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Does Light always exhibit 
Rectilinear Propagation?



Explanation for bending of light

Wave theory of light

Christiaan Huygens

Wavefront

Huygens’ Principle

Huygens 

Wave theory of light



 All points on a particular circle will oscillate with 
the same phase.

 Wavefront is the locus of all points at which the 
wave disturbance is in the same phase.

Wavefront

 In 3𝐷, for a point source, the wavefronts are 
spherically symmetric.

 Point source creates wave traveling in all 
directions according to equation. 

𝑦 = 𝐴sin(𝜔𝑡 ± 𝑘𝑥)

 Points 𝐴, 𝐵, 𝐶 have same phase 𝜔𝑡 ± 𝑘𝑥1.



The direction of propagation of light wave is perpendicular to the 
wavefront at any given point.

Direction of Propagation of Light

Spherical Wavefront



 Time taken by each ray to propagate from 
one wavefront to the next wavefront in any 
medium remains same.

 Hence, distance covered by the light in 
each time interval also changes.

⟹ Speed of light changes.

 Refractive index, 𝑛 =
𝑐

𝑣

When medium changes, 
𝑛1
𝑛2

=
𝑣2
𝑣1

Properties of Wavefront

𝜆

 Distance between two consecutive 
wavefronts = 𝜆.



 Spherical wavefront is observed for a point 
source.

• Direction of propagation of light: Radially 
outward and perpendicular to the wavefront 
at any given point.

Spherical Wavefront



• Planar wavefronts are observed when the 
source is at infinity.

• Direction of propagation of light: 
Perpendicular to the plane.

Planar Wavefront



• Cylindrical wavefront is observed for a line 
source.

• Direction of propagation of light: Radially 
outward and perpendicular to the 
wavefront at any given point.

Cylindrical Wavefront



S

If the distance between the wavefronts in the medium with refractive 
index 𝑛2 is 𝑑2, then what will be the distance 𝑑1 between the wavefronts 
in the medium with refractive index 𝑛1?

𝑛 =
𝑐

𝑣

We known that,

ൗ
𝑛2

𝑛1 = ൗ
𝑣1

𝑣2

𝜆 = ൗ𝑣 𝑓

⇒

⇒ ൗ
𝜆1

𝜆2
= ൗ
𝑣1

𝑣2 = ൗ
𝑛2

𝑛1

Here, 𝜆1 = 𝑑1, and 𝜆2 = 𝑑2

Hence, 

𝑑1
𝑑2

=
𝑛2
𝑛1

⇒ 𝑑1 = 𝑑2
𝑛2
𝑛1



 Every point on the wavefront acts as a 
point source called secondary wave 
source and generates secondary 
wavelets.

 The common tangent to the secondary 
wavelets in the forward direction gives 
the secondary wavefront.

 Intensity is maximum in forward direction 
and zero in backward direction.

Secondary 
Wavelets

Secondary 
Wavefront

Primary 
Wavefront

Primary 
Source

Huygens’ Principle



Shape of Wavefront 

Object at infinity for a convex lens Object at infinity for a concave lens



Object at infinity for a concave mirror

Shape of Wavefront 

Object at infinity for a prism



Reflection of a plane wave by a plane surface

Huygens’ Principle - Law of Reflection  

Reflecting plane surface

𝐴

𝐵

𝐵𝐶 = 𝑣𝑡

𝐶

𝐷

𝐷𝐴 = 𝑣𝑡

𝑡 = 0

𝑖

𝑡

Incident 
Wavefront 𝐴𝐵

at 𝑡 = 0

Reflected 
Wavefront 𝐶𝐷

at time = 𝑡

Secondary 
Wavelet 
From 𝐴



Reflection of a plane wave by a plane surface

Huygens’ Principle - Law of Reflection  

∠𝐷𝐶𝐴 = 𝑟 → Angle of reflection

∠𝐵𝐴𝐶 = 𝑖 → Angle of incidence

 Angle of incidence is the angle between the 
incident wavefront and the reflecting surface.

 Angle of reflection is the angle between the 
reflected wavefront and the reflecting surface.

𝐴 𝐶

𝐷

𝑟

𝐵

𝐶𝐴
𝑖

∴ ∆𝐴𝐷𝐶 ≅ ∆𝐶𝐵𝐴

⟹ ∠𝑖 = ∠𝑟

From ∆𝐴𝐷𝐶 and ∆𝐶𝐵𝐴:

∠𝐴𝐷𝐶 = ∠𝐴𝐵𝐶 = 90° 𝐴𝐷 = 𝐵𝐶 = 𝑣𝑡 𝐴𝐶 = 𝐴𝐶

[𝑅. 𝐻. 𝑆 Congruency]



From ∆𝐴𝐷𝐶:From ∆𝐴𝐵𝐶:

sin 𝑖 =
𝐵𝐶

𝐴𝐶
=
𝑣1 𝑡

𝐴𝐶
sin 𝑟 =

𝐴𝐷

𝐴𝐶
=
𝑣2 𝑡

𝐴𝐶

sin 𝑖

sin 𝑟
=
𝑣1
𝑣2

=
𝑛2
𝑛1

= Constant

Huygens’ Principle - Law of Refraction

Medium 𝑛2

𝐴

𝐵

𝑣1𝑡

𝐶

𝐷

𝑖

𝑟
𝑡 = 0

𝑟

𝑖

Incident 
Wavefront 𝐴𝐵

at 𝑡 = 0

Refracted 
Wavefront 𝐶𝐷

at 𝑡 = 𝑡

Secondary 
Wavelet 
From A

𝑣2𝑡

𝑟

Medium 𝑛1

𝑛1 < 𝑛2



B

A

D

C

Solution:

The direction of propagation → Ƹ𝑖

⟹ The direction of wavefront → ⊥ 𝑡𝑜 Ƹ𝑖

In the given options, the plane ⊥ to Ƹ𝑖
is represented by 𝑥 = 𝑐.

𝑥 = 𝑐

𝑦 = 𝑐

𝑧 = 𝑐

𝑥 + 𝑦 + 𝑧 = 𝑐

Light waves travel in vacuum, along the 𝑥 − axis. Which of the following may 
represent the wavefronts?



Hole Screen

Hole Screen

Light behaves like a ray 
(i.e., exhibits rectilinear 
propagation) for:

Obstacle dimensions ≫𝜆𝑙𝑖𝑔ℎ𝑡

Obstacle dimensions ≈ 𝜆𝑙𝑖𝑔ℎ𝑡

Light behaves like a wave for:

Does Light always exhibit 
Rectilinear Propagation?



OPTICS

Study of the behavior and 
properties of light

GEOMETRICAL OPTICS
Explains refraction and reflection, 
but not interference, diffraction

and polarization 

WAVE OPTICS
Explains reflection and refraction, 
as well as interference, diffraction 

and polarization



Interference is the phenomenon in which two waves superpose to form the 
resultant wave of lower, higher or same amplitude.

Interference



“When two or more waves cross at a point, the displacement at that point is equal to the 
vector sum of the displacements of individual waves”

Ԧ𝑦𝑛𝑒𝑡 = Ԧ𝑦1 + Ԧ𝑦2 + Ԧ𝑦3……+ Ԧ𝑦𝑛

𝑦

𝑥

𝑂

𝑦1

𝑦2

𝑦𝑛𝑒𝑡

Superposition Principle



Case 1: When two 
crest meet

Case 2: When crest 
and trough meet

Resultant of Waves



Phase Difference and Path Difference

● Path difference (∆𝑥): Difference in the
path traversed by the two waves.

● Phase difference (𝛿 ): Difference in
the phase angle of the two waves.

We know that,

For a path difference 𝜆, phase difference = 2𝜋

So, for path difference ∆𝑥, phase difference 
=

2𝜋

𝜆
∆𝑥.

𝛿 =
2𝜋

𝜆
∆𝑥

Source  𝑆1

Source  𝑆2

𝑦1 = 𝐴1 sin 𝜔𝑡 + 𝑘𝑥

𝑦2 = 𝐴2 sin 𝜔𝑡 + 𝑘𝑥 + 𝛿

𝑦𝑛𝑒𝑡 = 𝑦1 + 𝑦2

𝑃



Combination of Waves

𝑦𝑛𝑒𝑡 = 𝐴1 sin 𝜔𝑡 + 𝑘𝑥 + 𝐴2 sin 𝜔𝑡 + 𝑘𝑥 + 𝛿

𝐴𝑛𝑒𝑡 = 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos 𝛿

tan 𝛼 =
𝐴2 sin 𝛿

𝐴1 + 𝐴2 cos 𝛿

𝑦𝑛𝑒𝑡 = 𝐴𝑛𝑒𝑡 sin 𝜔𝑡 + 𝑘𝑥 + 𝛼

If 𝐴1 = 𝐴2 = 𝐴

𝐴𝑛𝑒𝑡 = 2𝐴 cos
𝛿

2



Constructive Interference

Interference that produces maximum possible amplitude (or maximum intensity) is 
called constructive interference.

