
Difference Between Compiler and 
Interpreter 

A compiler and an interpreter are two different types of software programs used for 
converting human-readable source code to machine-executable code, but they operate 
in different ways. Compiler and interpreter are important topics in the GATE CSE 
syllabus. A computer program is usually written in a high-level language (source code) 
which is further converted into machine language using compilers and interpreters. 

Key Differences Between Compiler and Interpreter 

Compiler Interpreter 

The compiler examines the entire program 

and converts it all at once into machine code. 

The interpreter only converts one statement at 

a time into machine code. 

Because the compiler reads the code all at 

once, any errors (if any) are displayed at the 

conclusion. 

Errors in the interpreter are displayed line by 

line since it reads code one line at a time. 

In the case of compilers, the program code is 

already translated into machine code, so the 

code execution time is significantly reduced. 

Even for a beginner, interpreters are simple to 

use and perform. 

The compilation and the execution of the 

program can be separated. As a result, you 

can only do it once you've finished compiling 

the complete output. 

The program's execution is one of the phases 

in the interpretation process. As a result, you 

may do it line by line. 

While compiling, a compiler displays all errors 

and warnings. As a result, you won't be able to 

execute this software until you correct the 

issues. 

An interpreter reads each sentence and shows 

them if any problems are found. To 

comprehend the next line, the user must correct 

these inaccuracies. 

Compilers are used Java, Scala, C#, C, and 

C++. 
Interpreters have used Perl, Ruby, and PHP. 

Difference between Compiler and Interpreter PDF 

A compiler translates the entire source code into machine code that can be executed 
multiple times without recompilation, while an interpreter translates the code line by line 
at runtime without producing a standalone executable file. Download the PDF from the 
direct link given below: 



Compiler and Interpreter 

A compiler will check to see whether all language statements are valid. It will provide an 
error notice if it comes across something that is wrong. The compiler will transform the 
source code into machine code if no mistakes are found. The compiler assembles the 
various code files into executable programs, such as exe. Finally, the program is 
launched. 

An interpreter creates the program. It does not create machine code or connect files. 
Interpreters are important as per the GATE exam. During the program's execution, the 
source statements are implemented line by line. 

What is a Compiler? 

A compiler is computer software that converts high-level programming languages 
(source code) into a machine-readable format known as low-level programming 
languages (machine code). It reads the entire source code, compiles it, and then turns it 
into an executable file, which the user performs or runs for the command designed to be 
carried out. And, if there are any faults, it returns them all at once while reading the 
source code. 

It is quicker than the interpreter since the source code has already been built, and we 
simply need to run the executable file that has been created. The compiler generates 
secure executable files that may be run on any of your customers or other computers 
without the requirement for actual source code. As a result, your software is 
unhackable, safe, and private. For running the shared executable file of your source 
code, your client or anybody else does not require the installation of any compiler, 
interpreter, or third-party application on their machine. 

What is an Interpreter? 

Interpreters, like compilers, perform the same function. It can also convert high-level 
languages to low-level ones. However, unlike a compiler, an interpreter analyses the 
source code line by line and informs you if there is a mistake simultaneously, making it 
easier to debug but slower than a compiler. 

We directly share the source code in interpreted languages, which may run on any 
machine without system incompatibility issues. Code analysis is easier with interpreters 
since they read the code line by line and return the error message immediately. In 
addition, if the client has access to the source code, they may quickly debug or alter it. 
Interpreters, unlike compilers, do not create new distinct files. So it doesn't take up any 
more memory. The execution control interpreter reads code line by line, allowing you to 
pause and alter the code at any time. 



Conclusion: Key Differences between Compilers and 
Interpreters 

The main differences between a compiler and an interpreter are: 

• A compiler translates entire source code written in a high-level programming language 
into an executable file that can run on a specific hardware or operating system. On the 
other hand, an interpreter reads and executes the code line by line, translating each line 
of code into machine code at runtime. 

• A compiler produces a stand-alone executable file that can be executed multiple times 
without needing to recompile the source code. On the other hand, an interpreter 
executes the code on the fly, without producing any stand-alone executable file. 

• A compiled program typically runs faster than an interpreted program, as the executable 
code generated by the compiler is optimized for the target hardware and can be 
executed directly. In contrast, an interpreted program needs to be translated and 
executed line by line at runtime, which can be slower. 

• Debugging an interpreted program is easier than debugging a compiled program. In an 
interpreter, you can see the result of each line of code in real time, whereas, with a 
compiler, you need to run the entire program to identify the errors. 


