

Grade 07 Chapter Notes

CHAPTER NOTES

Thansportation in Animals and

Human Circulatory system

- Components of Blood Heart
- Blood Vessels

Human Excretory System

- Excretory System Urine Formation
- Kidney Malfunction & Artificial Kidney

Transport in Other Animals & Plants

- Excretion in Other Animals
- Transport in Plants
- Transpiration
 Excretion in Plants

Human Circulatory System

The circulatory system is made up of blood vessels that carry blood away from and towards the heart.

Heart

Blood Vessels

Blood components

The Heart (The pumping organ)

Largest artery of the body that distributes oxygenated blood throughout the body.

Pulmonary artery

Carries deoxygenated blood from the RV to the lungs for oxygenation.

Pulmonary vein

Carries oxygenated blood from the lungs to the LA of the heart.

Left Atrium (LA)

Receives oxygenated blood from the lungs through pulmonary veins

Right Atrium (RA)

Receives deoxygenated blood from the vena cava

Right Ventricle (RV)

- Receives deoxygenated blood from the RA.
- Pumps blood into the pulmonary artery.

Left Ventricle (LV)

- Thickest chamber of the heart
- Responsible for the pumping of oxygenated blood to all parts of the body through the aorta.

Blood Vessels

Arteries v/s Veins

Artery

- Carries blood away from heart
- Blood flows under high pressure
- Has thick elastic wall
- Does not have valves.
- Carries oxygenated blood except pulmonary artery.

Vein

- Carries blood towards the heart
- Blood flows under low pressure
- * Has thin inelastic wall.
- Has values to prevent backflow of blood
- Carries deoxygenated blood except pulmonary vein.

Human Excretory System

Excretion

Process of removing metabolic waste from the body.

Metabolic waste – Nitrogenous waste (Ammonia, urea, uric acid), $C0_2$ and H_20

Urethra

Opening of urinary bladder

Function

• Expels urine

Pair of ureter

muscular elastic tube. connected to urinary bladder

Function

Carries urine from kidney to urinary bladder

B

Unine Formation

Kidney

- Blood contains both useful and harmful substances.
- * The kidneys fitter the blood by absorbing useful substances
- * and removing harmful substances.

Urine Composition

* An adult human being normally passes about 1-1.8 L of urine in 24 hours.

2.5 % Urea ------ products

95 % Water -----

Kidney Malfunction

Artificial kidney

- Filters blood via dialyzing fluid
- * Only removes wastes like urea and uric acid by diffusion
- No tubular reabsorption

Excretion in Other Animals

Fish

- Excretory waste: Ammonia (dissolves in water)
- Also found in other aquatic animals

Bird

- Excretory waste: Uric acid (semi-solid, white coloured compound)
- · Also found in animals like lizards and snakes

Transportation in Plants

* Transportation of food and water takes place separately in plants.

Xylem

 Transports water and minerals from root to all other parts of the plant,

The flow is unidirectional.

Phloem

- Transport of food through phloem is called translocation.
- Translocate sugar, amino acids, proteins and other ions.
- ATP is used to transport sugar from leaves to phloem.
- · The flow is bidirectional.

Forces responsible for translocation in phloem

Osmotic Pressure

Osmotic pressure is responsible for the transfer of substances from phloem to tissues where food is required.

Phloem

Transportation in Plants

Transpiration

- Loss of excess water in the form of water vapour through the stomata.
- Importance of transpiration:
 - Generates a suction pull that helps in the transportation of water
 - 2. Provides cooling effect to plants

Excretion in Plants

Plants do not possess special excretory system but also eliminate wastes or stores them permanently in their body parts

Gaseous exchange - 0_2 and H_20 – released during respiration 0_2 released during photosynthesis

Storage -Converted in gum, resins or latex and stored in old xylem (wood)

Diffusion - Aquatic plants excrete metabolic wastes - Terrestrial plants excrete into the soil.