𝑃

2𝜆 3𝜆

● Path Difference = 3𝜆 − 2𝜆 = 𝜆

𝐴𝑛𝑒𝑡 = 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos 𝛿

For maximum amplitude:

cos 𝛿 = 1 ⇒ 𝛿 = 2𝑛𝜋

𝐴 = 𝐴𝑚𝑎𝑥 = 𝐴1 + 𝐴2

2𝑛𝜋 =
2𝜋

𝜆
× (∆𝑥)

Path difference = ∆𝑥 = 𝑛𝜆

𝛿 =
2𝜋

𝜆
∆𝑥

Constructive Interference



≡ 𝑥

𝑦

𝑦𝑛𝑒𝑡 = 2𝐴 sin(𝜔𝑡 + 𝑘𝑥)

+

Constructive interference occurs when the crest and trough of one wave 
overlaps with the crest and trough of another wave.

Constructive Interference

𝑥

𝑦

𝑦1 = 𝐴 sin(𝜔𝑡 + 𝑘𝑥)

𝑂

𝑥

𝑦

𝑦2 = 𝐴 sin(𝜔𝑡 + 𝑘𝑥)

𝑂



Destructive Interference

Interference that produces minimum possible amplitude (or minimum intensity) is 
called destructive interference.

𝐴𝑛𝑒𝑡 = 𝐴1
2 + 𝐴2

2 + 2𝐴1𝐴2 cos 𝛿

𝑃

7.25𝜆
9.75𝜆

For minimum amplitude:

cos 𝛿 = −1 ⇒ 𝛿 = (2𝑛 + 1)𝜋

𝐴 = 𝐴𝑚𝑖𝑛 = 𝐴1 − 𝐴2

(2𝑛 + 1)𝜋 =
2𝜋

𝜆
(∆𝑥)

Path difference =

𝛿 =
2𝜋

𝜆
∆𝑥

∆𝑥 =
2𝑛 + 1 𝜆

2

● Path Difference = 9.75𝜆 − 7.25𝜆 = 2.5𝜆

Destructive Interference



𝑥

𝑦

𝑦1 = 𝐴 sin(𝜔𝑡 + 𝑘𝑥)

Destructive interference is resulted when the crest of one wave overlaps 
with the trough of another wave.

≡
𝑥

𝑦

𝑂
𝑦 = 0

+

𝑥

𝑦

𝑦2 = 𝐴 sin(𝜔𝑡 + 𝑘𝑥 + 𝜋)

Destructive Interference

𝑂

𝑂



T

Two-point light sources 𝑆1 and 𝑆2 are separated by a distance of 4.2𝜆. If an
observer standing at the centre 𝐶 of the two sources starts moving towards
𝑆2, then find the minimum distance travelled by the observer to meet the first
maxima.

𝑆1 𝑆2

2.1𝜆

𝐶 𝑃

∆𝑥 = 0

𝑥

2.1𝜆

∆𝑥 = 𝜆

Solution:

For maxima at 𝑃:

∆𝑥 = 𝜆

⇒ 𝑆1𝑃 − 𝑆2𝑃 = 𝜆

⇒ (2.1𝜆 + 𝑥) − (2.1𝜆 − 𝑥) = 𝜆

⇒ 2𝑥 = 𝜆

𝑥 = 0.5𝜆



Coherent and Incoherent Sources

Coherent Waves Incoherent Waves 

Coherent Sources

● Same wavelength

● Same frequency

● Constant phase difference

Incoherent Sources

● Different wavelength
● Different frequency
● Varying phase difference

Note: We will always consider coherent sources in our discussion.



Young’s Double Slit Experiment

Particle nature of light Wave nature of light



According to Huygens’ principle, the sources 𝑆1 and 𝑆2 will behave as independent sources.

Young’s Double Slit Experiment

𝐷

● Light source must be monochromatic.

● Sources 𝑆1 and 𝑆2 must be coherent.

● Width of the slit is comparable to the 
wavelength of light.

● Waves coming from sources 𝑆1 and 𝑆2
will interference and obtain different 
interference pattern on the screen.



Young’s Double Slit Experiment

• 𝑆𝑆1 = 𝑆𝑆2

𝐷

(∴ No path difference till slits.)

𝑑

• ′𝑑′ is distance between slits.

• 𝑂𝐵 is the central line.
𝑂 𝐵

• ′𝐷′ is distance between screen and slits 
plane.

𝜃

𝑃

𝑦

• Consider point 𝑃 at a distance 𝑦 from 
central line 𝑂𝐵.

• ∠𝑃𝑂𝐵 = 𝜃.

• 𝑆2𝑃 > 𝑆1𝑃 → 𝑆2𝑃 − 𝑆1𝑃 = ∆𝑥

• ∆𝑥 is the path difference.



Young’s Double Slit Experiment

𝐷

𝑑
𝑂 𝐵

𝜃

𝑃

𝑦

𝑑/2

𝑑/2

● Path difference at any general point 𝑃,

∆𝑥 = 𝑆2𝑃−𝑆1𝑃

∆𝑥 = 𝑦+
𝑑

2

2

+𝐷2 − 𝑦 −
𝑑

2

2

+ 𝐷2

Approximation 1: 𝐷 ≫ 𝑑

Approximation 2: 𝜃 is very small

∆𝑥 ≈
𝑦𝑑

𝐷



Young’s Double Slit Experiment

∆𝑥 = 𝑆2𝐴 = 𝑑 sin 𝜃

𝜃 is very small  → sin 𝜃 ≈ tan 𝜃

∆𝑥 ≈ 𝑑 tan𝜃 =
𝑑𝑦

𝐷

∆𝑥 ≈
𝑦𝑑

𝐷



● For Maxima (Constructive interference):

∆𝑥 = 𝑛𝜆

𝑦 =
𝑛𝜆𝐷

𝑑

Where, 𝑛 = 0, ±1,±2,±3,…

⇒
𝑑𝑦

𝐷
= 𝑛𝜆

𝑛 = 0 corresponds to the central maxima.

𝑛 = ±1 correspond to the1𝑠𝑡 maxima.

𝑛 = ±2 correspond to the2𝑛𝑑 maxima.

𝑃

𝐵
𝑑 𝑂

𝑦𝑆1

𝑆2

𝐷

∆𝑥

Condition for Constructive Interference

→ 𝑦 = 0

→ 𝑦 = ±
𝜆𝐷

𝑑

→ 𝑦 = ±
2𝜆𝐷

𝑑



● For Minima (Destructive interference):

∆𝑥 = 𝑛+
1

2
𝜆 ⇒

𝑑𝑦

𝐷
= 𝑛+

1

2
𝜆

𝑦 = 𝑛 +
1

2

𝜆𝐷

𝑑

𝑛 = 0,−1 correspond to the1𝑠𝑡 minima.

𝑛 = 1,−2 correspond to the2𝑛𝑑 minima.

𝑃

𝐵
𝑑 𝑂

𝑦
𝑆1

𝑆2

𝐷

∆𝑥

Condition for Destructive Interference

Where, 𝑛 = 0, ±1,±2, ±3,…

→ 𝑦 = ±
𝜆𝐷

2𝑑

→ 𝑦 = ±
3𝜆𝐷

2𝑑



In YDSE, white light is passed through the double slit and interference pattern 
is observed on a screen 2.5 𝑚 away. The separation between the slits is 0.5 𝑚𝑚. 
The first violet and red maxima are formed at distances of 2 𝑚𝑚 and 3.5 𝑚𝑚
away from the central white maxima, respectively. The wavelengths of red 
and violet light, respectively, are:

Given:

To find:

Solution:

𝐷 = 2.5 𝑚, 𝑑 = 0.5 𝑚𝑚, 𝑦𝑣𝑖𝑜𝑙𝑒𝑡 = 2𝑚𝑚, 𝑦𝑟𝑒𝑑 = 3.5 𝑚𝑚

𝜆𝑣𝑖𝑜𝑙𝑒𝑡 , 𝜆𝑟𝑒𝑑

Distance of first maxima from the central maxima is given by:

For violet light, 𝑦 = 2 𝑚𝑚

⇒ 2 × 10−3 =
2.5 × 𝜆𝑣𝑖𝑜𝑙𝑒𝑡
0.5 × 10−3

⇒ 𝜆𝑣𝑖𝑜𝑙𝑒𝑡 =
2

5
× 10−6 𝑚

𝑦 =
𝐷𝜆

𝑑

For red light, 𝑦 = 3.5 𝑚𝑚

⇒ 3.5 × 10−3 =
2.5 × 𝜆𝑟𝑒𝑑
0.5 × 10−3

⇒ 𝜆𝑟𝑒𝑑= 0.7 × 10−6 𝑚

𝜆𝑟𝑒𝑑 = 700 𝑛𝑚𝜆𝑣𝑖𝑜𝑙𝑒𝑡 = 400 𝑛𝑚



Resultant Amplitude of the Wave

𝐸1 = 𝐸01 sin 𝑘𝑥 − 𝜔𝑡

𝐸2 = 𝐸02 sin 𝑘𝑥 − 𝜔𝑡 + 𝛿

𝐸01, 𝐸02 𝑜𝑟 𝐴01, 𝐴02 → Electric Field Amplitude.

