

Grade 08 Maths Chapter Notes

B BYJU'S Classes

Chapter Notes

Mensuration

Grade 08

Mensuration

1. Mensuration of 2D Shapes

- 1.1. Perimeter and Area of Basic Shapes
- 1.2. Area of a Trapezium
- 1.3. Area of a General Quadrilateral
- 1.4. Area of a Rhombus
- 1.5. Area of a Polygon

2. Mensuration of 3D Shapes

- 2.1. Surface Area
- 2.2. Volume

1.1. Perimeter and Area of Basic Shapes

Triangle

- Perimeter: Sum of all the three sides
- Area: $\frac{1}{2}bh$

Parallelogram

- Perimeter: Twice the sum of adjacent sides
 - Area: bh

Rectangle

- Perimeter: 2(a + b)
- Area: ab

1.1. Perimeter and Area of Basic Shapes

Square

- Perimeter: 4a
- Area: **a**²

Circle

- Perimeter: $2\pi r$
- Area: πr^2

1.2. Area of a Trapezium

Consider a trapezium ABCD

Area of trapezium ABCD

= Area of \triangle AED + Area of DEFC + Area of \triangle CFB

$$=\frac{1}{2}ch+ah+\frac{1}{2}dh$$

$$=\frac{1}{2}h(c+2a+d)$$

$$=\frac{1}{2}h[(c+a+d)+a]$$

$$=\frac{1}{2}h[a+b]$$

Area of a trapezium

$$=\frac{1}{2} \times \text{height} \times \text{sum of two parallel sides}$$

1.3. Area of a General Quadrilateral

- A general quadrilateral can be split into two triangles by drawing one of its diagonals.
- This triangulation helps us to find the formula for area any general quadrilateral.

Consider a quadrilateral ABCD. Here, d denotes the length of the diagonal AC. h_1 and h_2 are the length of the perpendiculars from point B and point D on AC, respectively.

Area of quadrilateral ABCD = Area of △ABC + Area of △ADC

$$= \frac{1}{2}h_1d + \frac{1}{2}h_2d$$

$$= \frac{1}{2}d(h_1 + h_2)$$

1.4. Area of a Rhombus

Consider a rhombus ABCD. Here, d_1 denotes the length of the longer diagonal AC and d_2 is the length of the shorter diagonal BD.

Area of rhombus ABCD = Area of \triangle ABC + Area of \triangle ADC

$$= \frac{1}{2}d_1\frac{d_2}{2} + \frac{1}{2}d_1\frac{d_2}{2}$$

$$=2\times\frac{1}{2}d_1\frac{d_2}{2}$$

$$= \frac{1}{2}d_1d_2$$

Area of a rhombus = $\frac{1}{2}$ × product of its diagonals

1.5. Area of a Polygon

 While finding the area of a polygon, the polygon needs to be divided into triangles and quadrilaterals and their individual areas should be added.

Consider a polygon ABCDE.

Here, DB is a diagonal. Line segments EF and AG are the perpendiculars from points E and A on DB, respectively.

Area of polygon ABCDE

- = Area of \triangle DFE + Area of \triangle AGB + Area of \triangle DCB
- + Area of □EFGA

2.1. Surface Area

- The total surface area of a 3D shape is the sum of the area of all the faces.
- The lateral surface area of a 3D shape is the sum of the area of all the faces excluding the top and the bottom face.

• Total surface area = 2(lb + bh + lh)

• Lateral surface area = 2(lh + bh)

2.1. Surface Area

Surface area of a Cube

• Total surface area = $6a^2$

 $a^2 \mid a^2 \mid a^2 \mid a^2$

• Lateral surface area = $4a^2$

Surface area of a Cylinder

- Total surface area = $\pi r^2 + 2\pi rh + \pi r^2 = 2\pi r(r+h)$
- Lateral (Curved) surface area = $2\pi rh$

2.2. Volume

The amount of space occupied by a 3D object is called its volume. It is calculated as the area of the base of a 3D object multiplied by its height.

There is not much difference between volume and capacity.

- Volume refers to the amount of space occupied by an object.
- Capacity refers to the quantity that a container holds. It is also measured in litres.
- 1 litre = 1000 cm^3 and $1 \text{ m}^3 = 1000 \text{ litres}$

Volume of a Cuboid

Volume = Area of the base
$$\times$$
 Height
= $(l \times b) \times h$
= $l \times b \times h$

2.2. Volume

Volume of a Cube

Volume = Area of the base × Height = $(l \times l) \times l$ = l^3

Volume of a Cylinder

Volume = Area of the base \times Height = $(\pi r^2) \times h$ = $\pi r^2 h$