B BYJU'S

Grade 09 Mathematics Chapter Notes

B BYJU'S Classes

Chapter Notes

Introduction to Euclid's
 Geometry

Grade 09

Topics to be Covered

1. Euclid's Elements

- 1.1 Euclid's definitions
- 1.2 Dimensions of Euclid's

Elements

2. Euclid's Axioms

- 2.1 Axiom 1
- 2.2 Axiom 2
- 2.3 Axiom 3
- 2.4 Axiom 4
- 2.5 Axiom 5
- 2.6 Axiom 6
- 2.7 Axiom 7

3. Euclid's Postulates

- 3.1 Postulate 1
- 3.2 Postulate 2
- 3.3 Postulate 3
- 3.4 Postulate 4
- 3.5 Postulate 5

1. Euclid's Elements

1.1 Euclid's definitions

Point

A point is that which has no part.

Line

- A line is breadthléss length.
- The ends of a line are points.
- A straight line is a line which lies evenly with the points on itself.

Plane/Surface

- A surface is that which has length and breadth only.
- The edges of a surface are curves or straight lines.
- A plane surface is a surface which lies evenly with the straight lines on itself.

1. Euclid's Elements

1.2 Dimensions of Euclid's elements

- In going three steps from solids to points (solids-surfaces-lines-points), we lose one extension, also called a dimension.

- A point has no dimension.
- A line has a dimension of one (1D) because only one coordinate is needed to specify a point on it.
- A surface such as a plane has a dimension of two (2D) because two coordinates are needed to specify a point on it.
- A solid is three-dimensional (3D) because three coordinates are needed to locate a point within these spaces.

Though Euclid defined a point, a line, and a plane, the definitions are not accepted by mathematicians. Therefore, these terms are now taken as undefined.

2. Euclid's Axioms

- Euclid assumed certain properties, which were not to be proved. These assumptions are actually 'obvious universal truths.'
- Common notions (often called axioms) are assumptions used throughout mathematics which are not specifically linked to geometry.
- A system of axioms is called consistent if it is impossible to deduce from these axioms a statement that contradicts any axiom or previously proved statement.

2.1 Axiom 1

Things which are equal to the same thing are equal to one another.

Example:
If $\mathrm{a}=\mathrm{b}$ and $\mathrm{c}=\mathrm{b}$
then $\mathrm{a}=\mathrm{c}$

2. Euclid's Axioms

2.2 Axiom 2

If equals are added to equals, the wholes are equal.

Example:

If $\mathrm{a}=\mathrm{b}$ and c is added on both sides
then $\mathrm{a}+\mathrm{c}=\mathrm{b}+\mathrm{c}$

2.3 Axiom 3

If equals are subtracted from equals, the remainders are equal.

Example:
If $\mathrm{a}=\mathrm{b}$ and c is subtracted from both sides
then $\mathrm{a}-\mathrm{c}=\mathrm{b}-\mathrm{c}$

2. Euclid's Axioms

2.4 Axiom 4

Things which coincide with one another are equal to one another.

Example:
$a=a$

2,5 Axiom 5

The whole is greater than the part.

Example:
$a>\frac{a}{2}$

2. Euclid's Axioms

2.6 Axiom 6

Things which are double of the same things are equal to one another.

Example:
$2 a=2 a$

2.7 Axiom 7

Things which are halves of the same things are equal to one another.
\square
Example:
$\frac{a}{2}=\frac{a}{2}$

3. Euclid's Postulates

Assumptions used throughout mathematics which are specifically linked to geometry are known as postulates.

3.1 Postulate 1

A straight line may be drawn from any one point to any other point.

3.2 Postulate 2

A terminated line can be produced indefinitely.

3.3 Postulate 3

A circle can be drawn with any centre and any radius.

3. Euclid's Postulates

3.4. Postulate 4

All right angles are equal to one another.

3.5. Postulate 5

When the sum of co-interior angles is less than 180°, the two lines intersect at a point.

Example:
$\angle 1+\angle 2$ is less than 180° and hence lines AB and CD will eventually intersect on the left side of PQ.

The statements that can be proved are called propositions or theorems.

Mind Map