Electric field of the wave from 𝑆1:

Electric field of the wave from 𝑆2:

𝐸0
2 = 𝐸01

2 + 𝐸02
2 + 2𝐸01𝐸02 cos 𝛿

𝐸𝑛𝑒𝑡 = 𝐸1 + 𝐸2 = 𝐸0 sin 𝑘𝑥 − 𝜔𝑡 + 𝛿

Net electric field after the interference:

tan 𝜀 =
𝐸02 sin 𝛿

𝐸01 + 𝐸02 cos 𝛿



Intensity of Waves

𝐼 = 2𝜋2𝑓2𝜌𝑣𝐸0
2

𝐼 ∝ 𝐸0
2

𝐼𝑛𝑒𝑡 = 𝐼1 + 𝐼2 + 2 𝐼1 𝐼2 cos 𝛿

𝐸0
2 = 𝐸01

2 + 𝐸02
2 + 2𝐸01𝐸02 cos 𝛿

𝑃

𝐵
𝑑 𝑂

𝑦
𝑆1

𝑆2

𝐷

𝐸2

𝐸1



Intensity for Identical Waves

𝐼𝑛𝑒𝑡 = 4𝐼 cos2
𝛿

2

𝐼𝑛𝑒𝑡 = 𝐼1 + 𝐼2 + 2 𝐼1 𝐼2 cos 𝛿

● For identical slits: 𝐼1 = 𝐼2 = 𝐼

𝐼𝑛𝑒𝑡 = 𝐼 + 𝐼 + 2 𝐼 𝐼 cos 𝛿

𝐼𝑛𝑒𝑡 = 2𝐼 + 2𝐼 cos 𝛿 = 2𝐼(1 + cos 𝛿)

𝐼𝑛𝑒𝑡 = 2𝐼 × 2 cos2
𝛿

2

𝑃

𝐵
𝑑 𝑂

𝑦
𝑆1

𝑆2

𝐷

𝐼2

𝐼1



● For constructive interference: (𝑀𝑎𝑥𝑖𝑚𝑎)

Intensity of Waves

● For destructive interference: (𝑀𝑖𝑛𝑖𝑚𝑎)

𝐸0
𝑚𝑎𝑥 = 𝐸01 + 𝐸02

𝐸0
𝑚𝑖𝑛 = 𝐸01 − 𝐸02

𝐼 ∝ 𝐸0
2 ⇒

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
=

𝐸0
𝑚𝑎𝑥

𝐸0
𝑚𝑖𝑛

2
𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
=

𝐸01 + 𝐸02
𝐸01 − 𝐸02

2

● When cos 𝛿 = 1, 𝛿 = 2𝑛𝜋 (𝑀𝑎𝑥𝑖𝑚𝑎)

● When cos 𝛿 = −1, 𝛿 = 2𝑛 + 1 𝜋 (𝑀𝑖𝑛𝑖𝑚𝑎)

𝐼𝑛𝑒𝑡 = 𝐼1 + 𝐼2 + 2 𝐼1 𝐼2 ⇒ 𝐼1 + 𝐼2
2

𝐼𝑛𝑒𝑡 = 𝐼1 + 𝐼2 − 2 𝐼1 𝐼2 ⇒ 𝐼1 − 𝐼2
2

𝐼 =
𝐼1 + 𝐼2

2, constructive interference

𝐼1 − 𝐼2
2, destructive interference



Two coherent sources produce waves of different intensities which interfere.
After interference, the ratio of the maximum intensity to the minimum
intensity is 16. The intensity of the waves are in the ratio:

𝐼1
𝐼2
=
25

9

Solution:

Given:

To find:

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
= 16

𝐼1
𝐼2

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
= 16 ⇒

𝐼1 + 𝐼2

𝐼1 − 𝐼2

2

=
16

1

⇒ 𝐼1 + 𝐼2 = 4 𝐼1 − 4 𝐼2 ⇒ 3 𝐼1 = 5 𝐼2

⇒
𝐼1

𝐼2
=
5

3

Ratio of intensities:
𝐼1
𝐼2
=

5

3

2



Intensity Variation

𝑦 =
𝑛𝜆𝐷

𝑑

𝑦 = 𝑛 +
1

2

𝜆𝐷

𝑑

● Constructive Interference:

● Destructive Interference:

𝑦

1𝑠𝑡 order
maxima

2nd order
maxima

Central 
maxima

1𝑠𝑡 order
minima

2𝑠𝑡 order
minima

𝑦 = ±
𝜆𝐷

𝑑
,±

2𝜆𝐷

𝑑
,±

3𝜆𝐷

𝑑
. . . . . . .

𝑦 = ±
𝜆𝐷

2𝑑
,±

3𝜆𝐷

2𝑑
,±

5𝜆𝐷

2𝑑
. . . . . . .

𝐷

𝑂

𝑆1

𝑆2

𝑑

𝐼0

𝐼0



Intensity Variation

𝐼 = 4𝐼0 cos
2
𝛿

2

● Intensity at any point:

● 𝐼𝑚𝑎𝑥 = 4𝐼0, 𝐼𝑚𝑖𝑛 = 0

𝛿 = Phase difference between 
the two waves from 𝑆1 and 𝑆2.

𝐼0

𝐼0

4𝐼0

𝐼 = 0

𝐼 = 0

𝐼 = 0

𝐼 = 0

𝐷

𝑂

𝑆1

𝑆2

𝑑

4𝐼0

4𝐼0

4𝐼0

4𝐼0



Shape of Fringes on Screen

If we replace slits by pin holes in YDSE, then we will see a Hyperbolic Fringe pattern.

Point sources placed on the perpendicular axis  to the screen create concentric circular fringes.



Fringe Width

𝐷

𝑂

𝑆1

𝑆2

𝑑

𝝀𝑫

𝒅

Fringe width is the distance between 
two consecutive maxima/minima.

𝛽 =
3𝜆𝐷

2𝑑
−
𝜆𝐷

2𝑑

𝛽 =
𝜆𝐷

𝑑



Fringe Width when the setup is 
inside a Medium

If experimental setup is dipped in liquid

𝜇 =
𝑓𝜆𝑣𝑎𝑐𝑢𝑢𝑚
𝑓𝜆𝑚𝑒𝑑𝑖𝑢𝑚

⇒ 𝜆𝑚𝑒𝑑𝑖𝑢𝑚 =
𝜆𝑣𝑎𝑐𝑢𝑢𝑚

𝜇

𝛽 =
𝜆𝐷

𝑑
Fringe Width

Refractive index

𝑐 is speed of light in vacuum

𝑣 is speed of light in liquid

𝛽 =
𝜆𝑚𝑒𝑑𝑖𝑢𝑚𝐷

𝑑
⇒ 𝛽 =

𝜆𝑣𝑎𝑐𝑢𝑢𝑚𝐷

𝜇𝑑
Fringe Width inside liquid, 

𝜇 =
𝑐

𝑣



Angular Fringe Width

𝑃

𝐵𝑑
𝜃

𝑂

𝑦 = 𝛽𝑆1

𝑆2

𝐷

Central Maxima

First Maxima
tan 𝜃 ≈ 𝜃 =

𝛽

𝐷

We know 𝛽 =
𝜆𝐷

𝑑

After putting 𝛽 value in 𝜃 =
𝛽

𝐷

𝜃 =
𝜆

𝑑



Position of Maxima/Minima

𝑦 =
𝑛𝜆𝐷

𝜇𝑑

𝑦 = 𝑛 +
1

2

𝜆𝐷

𝜇𝑑

● Constructive Interference:

● Destructive Interference:

𝑦 = ±
𝜆𝐷

𝜇𝑑
,±

2𝜆𝐷

𝜇𝑑
,±

3𝜆𝐷

𝜇𝑑
. . . . . . .

𝑦 = ±
𝜆𝐷

2𝜇𝑑
,±

3𝜆𝐷

2𝜇𝑑
,±

5𝜆𝐷

2𝜇𝑑
. . . . . . .

2𝜆𝐷

𝜇𝑑

3𝜆𝐷

2𝜇𝑑



Incoherent Light Sources

Incoherent Light Sources

● However, the human eye cannot 
the capture the rapidly changing 
bright and dark fringes.

● In ultra slow motion, the fringes 
on the screen flicker.

● So, the eyes see a continuous 
band of light.

● Net Intensity on the screen is the 
sum of intensity from two sources.



In a Young's double slit interference experiment, the fringe pattern is observed
on a screen placed at a distance 𝐷 from the slits. The slits are separated by a
distance 𝑑 and are illuminated by monochromatic light of wavelength 𝜆. Find
the distance from the central point 𝐵 where the intensity falls to half the
maximum.

𝐼 = 4𝐼0 cos
2
𝛿

2

⇒ cos
𝛿

2
=

1

2
⇒ 𝛿 =

𝜋

2

Phase difference 𝛿 =
2𝜋

𝜆
∆𝑥

=
𝑦𝑑

𝐷

𝜆

4
=
𝑦𝑑

𝐷
⇒

⇒ ∆𝑥 =
𝜆

4

𝑦 =
𝜆𝐷

4𝑑

𝜆𝐷

2𝑑

𝐷

𝑂

𝑆1

𝑆2

𝑑

𝐼𝑚𝑎𝑥
𝐼𝑚𝑎𝑥

2

𝜆𝐷

4𝑑𝐵

Path difference ∆𝑥

4𝐼0 cos
2
𝛿

2
=
1

2
4𝐼0Intensity is half the maximum,

Solution:

2𝜋

𝜆
∆𝑥 =

𝜋

2



Two coherent point sources 𝑆1 and 𝑆2 vibrating in phase emit light of
wavelength 𝜆 . The separation between the sources is 2𝜆 . Consider a line
passing through 𝑆2 and perpendicular to the line 𝑆1𝑆2. What is the smallest
distance from 𝑆2 where the intensity is minimum?

