the line of intersection of P_{1} and P_{2}.

Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.
Then which of the following statements(s) is (are) true ?
Solution:
Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.

The line of intersection of P_{1} and P_{2} has direction ratios: $1,-1,1$
Let θ be the angle the planes.

$$
\begin{aligned}
& \cos \theta=\frac{\left(a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}\right)}{\sqrt{{a_{1}{ }^{2}+b_{1}{ }^{2}+c_{1}{ }^{2}}^{a_{2}{ }^{2}+b_{2}{ }^{2}+c_{2}{ }^{2}}}} \\
& \Rightarrow \cos \theta=\frac{(2+2-1)}{\sqrt{2^{2}+1^{2}+(-1)^{2}} \sqrt{1^{2}+2^{2}+1^{2}}} \\
& \cos \theta=\frac{1}{2} \quad \Rightarrow \theta=60^{\circ}
\end{aligned}
$$

Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.
Then which of the following statements(s) is (are) true ?
Solution:
Let $P_{1}: 2 x+y-z=3$ and $P_{2}: x+2 y+z=2$ be two planes.

The line of intersection of P_{1} and P_{2} has direction ratios: $1,-1,1$
Equation of $P_{3}:(x-4)-(y-2)+(z+2)=0$
$\Rightarrow x-y+z=0$
Distance of the point $(2,1,1)=\left|\frac{2-1+1}{\sqrt{1^{2}+(-1)^{2}+1^{2}}}\right|$

$$
=\frac{2}{\sqrt{3}}
$$

Thank You

