B BYJU'S

Grade 07: Maths Chapter Notes

B BYJU'S Classes

Chapter Notes

The Triangle and Its Properties

Grade 06

Topics to be Covered

1. Introduction

2. Median

3. Altitude

4. Angle Properties

- Exterior angle property
- Angle sum property

5. Triangle Inequalities

6. Special Triangles

- Equilateral triangle
- Isosceles triangle
- Right-angled triangle

Mind Map

1. Introduction

A triangle is a simple closed curve made of three line segments.

- It has three vertices, three sides and three angles.

In $\triangle A B C$:

- Sides: AB, BC, CA
- Angles: $\angle A B C, \angle B C A, \angle C A B$
- Vertices: A, B, C

2. Median

A median of a triangle is a line segment that joins a vertex to the mid-point of the side that is opposite to that vertex.

- A triangles has only 3 medians, which always intersect at point called the centroid.

In $\triangle A B C$:

- $A D$ is the median that bisects $B C$.
- BE is the median that bisects AC.
- CF is the median that bisects AB.
- O is the centroid.

3. Altitude

An altitude of a triangle is a line segment that starts from the vertex and meets the opposite side at right angles.

- The altitude is the shortest distance from the vertex to its opposite side.
- Every triangle has 3 altitudes, one from each vertex.
- The 3 altitudes always meet at a single point, no matter what the shape of the triangle is, called the orthocentre.

In $\triangle A B C$:

- $A D$ is the altitude to side $B C$.
- BE is the altitude to side AC.
- CF is the altitude to side $A B$.
- O is the orthocentre.

4. Angle Properties

4.1. Exterior Angle Property

An exterior angle of a triangle is equal to the sum of its interior opposite angles.

Consider $\triangle \mathrm{ABC}$:
$\angle A C D$ is an exterior angle.
To show: $m \angle A C D=m \angle A+m \angle B$
Construction: Draw a $\overline{\mathrm{CE}}$ parallel to $\overline{\mathrm{AB}}$ Justification:

- $\angle 1=\angle x \quad$ [CE $\| \overline{\mathrm{AB}}$ and $\overline{\mathrm{AC}}$ is the transversal]
- $\angle 2=\angle y \quad$ [$\overline{\mathrm{CE}} \| \overline{\mathrm{AB}}$ and $\overline{\mathrm{BD}}$ is the transversal]
- $\angle 1+\angle 2=\angle x+\angle y=m \angle A C D$
- Hence, $m \angle A+m \angle B=m \angle A C D$

4.2. Angle Sum Property

The total measure of the three angles of a triangle is 180°.

Consider $\triangle A B C$:
Here, $m \angle \mathrm{~A}+m \angle \mathrm{~B}+m \angle \mathrm{C}=180^{\circ}$

5. Triangle Inequalities

- The sum of the lengths of any two sides of a triangle is greater than the length of the third side.
- The difference between the lengths of any two sides of a triangle is smaller than the length of the third side.

Consider $\triangle \mathrm{ABC}$:

- $A B+B C>A C$
- $A C+B C>A B$
- $A B+A C>B C$
- $B C-A B<A C$
- $A C-B C<A B$
- $A C-A B<B C$

6. Special Triangles

6.1. Equilateral Triangle

A triangle in which all the three sides are of equal lengths is called an equilateral triangle.

Consider $\triangle A B C$ which is an equilateral triangle:

- $A B=B C=C A$
- $\angle A=\angle B=\angle C=60^{\circ}$

6.2. Isoceles Triangle

A triangle in which two sides are of equal lengths is called an isosceles triangle.

Consider $\triangle \mathrm{PQR}$ which is an equilateral triangle:

- $P Q=Q R$
- $\angle \mathrm{Q}=\angle \mathrm{R}$ [i.e., base angles opposite to the equal sides are equal]

6. Special Triangles

6.3. Right-angled Triangle

A triangle in which one of its angle is called a right-angled triangle.

- The side opposite to the right angle is called the hypotenuse and the other two sides are known as the legs of the right-angled triangle.
- In a right-angled triangle, the square on the hypotenuse = sum of the squares on the legs. This is known as Pythagoras' Theorem.

Consider $\triangle X Y Z$ which is a right-angled triangle:

- $X Z$ is the hypotenuse
- $\angle Y=90^{\circ}$
- $X Z^{2}=X Y^{2}+Y Z^{2}$
- In an equilateral triangle the medians and the altitudes are the same.
- In an isosceles triangle the median from the vertex joining the two equal sides bisects the base at 90°.
- In a right-angled triangle the legs of the triangle are two of the altitudes.