T

Solution:

Given:

To find:

𝑑𝑆1𝑆2 = 2𝜆

𝑥

2𝜆 2 + 𝑥2 − 𝑥 = 𝑛 +
1

2
𝜆

When 𝑥 > 0, 16𝜆 − 2𝑛 + 1 2𝜆 > 0

So, 2𝑛 + 1 < 4

𝑛 <
3

2

∴ 𝑛 = 1

𝑥 =
16𝜆 − 2𝑛 + 1 2𝜆

4 2𝑛 + 1
⇒
16𝜆 − 9𝜆

12
𝑥 =

7𝜆

12

𝑥 =
16𝜆 − 2𝑛 + 1 2𝜆

4 2𝑛 + 1



Solution:

T

Optical path difference between 𝐵𝑃0 and 
𝐴𝑃0 :

∆𝑥 = 𝑑 sin 𝜃 ≈ 𝑑 tan 𝜃

∆𝑥 = 𝑑
𝑑

2𝐷
=
𝑑2

2𝐷

∆𝑥 =
𝜆

3
=
𝑑2

2𝐷

𝑑 =
2𝜆𝐷

3

Figure shows three equidistant slits being illuminated by a monochromatic
parallel beam of light. Let 𝐵𝑃0 − 𝐴𝑃0 = 𝜆/3 and 𝐷 ≫ 𝜆. Show that in this case
𝑑 = 2𝜆𝐷/3.



Path Difference between the Two Waves



Optical Path length

𝐸 = 𝐸0 sin 𝑘𝑥0 − 𝜔𝑡

Original wave equation:

𝐸 = 𝐸0 sin 𝑘 𝑥0 + 𝐿 − 𝜔𝑡

Equation of a wave when it is ahead by a length 𝐿:

𝐸 = 𝐸0 sin 𝑘𝑥0 − 𝜔𝑡 + 𝑘𝐿

Phase difference ∆𝜙

𝑘 =
2𝜋

𝜆

So, ∆𝜙 =
2𝜋

𝜆
𝐿

∴ Two points on a wave separated by a path 

length of 𝐿 will have a phase difference of 
2𝜋

𝜆
𝐿.

𝐸

𝑥

𝐿
𝑥0 𝑥0 + 𝐿



Optical Path length

2𝜋

𝜆𝑎
𝐿𝑎𝑖𝑟 =

2𝜋

𝜆𝑎
𝜇𝐿𝑚𝑒𝑑

Phase Difference between points 𝐴 and 𝐵 on the wave, travelling in air:

∆𝜙𝑚𝑒𝑑 =
2𝜋

𝜆𝑚𝑒𝑑
𝐿𝑚𝑒𝑑

Phase Difference between points 𝐴 and 𝐵0 on the wave, 
travelling in medium:

𝜆𝑚𝑒𝑑 =
𝜆𝑎
𝜇

=
2𝜋

𝜆𝑎
𝜇

𝐿𝑚𝑒𝑑

∆𝜙𝑚𝑒𝑑 =
2𝜋

𝜆𝑎
𝜇𝐿𝑚𝑒𝑑

∆𝜙𝑎𝑖𝑟 = ∆𝜙𝑚𝑒𝑑If,

∆𝜙𝑎𝑖𝑟 =
2𝜋

𝜆𝑎
𝐿𝑎𝑖𝑟

𝐿𝑎𝑖𝑟 = 𝜇𝐿𝑚𝑒𝑑⇒

𝐿𝑚𝑒𝑑

𝜇

𝑎𝑖𝑟

𝐿𝑎𝑖𝑟

𝐴 𝐵

𝐴 𝐵0

Optical Path Length in a medium is the corresponding path that light travels in vacuum to undergo the same phase 
difference.



𝑂𝑃𝐷 = 𝑂𝑃𝐿𝐼𝐼 − 𝑂𝑃𝐿𝐼 = 𝜇𝑚𝑒𝑑 − 1 𝐿

Optical Path Difference 

Optical Path Length in air:

𝑂𝑃𝐿𝐼 = 𝐴𝐵 + 𝜇𝑎𝑖𝑟𝐿 + 𝐶𝐷 = 𝐴𝐵 + 𝐿 + 𝐶𝐷

Optical Path Length in medium:

𝑂𝑃𝐿𝐼𝐼 = 𝐴𝐵 + 𝜇𝑚𝑒𝑑𝐿 + 𝐶𝐷

Optical Path Difference:

Phase Difference:

𝛿 = ∆𝜙𝐼𝐼 − ∆𝜙𝐼 =
2𝜋

𝜆𝑎
𝜇𝑚𝑒𝑑 − 1 𝐿

𝛿 =
2𝜋

𝜆𝑎
𝑂𝑃𝐷

𝑂𝑃𝐷 = 𝑂𝑃𝐿𝐼𝐼 − 𝑂𝑃𝐿𝐼 = 𝜇2 − 𝜇1 𝐿

and

Phase Difference:

𝛿 = ∆𝜙𝐼𝐼 − ∆𝜙𝐼

∆𝜙𝐼𝐼 =
2𝜋

𝜆𝑎
𝜇2𝐿

𝛿 =
2𝜋

𝜆𝑎
𝜇2 − 𝜇1 𝐿

Phase Difference in medium 1 and 2:

Optical Path Difference:

∆𝜙𝐼 =
2𝜋

𝜆𝑎
𝜇1𝐿



Thin Transparent Film in YDSE

Optical Path Difference:

𝑂𝑃𝐷 = 𝐼 − 𝐼𝐼 = 𝜇𝑡 + 𝑆1𝐵 − 𝑡 − 𝑆2𝐵

Optical Path Travelled by wave 𝐼: 𝜇𝑡 + 𝑆1𝐵 − 𝑡

𝑆2𝐵Optical Path Travelled by wave 𝐼𝐼:

𝑆1𝐵 = 𝑆2𝐵𝑂𝑃𝐷 = 𝜇𝑡 − 𝑡 = 𝜇 − 1 𝑡

• Introduction of slab causes change in 𝑂𝑃𝐷 by 
𝜇 − 1 𝑡.

• Path length of the ray 𝑆1𝐵 increases when it 
encounters the thin film.

• Now the central maxima does not lie at 𝐵.



Thin Transparent Film in YDSE

Optical Path Difference:

∆𝑥 = 𝑆2𝑃 − 𝑆1𝑃

∆𝑥 =
𝑦𝑑

𝐷

∆𝑥 = 𝐼𝐼 − 𝐼 Total Optical Path Difference at point P:

∆𝑥 = 𝐼𝐼 − 𝐼

∆𝑥 =
𝑦𝑑

𝐷
− 𝑡 𝜇 − 1

• After inserting thin film, light ray 𝑆1𝑃
has travelled an extra path of 𝜇 − 1 𝑡.

∆𝑥 = 𝑆2𝑃 − 𝑆1𝑃 + 𝑡 𝜇 − 1

• After inserting thin film, 
light ray 𝑆2𝑃 has travelled an 
extra path of 𝜇 − 1 𝑡.

Total Optical Path Difference at 
point P: ∆𝑥 = 𝐼𝐼 − 𝐼

∆𝑥 =
𝑦𝑑

𝐷
+ 𝑡 𝜇 − 1

∆𝑥 = 𝑆2𝑃 + 𝑡 𝜇 − 1 − 𝑆1𝑃



Shift in Central Maxima

𝑃

𝐵
𝑑

𝜃
𝑂

𝑦

𝑥

𝑥 + Δ𝑥

𝐷

𝑡, 𝜇

𝜇 − 1 𝑡𝐷

𝑑

At central maxima,

𝑆1

𝑆2

𝐼

𝐼𝐼

Screen

𝑂𝑃𝐷 = 0

𝑦𝑑

𝐷
− 𝜇 − 1 𝑡 = 0

𝑦 =
𝜇 − 1 𝑡𝐷

𝑑

Shift in central maxima =



Number of Fringes Shifted

𝜇 − 1 𝑡𝐷

𝑑

Shift in central maxima:

Number of Fringes shifted

𝑛 =
𝑦

𝛽
=

𝜇 − 1 𝑡𝐷

𝑑
×

𝑑

𝜆𝐷
𝑛 =

𝜇 − 1 𝑡

𝜆

=
𝑠ℎ𝑖𝑓𝑡 𝑖𝑛 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑎𝑥𝑖𝑚𝑎

𝑓𝑟𝑖𝑛𝑔𝑒 𝑤𝑖𝑑𝑡ℎ

𝑆 =
𝜇 − 1 𝑡𝐷

𝑑

Shift in central maxima:

Number of fringes shifted:

𝑛 =
𝜇 − 1 𝑡

𝜆



T

The Young’s double slit experiment is done in a medium of refractive index 
4/3. A light of 600 𝑛𝑚 wavelength is falling on the slits having 0.45 𝑚𝑚
separation. The lower slit 𝑆2 is covered by a thin glass sheet of thickness 
10.2 𝜇𝑚 and refractive index 1.5. The interference pattern is observed on a 
screen placed 1.5 𝑚 from the slits. Find the location of the central maximum 
on the 𝑦 −axis.

