B BYJU'S

Grade 09 Mathematics Chapter Notes

B BYJU'S Classes

CHAPTER NOTES

Number Systems

Grade 9

Topics

1 Number Line
2 Types of Numbers
2.1 Natural Numbers
2.2 Whole Numbers
2.3 Integers
2.4 Rational Numbers
2.5 Equivalent Rational Numbers
2.6 Irrational Numbers

3 Real Numbers
4 Decimal Expansion of Real Numbers 4.1 Terminating
4.2 Non-Terminating

5 Decimal Expansion of Rational Numbers
5.1 Terminating
5.2 Non-Terminating Recurring

6 Operations on Rational Numbers
6.1 Rational \& Rational
6.2 Rational \& Irrational
6.3 Irrational \& Irrational
6.4 Identities on Real Numbers
6.5 Rationalisation

7 Laws of Exponents

Mind Map

Number Line

Operations on Rational Numbers

Decimal

Expansion

1. Number Line

A number line is a straight line with numbers placed at equal intervals along its length. It can be extended infinitely in any direction and is usually represented horizontally

2. Types of Numbers

2.1

Natural numbers are also called counting numbers.

They start with 1 and end at infinity.

Example:
1, 2, 3, ...
2.2

Whole Numbers

Whole numbers include all the natural numbers and zero.

They start with 0 and end at infinity.

Example:
$0,1,2,3, \ldots$
2.3 Integers

Integers are whole numbers that can
be positive, negative or zero.

Example:
$\ldots,-2,-1,0,1,2, \ldots$

Equivalent Rational Numbers

Rational numbers do not have a unique representation in the form $\frac{p}{q}$.

Example: $\frac{1}{2}, \frac{3}{4},-\frac{1}{2}, \ldots$ expressed as $\frac{p}{q}$, where p and q are integers and $q \neq 0$ $1,2,3, \ldots$ can be written in the $\frac{p}{q}$ form as $\frac{2}{1}, \frac{3}{1}, \ldots$. Hence, all the integers are rational numbers but the vice versa is NOT true.

Irrational Numbers
 2.6

Irrational numbers can NOT be expressed as $\frac{p}{q}$, where p and q are integers and $q \neq 0$

Example: $\sqrt{2}, \sqrt{3}, \sqrt{15}, \pi$

There are infinitely many rational numbers between two rational numbers

When we use the symbol $\sqrt{ }$, we assume that it is the positive square root of the number.

So, $\sqrt{4}=2$, though both 2 and -2 are square roots of 4 .

There are infinitely many irrational numbers between two numbers.

3. Real Numbers

Rational Numbers

$$
\ldots,-\frac{5}{2}, 0,0.8,1,2, \frac{7}{3}, \ldots
$$

> Integers
> $\ldots,-\mathbf{1}, \mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3}, 4, \ldots$

Whole Numbers

$$
0,1,2,3,4, \ldots
$$

Natural Numbers

$$
1,2,3,4, \ldots
$$

Irrational Numbers

$$
\ldots, \sqrt{5}, \sqrt{7}, \pi, \ldots
$$

4. Decimal Expansion of Real Numbers

Terminating
2.345

Rational Number
4.2

Non - Terminating

We often take the approximate value of π as

$$
\frac{22}{7}, \text { but } \pi \neq \frac{22}{7}
$$

5. Decimal Expansion of Rational Numbers $\left(\frac{p}{q}\right)$

The denominator, q has factors in the form of
$2^{n}, 5^{m}$ or $2^{n} \times 5^{m}$

Example:
$\frac{1}{25}$

Non - Terminating Recurring

The denominator, q DOES NOT have factors in the form of
$2^{n}, 5^{m}$ or $2^{n} \times 5^{m}$

> Example:
> $\frac{1}{27}$

6. Operations on Real Numbers

> Example:
> $3 \div 4=\frac{3}{4}$

Example:
$3 \times \sqrt{2}=3 \sqrt{2}$

Example:
$3 \times \sqrt{2}=3 \sqrt{2}$
$(1+\sqrt{2})+(1-\sqrt{2})=2$

If r is rational and s is irrational, then $r+s$ and $r-s$ are irrational numbers, $r \neq 0$.

If r is rational and s is irrational, then $r \times s$ and $\frac{r}{s}$ are irrational numbers, $r \neq 0$.
(1) $\sqrt{a b}=\sqrt{a} \sqrt{b}$
(2) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$

3 $(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})=a-b$
4. $(a+\sqrt{b})(a-\sqrt{b})=a^{2}-b$
(5) $(\sqrt{a}+\sqrt{b})^{2}=a+b+2 \sqrt{a b}$
(6) $(\sqrt{a}-\sqrt{b})^{2}=a+b-2 \sqrt{a b}$

6．5 Rationalisation

Rationalisation of the denominator means removing any radical term or surds from the denominator and expressing the fraction in a simplified form．

\section*{| Denominator | Rationalising | Simplified |
| :--- | :--- | :--- |}

$$
a+\sqrt{b} \text { ふ } a-\sqrt{b} \text { 『 } a^{2}-b
$$

$a-\sqrt{b}$ ふ $a+\sqrt{b}$ 品 $a^{2}-b$

$$
\sqrt{a}+\sqrt{b} \approx \sqrt{a}-\sqrt{b} \text { ص } a-b
$$

Steps for Rátionalisation

Step l：Find the conjugate or rationalising factor of the denominator．

Step 2：Multiply the numerator and denominator by the conjugate．

Step 3：Simplify the expression．

7. Laws of Exponents

(1) $a^{m} \times a^{n}=a^{m+n} \quad$ (5) $a^{0}=1$
(2) $\left(a^{m}\right)^{n}=a^{m n}$

6 $\frac{1}{a^{n}}=a^{-n}$
(3) $\frac{a^{m}}{a^{n}}=a^{m-n}$
(7) $\sqrt[n]{a}=a^{\frac{1}{n}}$
4) $a^{m} \times b^{m}=(a b)^{m} \quad 8 \sqrt[n]{a^{m}}=a^{\frac{m}{n}}$

