## B BYJU'S

## Grade 09 Mathematics Chapter Notes



# B BYJU'S Classes 

## CHAPTER NOTES

## Circles

## Grade 09

## Topics to be Covered

## 1. Introduction to Circles

- 1.1 Definition.
- 1.2 Parts of a circle.
- 1.3 Three points that describe a circle.


## 2. Chords and their properties

- 2.1 Angle subtended by
- a chord at the
- centre.
- 2.2 Perpendicular bisector of a chord.
- 2.3 Chords and their distances.

3. Angle subtended by an arc.

- 3.1 Angle subtended by an arc of a circle.
- 3.2 Angle subtended in the same segment
- 3.3 Concyclic Points.


## 4 .Cyclic Quadrilateral

- 4.1 Cyclic Quadrilateral


## 1. Introduction to Circles

### 1.1 Definition

A circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre).

1.2 Parts of a Circle


## 1. Introduction to Circles

### 1.3 Three points that describe a circle

There is one and only one circle that passes through three non-collinear points.


## 2. Chords and their properties

### 2.1 Angle subtended by a chord at the centre.

Theorem: Equal chords of a
circle subtend equal angles at the centre.

Converse: If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.


$$
\mathrm{PQ}=\mathrm{RS}
$$

$$
\angle \mathrm{POQ}=\angle \mathrm{ROS}
$$

## 2. Chords and their properties

2.2 Perpendicular Bisector of a Chord.

Theorem: The perpendicular from the centre of a circle to a chord bisects the chord.

Converse: If a line drawn from the centre of a circle bisects the chord, then the line is perpendicular to that chord.

$$
\mathrm{OC} \perp \mathrm{AB}
$$

$A C=B C$

### 2.3 ChordS and their distances

Theorem: Chords of equal length are at equal distance from the centre of the circle.

Converse: Chords equidistant from the centre of a circle are equal in length.


$$
\mathrm{OP}=\mathrm{OQ} \Leftrightarrow \mathrm{AB}=\mathrm{CD}
$$

## 3. Angle Subtended by an Arc

### 3.1 Angle Subtended by an Arc of a Circle.

The angle subtended by an arc at the centre ' $O$ ' is twice angle subtended by it on the remaining arc of the circle.


### 3.2 Angle Subtended in the Same Segment of a Circle

Angles subtended by an arc in the same segment are equal.


### 3.3 Concyclic Points.

If a line segment BC , joining two points, subtends equal angles at two other points A \& D, lying on the same side of the line then these, the four points lie on a circle (ie. they are concyclic).


## 4. Cyclic Quadrilateral

## Theorem:

The pairs of opposite angles of a cyclic quadrilateral are supplementary.


## Mind Map


a chord at the centre.

Perpendicular bisector of a chord centre.

Introduction
Angle subtended by


Angle subtended by an arc


Angle subtended by an arc of a circle.