10.2𝑚𝑚

7.5 𝑚𝑚

1.25 𝑚𝑚

4.25 𝑚𝑚

B

A

D

C
𝑃0

𝑂

𝜇 = 4/3

𝑆1

𝑆2

Screen

𝐼

𝐼𝐼



Given:

Solution:

To find:

𝜇𝑚𝑒𝑑 =
4

3
, 𝑑 = 0.45 𝑚𝑚,𝐷 = 1.5 𝑚, 𝜆 = 600 𝑛𝑚, 𝑡 = 10.2 𝜇𝑚, 𝜇𝑡 = 1.5

Position of central maxima

𝑂𝑃𝐷 = 𝐼 − 𝐼𝐼

𝑂𝑃𝐷 = 𝑆1𝑃0 𝜇𝑚𝑒𝑑 − 𝜇𝑔𝑡 + 𝑆2𝑃0 𝜇𝑚𝑒𝑑 − 𝜇𝑚𝑒𝑑𝑡

𝑂𝑃𝐷 = 𝑆1𝑃0 − 𝑆2𝑃0 𝜇𝑚𝑒𝑑 − 𝑡 𝜇𝑔 − 𝜇𝑚𝑒𝑑

𝑂𝑃𝐷 =
𝑦𝑑

𝐷
𝜇𝑚𝑒𝑑 − 𝑡 𝜇𝑔 − 𝜇𝑚𝑒𝑑

At central maxima 𝑂𝑃𝐷 = 0

𝑦𝑑

𝐷
𝜇𝑚𝑒𝑑 − 𝑡 𝜇𝑔 − 𝜇𝑚𝑒𝑑 = 0

𝑦 =
𝑡𝐷

𝑑𝜇𝑚𝑒𝑑
𝜇𝑔 − 𝜇𝑚𝑒𝑑

Substituting all the values we get, 𝑦 = 4.25 𝑚𝑚

𝑂

𝜇 = 4/3

𝑆1

𝑆2

Screen

𝑃0

𝐼

𝐼𝐼

𝑦



Given:

Solution:

To find:

𝜆 = 5000 ሶ𝐴, 𝜇 = 1.5,

𝑡

𝑦 =
𝜇 − 1 𝑡𝐷

𝑑

𝑦5𝐵 =
5𝐷𝜆

𝑑
𝑦𝑛𝐵 =

𝑛𝐷𝜆

𝑑

Shift in central maxima:

𝜇 − 1 𝑡𝐷

𝑑
=
5𝐷𝜆

𝑑

𝑡 =
5𝜆

𝜇 − 1
= 5 ×

5000 × 10−10

1.5 − 1

𝑡 = 5 𝜇𝑚

T

In YDSE, find the thickness of a glass slab (𝜇 = 1.5) which should be kept in
front of upper slit 𝑆1 so that the central maxima is formed at a place where
5𝑡ℎ bright fringe was lying earlier (before inserting slab). 𝜆 = 5000 ሶ𝐴



Given:

Solution:

To find:

Wavelength = 𝜆,

𝑡1 = 𝑡2 = 𝑡 =?

Path difference due to both the slabs at 𝑃0:

For 𝑡 to be minimum, put 𝑛 = 0,

⇒ 𝜇1 − 𝜇2 𝑡 = 𝑛 +
1

2
𝜆

Δ𝑥 = 𝑛 +
1

2
𝜆

For minima at 𝑃0, we know,

𝜇1 − 1 𝑡 − 𝜇2 − 1 𝑡 = 𝜇1 − 𝜇2 𝑡

Refractive index = 𝜇1 & 𝜇2

Screen

𝐷

𝑃0
𝑑 𝑂

𝑆1

𝑆2

𝑡

𝜇1

𝜇2

T

𝑡 =
𝜆

2 𝜇1 − 𝜇2

Two transparent slabs, having equal thickness but different refractive indices 𝜇1
and 𝜇2 𝜇1 > 𝜇2 , are pasted side by side to form a composite slab. This slab is
placed just after the double slits in a Young’s experiment so that the light from
one slit goes through one material and light through other slit goes through
other material. What should be the minimum thickness of the slab so that
there is a minimum at point 𝑃0 which is equidistant from the slits?



Phase change

Yes

No

Reflected from

Denser Medium

Rarer Medium

𝑖

𝑟

Air

Air

𝜇

No phase 
change

No phase 
change

𝜋

Phase change in Reflection & Refraction 



A narrow slit 𝑆 transmitting light of wavelength 𝜆 is placed at a distance 𝑑
above a large plane mirror. The light coming directly from the slit and that
coming after reflection interfere at a screen placed at a distance 𝐷 from the
slit.
(𝑎) What will be the intensity at a point just above 𝑂.

Given:

To find:

Solution:

Wavelength = 𝜆, Distance of screen = 𝐷,

𝑆𝑃 ≈ 𝑆𝑄𝑃 → path difference = 0 (when 𝑃 is just above 𝑂)

Screen

𝑂

𝐷

𝑆

𝑑
𝑄

𝑃

δ = 𝜋 (due to reflection of light from a denser medium)

Distance of source from the mirror = 𝑑

Intensity just above 𝑂

T

𝐼𝑛𝑒𝑡 = 0

If phase difference is odd integral 
multiple of 𝜋, destructive 
interference will take place.



A narrow slit 𝑆 transmitting light of wavelength 𝜆 is placed at a distance 𝑑
above a large plane mirror. The light coming directly from the slit and that
coming after reflection interfere at a screen placed at a distance 𝐷 from the
slit.

Given:

To find:

Solution:

T

(𝑏) At what distance from 𝑂 does the first maximum occur?

Screen

𝑂
𝐷

𝑆1

𝑑
𝑄

𝑃

𝑆2
𝑑

𝜃

𝑦

Wavelength = 𝜆,

𝑦1𝑠𝑡 𝑚𝑎𝑥𝑖𝑚𝑎

Distance of screen = 𝐷, Distance of source from the mirror = 𝑑

∆𝑥 = 2𝑑 sin 𝜃 = 2𝑑 tan 𝜃 =
2𝑑𝑦

𝐷

∆𝑥𝑛𝑒𝑡 =
2𝑑𝑦

𝐷
+
𝜆

2
= 𝑛𝜆 = 1 𝜆

⇒
2𝑑𝑦

𝐷
=
𝜆

2

𝑦 =
𝜆𝐷

4𝑑



Given:

To find:

Solution:

𝜆 = 700 𝑛𝑚, 𝐷 = 1 𝑚,

𝛽 = 2 ×
𝜆𝐷

4𝑑
=
𝜆𝐷

2𝑑

𝛽 =
700 × 10−9 × 1

2 × 10−3
= 3.5 × 10−4 𝑚

𝑑 = 1 𝑚𝑚

Fringe width = 𝛽

T

A narrow slit 𝑆 transmitting light of wavelength 𝜆 is placed at a distance 𝑑
above a large plane mirror. The light coming directly from the slit and that
coming after reflection interfere at a screen placed at a distance 𝐷 from the
slit.
(𝑐) If 𝑑 = 1 𝑚𝑚, 𝐷 = 1 𝑚 and 𝜆 = 700 𝑛𝑚, then find the fringe width.

𝑂
𝐷

𝑆1

𝑑
𝑄

𝑃

𝑆2
𝑑

𝜃

𝜆𝐷

4𝑑

𝜆𝐷

4𝑑

𝛽 = 0.35 𝑚𝑚



A narrow slit 𝑆 transmitting light of wavelength 𝜆 is placed at a distance 𝑑 above
a large plane mirror. The light coming directly from the slit and that coming after
reflection interfere at a screen placed at a distance 𝐷 from the slit.
(𝑑) If the mirror reflects only 64 % of the light energy falling on it, what will be the
ratio of the maximum to the minimum intensity in the interference pattern
observed on the screen?

Given:

To find:

Solution: 𝐼𝑚𝑎𝑥 = 𝐼1 + 𝐼2
2
,

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛

T

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
= 81

𝑂
𝐷

𝑆1

𝑄

𝑃

𝑆2

𝜃

𝐼1 = 𝐼0

𝐼2 = 0.64 𝐼0

Wavelength = 𝜆, Distance of screen = 𝐷, Distance of source from the mirror = 𝑑

𝐼2 = 0.64 𝐼0

𝐼𝑚𝑖𝑛 = 𝐼1 − 𝐼2
2

𝐼𝑚𝑎𝑥

𝐼𝑚𝑖𝑛
=

𝐼1 + 𝐼2
2

𝐼1 − 𝐼2
2 ⇒

𝐼0 + 0.64 𝐼0
2

𝐼0 − 0.64 𝐼0
2

=
1 + 0.8 2

1 − 0.8 2 =
1.8 2

0.2 2



Condition for Thin Film Interference

𝑑

𝑖

𝑟

air

air

𝜇

𝜋

• The film thickness should be comparable to 
the wavelength of light 𝑑 ≈ 𝜆 .

• The incident light should be white (non -
monochromatic).

• The angle of incidence should be small 𝑖 ≈ 0.



Thin Film Interference

• Inside the film, when a particular colour’s path 
difference is even integral multiple of the 
wavelength, it undergoes constructive 
interference, so these colours appear bright.

• Interference of light wave being reflected off 
two surfaces that are at a distance 
comparable to its wavelength is known as thin 
film ”Thin film interference”.

• When a particular colour’s wavelength is odd 
integral multiple of the path difference inside 
the film, it undergoes destructive interference, 
so these colours don’t appear at all.

𝑖

𝑟

Air

Air

𝜇

No phase 
change

No phase 
change

𝜋



∆𝑥 = 2𝜇𝑑

Interference due to Thin Film from Transmitted Light

angles are very small

𝑑

𝑖

𝑟

air

air

𝜇

Path difference of 1𝑠𝑡 and 
2𝑛𝑑 transmitted light wave

𝑟𝑑
𝑑

cos 𝑟

= 2
𝑑

cos 𝑟
𝜇

When angle is very small,  𝑟 ≈ 0
cos 𝑟 ≈ 1

Path difference

𝑟

1𝑠𝑡
2𝑛𝑑



For constructive interference:

Or

For destructive interference:

Or

2𝜇𝑑 = 𝑛𝜆

2𝜇𝑑 = 𝑛 +
1

2
𝜆

𝛿 = 2𝑛𝜋

𝛿 = 2𝑛 + 1 𝜋

angles are very small

𝑑

𝑖

𝑟

air

air

𝜇

Interference due to Thin Film from Transmitted Light



∆𝑥 = 2𝜇𝑑 −
𝜆

2

Path difference of 1𝑠𝑡 and 
2𝑛𝑑 reflected light wave

𝑟𝑑

𝑑

cos 𝑟

= 2
𝑑

cos 𝑟
𝜇 ≈ 2𝜇𝑑

Total path difference

𝑑

𝑖

𝑟

air

air

𝜇

angles are very small

1𝑠𝑡 2𝑛𝑑

Interference due to Thin Film from Reflected Light

Because phase change of 𝜋 after 
reflection of 1𝑠𝑡 , path difference = −

𝜆

2



For constructive interference:

For destructive interference:

2𝜇𝑑 = 𝑛𝜆

2𝜇𝑑 = 𝑛 +
1

2
𝜆

𝑑

𝑖

𝑟

air

air

𝜇

𝜋

angles are very small

Interference due to Thin Film from Reflected Light

2𝜇𝑑 −
𝜆

2
= 𝑛𝜆

2𝜇𝑑 −
𝜆

2
= 𝑛 +

1

2
𝜆 ⇒ 2𝜇𝑑 = 𝑛 + 1 𝜆

𝑛 is an integer.



Interference due to Thin Film

For constructive interference:

• Colours will be strongly reflected/transmitted. 

Destructive interference:

• Colours will be poorly reflected/transmitted.

This gives coloured appearance of the film.  



A soap film of refractive index 1.33 is illuminated by the light of wavelength
400 𝑛𝑚 at an angle of 45°. If there is complete destructive interference then,
find the thickness of the film.

Given:

To find:

Solution:

T

𝜇 = 1.33, 𝑖 = 45°, 𝜆 = 400 𝑛𝑚

𝑡

𝜇 =
sin 𝑖

sin 𝑟
⇒ 1.33 =

sin 45

sin 𝑟

sin 𝑟 =
3

4 2
cos 𝑟 = 1 − sin2 𝑟

For Destructive interference:

2𝜇𝑡

cos 𝑟
= 𝑛𝜆

⇒
2 1.33 𝑡

0.85
= 1 400 × 10−9

⇒ 𝑡 = 1.27 × 10−7 𝑚

⇒ cos 𝑟 = 0.85

45° soap film



Diffraction

• Bending of a wave or its deviation from its original 
direction of propagation while passing through a 
small obstruction is known as diffraction.

Original 
direction

• Diffraction is explained by wave nature of light.​

• Condition for bending: size of obstacle ≈ 𝜆

• Every point on the wavefront makes a secondary 
wave according to Huygens Principle.



• Source and screen are at infinite
distance from diffraction element.

• Source and screen are at finite
distance from diffraction element.

• High intense interference pattern 
is observed on screen.

• Diffraction was first demonstrated by 
this experiment.

𝑆𝑂
𝑆𝑂

Diffraction of Light Waves

Fraunhofer Diffraction Fresnel Diffraction



𝑃𝑂𝑏

𝑃
𝜃

Screen

𝑏

2

𝑏

2
sin 𝜃

𝜃

• Path difference between the waves,

∆x =
𝑏

2
sin 𝜃

Fraunhofer Diffraction – Path Difference



𝑃𝑂𝑏

𝑃
𝜃

Screen

• The condition for 1𝑠𝑡 dark fringe 
formed at point 𝑃:

Fraunhofer Diffraction – first Dark Fringe

𝑏

2
sin 𝜃 =

𝜆

2

𝑏 sin 𝜃 = 𝜆

• The condition for 𝑛𝑡ℎ dark fringe:

𝑏 sin 𝜃 = 𝑛𝜆

• Central Maxima is at 𝑃0, where 𝜃 = 0



𝑃𝑂𝑏

𝑃
𝜃

Screen

• Electric Field Amplitude at 𝑃:

Fraunhofer Diffraction – Intensity at general point

𝐸′ =
𝐸0 sin 𝛽

𝛽

• When 𝜃 = 0, 𝛽 = 0, 𝐸′ = 𝐸0

𝐼 =
𝐼𝑂 sin

2 𝛽

𝛽2

Where 𝐼0 is the  intensity at 
Central Maxima

Where 𝛽 =
2𝜋

𝜆

𝑏

2
sin 𝜃

𝛽 = phase difference

• Intensity ∝ 𝐸2

• Intensity at a general point:



Fraunhofer Diffraction – Graph of Intensity

𝐼 =
𝐼𝑂 sin

2 𝛽

𝛽2
𝛽 =

𝜋𝑏 sin 𝜃

𝜆

𝐼𝑜

−
2𝜆

𝑏

sin 𝜃

𝐼

0
−
𝜆

𝑏

𝜆

𝑏

2𝜆

𝑏

𝐼𝑂
22 𝐼𝑂

62.5

• sin 𝜃 = 0 ; Central Maxima

• sin 𝜃 = ; Minima
𝑛𝜆

𝑏

• sin 𝜃 = ±
𝜆

𝑏
, ±

2𝜆

𝑏
, ±

3𝜆

𝑏
…………

• Maximum intensity is distributed 
between − 𝜆

𝑏
and 𝜆

𝑏
.

• If 𝑏 is large, 𝜆
𝑏
→ 0, then

Single fringe is observed and no 
diffraction is seen.



Fraunhofer Diffraction – Graph of Intensity

𝑏

• Fraunhofer Diffraction ⟶ Intensity 
decreases away from the centre.

• 𝐼0 → Intensity at the central bright fringe

• YDSE ⟶ Intensity is same for all 
fringes.

• 𝐼0 → Intensity from a single slit.

𝐼 =
𝐼𝑂 sin

2 𝛽

𝛽2
𝐼 = 4𝐼𝑂 cos

2
𝜙

2



Diffraction

Difference between Interference and Diffraction

Interference

It is the phenomenon of superposition of 
two waves coming from two different 
coherent sources.

It is the phenomenon of superposition of two 
waves coming from two different parts of the 
same wavefront.

In interference pattern, all bright fringes are 
equally bright and equally spaced.

All bright fringes are not equally bright and 
equally wide. Brightness and width 
decreases with the angle of diffraction.

All dark fringes are perfectly dark.
All dark fringes are perfectly dark, but their 
contrast with bright fringes and width 
decreases with angle of diffraction. 

In interference, bright and dark fringes are 
large in number for a given field of view.

In diffraction, bright and dark fringes are 
fewer for a given field of view.



A beam of light of wavelength 600 𝑛𝑚 from a distant source falls on a single slit 1 𝑚𝑚
wide and a resulting diffraction pattern is observed on a screen 2 𝑚 away. The distance 
between the first dark fringes on either side of central bright fringe is

1𝑚𝑚 𝛼
𝜃

𝐷 = 2 𝑚

𝜃

sin 𝜃 ≈ 𝜃

Solution:

𝜃 =
𝜆

𝑏

𝛼 = 2𝜃 =
2𝜆

𝑏

𝛼 =
𝑦

𝐷
=
2𝜆

𝑏
⟹ 𝑦 =

2𝜆𝐷

𝑏

𝑦 =
2 × 600 × 10−9 × 2

10−3
= 24 × 10−4 𝑚

𝑦 = 2.4 𝑚𝑚

First maxima is formed at  𝜆
𝑏

distance 
away on both side of central maxima.

𝑦

(𝜃 is small)



𝐴

𝐵

𝑁

3𝜆

2

𝑏

𝑏 sin 𝜃 =
3𝜆

2

𝜃1𝐵 =
3𝜆

2𝑏

𝑦1𝐵 =
3𝐷𝜆

2𝑏

• Condition for 1𝑠𝑡 secondary maxima (bright):

• The angle of diffraction (𝜃1B) for 1st maximum 
(bright) is:

• The position of 1st maximum (bright) from the 
centre of the screen is:

Single Slit Diffraction – 𝟏𝒔𝒕 Secondary Maxima



Screen

First secondary maxima

Second secondary maxima

Central maxima

First secondary maxima

Second secondary maxima

Where, 𝑛 = 1, 2, 3, 4 ………

• The angle of diffraction 𝜃𝑛 for 𝑛𝑡ℎ maxima 
(bright) is:

• The position of  𝑛𝑡ℎ maxima (bright) from the 
centre of the screen is:

𝜃𝑛𝐵 =
2𝑛 + 1 𝜆

2𝑏

𝑦𝑛𝐵 =
2𝑛 + 1 𝐷𝜆

2𝑏

Single Slit Diffraction – 𝒏𝒕𝒉 Secondary Maxima



• Angular position for minima

+
𝜆

𝑏

−
𝜆

𝑏

+
2𝜆

𝑏

−
2𝜆

𝑏

• Angular position for maxima

sin 𝜃 = ±
𝜆

𝑏
,±

2𝜆

𝑏
,…… ,±

𝑛𝜆

𝑏
sin 𝜃 = ±

3𝜆

2𝑏
, ±

5𝜆

2𝑏
, …… ,±

(2𝑛 + 1)𝜆

2𝑏

Single Slit Diffraction 

+
3𝜆

2𝑏

−
3𝜆

2𝑏

+
5𝜆

2𝑏

−
5𝜆

2𝑏

0



Given:

To find:

Solution: Angular position of first minima is given by,

sin 𝜃1𝐷 =
𝜆

𝑎
⟹

1

2
=
𝜆

𝑎

Angular position of first secondary maxima is given by,

sin 𝜃1𝐵 =
3𝜆

2𝑎
⟹ sin 𝜃1𝐵 =

3

4

𝜃1𝐵 = sin−1
3

4

T

𝜃1𝐷 = 30°; 𝜆 = 5000 ሶ𝐴

Angular position of first secondary maximum (𝜃1𝐵)

In a diffraction pattern due to a single slit of width 𝑎, the first minima is 
observed at an angle 30° when the light of wavelength 5000 ሶ𝐴 is incident 
on the slit. The first secondary maxima is observed at an angle of:



• When a monochromatic light is 
incident on the hole we see 
concentric circular bright and dark 
spots on the screen.

• The size of hole should be 
comparable to the wavelength of 
incident light.

• Central bright spot contains the 
most energy.

• Brightness of the rings decreases
as we move away from the centre.

• For the first dark ring,

sin 𝜃 =
1.22𝜆

𝑏

Fraunhofer Diffraction for Hole

𝑏

𝐷

𝜃 𝑅

𝑅 =
1.22𝜆𝐷

𝑏



A convex lens of diameter 8.0 𝑐𝑚 is used to focus a parallel beam of light 
of wavelength 6200 Å. If the light be focused at a distance of 20 𝑐𝑚 from 
the lens, what would be the radius of the central bright spot?

6200 Å

𝑏 = 8 𝑐𝑚

𝜃

20 𝑐𝑚

Given:

To Find:

Solution:

𝐷 = 20 𝑐𝑚, 𝑏 = 8 𝑐𝑚 and 𝜆 = 6200 Å

𝑅

Radius of central bright spot,

𝑅 =
1.22𝜆𝐷

𝑏

⇒ 𝑅 =
1.22 × 6200 × 10−10 × 20 × 10−2

8 × 10−2

𝑅 = 1.89 × 10−6 𝑚

𝑅



Binary Star



Limit of Resolution

Just resolved:

Well resolved:

Unresolved: Diffraction discs from both 
sources overlap. 

𝑆1

𝑆2

𝑆1

𝑆2

𝑆1

𝑆2

The periphery of the diffraction 
disc of one object touches the 
centre of the diffraction disc of 
the other object.

The diffraction discs formed by 
two objects are well separated 
from each other.



Rayleigh criterion

The Rayleigh criterion specifies the minimum separation between two 
light sources that may be resolved into distinct objects.

Unresolved Just resolved Well resolved
(Rayleigh criterion)



Limit of Resolution of a Telescope

• Clear image is formed when the diffraction discs from two 
sources is just resolved.

𝑆𝑡𝑎𝑟1

𝑆𝑡𝑎𝑟2

Just resolved

𝑅∆𝜃

Telescope lens

• Distance between diffraction disc > 𝑅 ⇒ Well resolved

• Distance between diffraction disc < 𝑅 ⇒ Unresolved



Resolving Power of Telescope

• Angular limit of 
resolution of telescope:

∆𝜃 =
1.22𝜆

𝑏

∆𝜃 = Limit of resolution 

• Angle subtended by the first dark fringe > ∆𝜃 ⇒ Well resolved

• Angle subtended by the first dark fringe < ∆𝜃 ⇒ Unresolved

𝑏

𝑓

𝑅∆𝜃



Radius of the Central Bright Spot

• Radius of central bright region is:

• Resolving power of a telescope:

𝑅 =
1.22𝜆𝑓

𝑏

𝑅. 𝑃. =
𝑏

1.22𝜆

𝑅 = 𝑓∆𝜃

𝑅. 𝑃. =
1

∆𝜃

• Bigger lens ⇒ larger 𝑏 ⇒ smaller Limit of Resolution ∆𝜃 ⇒ higher Resolving Power 𝑅. 𝑃.

𝑏

𝑓

𝑅∆𝜃



Disadvantages of using Lens

1. Difficult and expensive to build large lenses.

2.Providing mechanical support to
large lenses require large and
complex machinery.

3. Chromatic aberration ( light rays
passing through a lens focus at
different points, depending
on their wavelength).

The largest lens objective in use has 
diameter of 40 inch (~1.02 𝑚). It is at the 
Yerkes Observatory in Wisconsin, USA.

Fact:

Chromatic aberration



Advantages of using Mirror as the 
Objective in Telescope

1. No chromatic aberration

2. Parabolic mirror used
to counter spherical aberration.

3. Large mirrors can be
supported from the back.

The viewer sits near the focal point 
of the mirror, in a small cage.

Fact:

Eyepiece Objective 
mirror



Given:

To find:

Solution: Limit of resolution of telescope is given by:

∆𝜃 =
1.22 × 500 × 10−9

200 × 10−2

T

𝑏 = 200 𝑐𝑚, 𝜆 = 500 𝑛𝑚

Limit of resolution of telescope

305 × 10–9 𝑟𝑎𝑑𝑖𝑎𝑛

∆𝜃 =
1.22𝜆

𝑏

Calculate the limit of resolution of a telescope objective having a 
diameter of 200 𝑐𝑚, if it has to detect light of wavelength 
500 𝑛𝑚 coming from a star.

JEE Main 2019 



Limit of Resolution of a Microscope

Angular limit of resolution of microscope:

sin 𝜃 ≈ 𝜃 =
1.22𝜆

𝑏

𝑅 = 𝑣𝜃 = 𝑣 ×
1.22𝜆

𝑏

𝑚 =
𝑅

𝑑
⇒ 𝑑 =

𝑅

𝑚
Magnification of convex lens: 𝑑 = 𝑣 ×

1.22𝜆

𝑏𝑚

• Clear images can be seen in the microscope if the 
diffraction discs are just resolved.

Lens Formula: 1

𝑣
−
1

𝑢
=
1

𝑓

1 −
𝑣

𝑢
=
𝑣

𝑓

𝑚 = 1 −
𝑣

𝑓

⇒ 1 − 𝑚 =
𝑣

𝑓
𝑚 =

𝑣

𝑢

𝑚 ≈ −
𝑣

𝑓
𝑣 ≫ 𝑓 ⇒

𝑣

𝑓
≫ 1

𝑑 = 𝑣 ×
1.22𝜆

𝑏𝑚
We know that:

𝑑 =
1.22𝜆

𝑏𝑚
× −𝑚𝑓 =

1.22𝜆𝑓

𝑏

tan 𝛽 =
𝑏

2𝑓
⇒ 𝑏 = 2𝑓 tan𝛽

𝛽 is small, 𝑏 = 2𝑓 sin 𝛽

𝑑𝑚𝑖𝑛 =
1.22𝜆𝑓

𝑏
=

1.22𝜆𝑓

2𝑓 sin 𝛽
𝑑𝑚𝑖𝑛 =

1.22𝜆

2 sin 𝛽



Microscope immersed in Oil

When the setup is immersed in oil, 𝜆𝑚𝑒𝑑 changes to
𝜆

𝜇

𝑑𝑚𝑖𝑛 =
1.22𝜆𝑚𝑒𝑑

2 sin 𝛽
⟶ 𝑑𝑚𝑖𝑛 =

1.22𝜆

2𝜇 sin 𝛽

Note: The product 𝜇sin𝛽 is called the numerical aperture and
is sometimesmarked on the objective.

Resolving power of a microscope: 

• Resolving power of the 
microscope increases when it is 
immersed in a medium.

⇒ 𝑅. 𝑃.=
2𝜇 sin 𝛽

1.22𝜆
𝑅. 𝑃.=

1

𝑑𝑚𝑖𝑛



Validity of Ray Optics

• Consider a single slit of width ‘𝑎’.Diffraction pattern will be observed.

• There will be central maxima due to diffraction.

• Angular size of central maximum, 𝜃 =
𝜆

𝑎

If 𝑦 ≈ 𝑎

• The width of diffracted beam after it has travelled by 𝑧, 𝑦 = 𝑧 × 𝜃 =
𝜆𝑧

𝑎

𝑧𝐹 is Fresnel distance.

• If 𝑧 < 𝑧𝐹 , the ray optics is valid. 

• If 𝑧 > 𝑧𝐹 , spreading due to diffraction dominates. 

𝑧 ≈
𝑎2

𝜆
= 𝑧𝐹



Given:

𝑧𝐹 =
2 × 10−3 2

600 × 10−9
= 6.7 𝑚

T

𝑎 = 2 𝑚𝑚; 𝜆 = 600 𝑛𝑚

Solution: Ray optics is a good approximation up to Fresnel distance only.

𝑧 ≈
𝑎2

𝜆
= 𝑧𝐹

• If 𝑑 < 6.7 𝑚 ⟶ Ray optics holds.  

• If 𝑑 > 6.7 𝑚 ⟶ Spreading due to diffraction dominates.  

For what distance is ray optics a good approximation when a 
plane light wave is incident on a circular aperture of width 2 𝑚𝑚
having wavelength 600 𝑛𝑚?



When a parallel beam of light passes through a medium, a part of it appears in directions 
other than the incident direction. This phenomenon is called scattering of light.

A particle

Scattering

• Light is an EM wave, it oscillates the charged 
particles in a medium because of its 
oscillating electric field.

• Oscillating charged particles emit EM waves.

• If the oscillating electric field of incident light 
has frequency 𝑓, the frequency of scattered 
wave will also have frequency 𝑓.

Incident light



Rayleigh’s Law of Scattering

• When size of particles < 𝜆

• Intensity of scattering depends on 

Intensity of scattered wave ∝
1

𝜆4

1. Wavelength of light

2. Size of particles causing scattering 

𝑉
𝐼
𝐵

𝑌
𝑂
𝑅

𝐺

𝜆 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝜆 −𝑚𝑎𝑥𝑖𝑚𝑢𝑚

Scatters most

Scatters least

𝜆 increases 

and Intensity 

of scattering 

decreases 



Unpolarized Light

● The light having electric field oscillations in 
all directions in the plane perpendicular to 
the direction of propagation.

Note: Light wave is coming out of the screen, 
and arrows show direction of oscillation of 
electric field.

● Examples of source of unpolarized light: Candle, 
Bulb, Sun etc.



Plane Polarized Light

Plane Polarized light – When electric field at a point always remains parallel to a fixed direction as time passes.

Plane of polarization – Plane containing electric field and direction of propagation.

𝑥 − 𝑎𝑥𝑖𝑠 → Direction of propagation. 

𝑦 − 𝑎𝑥𝑖𝑠 → Oscillation of electric field. 

𝑥𝑦 𝑝𝑙𝑎𝑛𝑒 → Plane of polarization.

When the polarizer is placed in the path of unpolarized 
light, the direction of oscillation of the electric field 
becomes parallel to the transmission axis.

Note: If any unpolarized light of intensity 𝐼0 is incident on a 

polarizer, we get a polarized light of intensity     .
𝐼0
2



Law of Malus

● 𝐼 = Intensity of transmitted light

● 𝐼0 = Intensity of incident light

Intensity of the wave after crossing the 
polarizer:

Electric field amplitude of the 
wave after crossing the polarizer:

𝐸 = 𝐸0 cos 𝜃

𝐼 ∝ 𝐸2𝐼 = 𝐼0 cos
2 𝜃

𝜃

𝐸0 𝐸0 cos 𝜃

𝐼0 𝐼

Polarized 
light

Unpolarized 
light

2𝐼0



Law of Malus

𝐼 = 𝐼0 cos
2 0° = 𝐼0

● Case 1 → when 𝜃 = 0° : ● Case 2 → when 𝜃 = 90° :

𝐼 = 𝐼0 cos
2 90° = 0

𝐼0 𝐼0 𝐼0



T

Two ‘crossed’ polaroids 𝐴 and 𝐵 are placed in the path of a light beam. In 
between these, a third polaroid 𝐶 is placed whose polarization axis 
makes an angle 𝜃 with the polarization axis of the polaroid 𝐴. If the 
intensity of light emerging from the polaroid 𝐴 is 𝐼𝑜, then the intensity of 
light emerging from polaroid 𝐵 will be 

Solution: Intensity of light emerging from polaroid 𝐶:

Intensity of light emerging from polaroid 𝐵: 𝐼𝐵 = 𝐼𝐶 cos
2 90° − 𝜃

𝐼𝐵 = 𝐼0 cos
2 𝜃 . cos2 90° − 𝜃

𝐼𝐵 = 𝐼0 cos
2 𝜃 . sin2 𝜃

{Applying the law of Malus.}

=
𝐼0
4

2 sin 𝜃 cos 𝜃 2

𝐼𝐶 = 𝐼0 cos
2 𝜃

𝐼𝐵 =
𝐼0
4
sin2(2𝜃)



Unpolarized light with amplitude 𝐴0 passes through two polarizers. The first 
one has an angle of 30° clockwise to vertical and second one has an angle of 
15° counter-clockwise to the vertical. What is the amplitude of the light 
emitted from the second polarizer?

Given:

To find:

𝐴 = 𝐴0

𝐴2

Solution:

We know that: 𝐼 ∝ 𝐴2.

∴ 𝐴 ∝ 𝐼

⇒
𝐴1
𝐴2

=
𝐼1

𝐼2

𝐴1
𝐴0

=
𝐼1
𝐼0
=

𝐼0
2𝐼0

=
1

2

𝐴1 =
𝐴0

2

𝐼1 =
𝐼0
2

T

𝐴1 =
𝐴0

2

𝐼2 = 𝐼1cos
2𝜃

𝐼2 =
𝐼0
2
cos245° =

𝐼0
2

1

2

2

=
𝐼0
4

𝐴2
𝐴0

=
𝐼2
𝐼0
=

𝐼0
4𝐼0

=
1

4
𝐴2 =

𝐴0
2

𝐴1
𝐴2

=
𝐼1

𝐼2
Again,

𝜃 = 30° − −15° = 45°



Medium(𝜇)

𝑖

Oscillations ⊥ to the incidence plane

Oscillations in the incidence plane

Polarization by Reflection

● The reflected light has more vibrations perpendicular to plane of incidence. 

● The refracted light has more vibration parallel to the plane of incidence.

● The percentage of polarization in reflected light changes as we change the 
angle of incidence 𝑖. 



● For a particular angle of incidence 𝑖𝐵 , the 
reflected light becomes completely plane 
polarized.

● The required condition for this purpose is:

𝑖𝐵 + 𝑟 = 90°

● Brewster’s Law tan 𝑖𝐵 = 𝜇

𝑖𝐵 = Brewster angle/polarising angle

Brewster’s Law

tan 𝑖𝐵 =
𝜇2
𝜇1

● If the light ray travels from one medium to 
another with refractive 𝜇1 and 𝜇2 respectively, 
then Brewster’s law becomes, 

Medium(𝜇)

𝑖𝐵

𝑟



Relation between Critical Angle and 
Brewster Angle

∴ tan 𝑖𝐵 =
1

sin 𝜃𝐶

● Brewster’s Law tan 𝑖𝐵 = 𝜇

𝑖𝐵 = Brewster angle/polarising angle

sin 𝜃𝐶 =
1

𝜇

● Critical Angle:

𝑖𝐵 = tan−1
1

sin 𝜃𝐶
And 𝜃𝐶 = sin−1

1

tan 𝑖𝐵

Medium(𝜇)

𝑖𝐵

𝑟



T
The polarizing angle of diamond is 67°. The critical angle of diamond is 
nearest to: [Given tan 67° = 2.36 ]

To find:

Solution:

Critical angle

Given: 𝑖𝐵 = 67°

Critical angle is given by:

𝜃𝐶 = sin−1
1

2.36

1

2.36
<
1

2
⇒ sin−1

1

2.36
< sin−1

1

2
⇒ 𝜃𝐶 < 30°

∴ Out of the four option only 22° is less than 30°

𝜃𝐶 = sin−1
1

tan 𝑖𝐵

𝜃𝐶 = sin−1
1

tan 67°



Scattering by Polarization

● If an unpolarized light gets scattered from 
air molecule, light perpendicular to 
original ray is plane polarized.

● If we draw a plane perpendicular to the 
incident light, then from every viewpoint
on the plane we can see the plane 
polarized light.

Air molecule

Incident Light

Observer

Observer



Given:

To find:

Solution:

𝑖𝑝 = 60°

Velocity of light in glass (𝑣𝑔)

As reflected light is plane 
polarized, 

𝑖𝑝 = 60∘

According to Brewster’s law,

𝜇 = tan 𝑖𝑝 = tan 60∘ = 3

As, 𝜇 = 𝑣𝑎

𝑣𝑔
⇒ 𝑣𝑔 =

𝑣𝑎

𝜇

T

𝑣𝑔 =
3 × 108

3
= 3 × 108 𝑚/𝑠

A ray of light, travelling in air, is incident on a glass slab with angle of 
incidence 60°. It is found that the reflected ray is plane polarized. The velocity 
of light in the glass is:

Air

Plane polarized

Glass (𝜇)

90°

60°


