

Grade 09 Mathematics Chapter Notes

B BYJU'S Classes

CHAPTER NOTES

Circles

Grade 09

Topics to be Covered

2.1 Angle subtended by

2. Chords and their

properties

- a chord at the
- centre.
- 2.2 Perpendicular bisector of a chord.
- 2.3 Chords and their distances.

4 .Cyclic Quadrilateral

4.1 Cyclic Quadrilateral

1. Introduction to Circles

- 1.1 Definition.
- 1.2 Parts of a circle.
- 1.3 Three points that describe a circle.

- 3.1 Angle subtended by an arc of a circle.
- 3.2 Angle subtended in the same segment
- 3.3 Concyclic Points.

1. Introduction to Circles

1.1 Definition

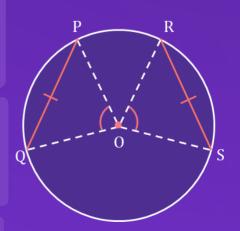
A circle is a collection of all points in a plane which are at a constant distance (radius) from a fixed point (centre).

B

1. Introduction to Circles

1.3 Three points that describe a circle

There is one and only one circle that passes through three non-collinear points.



2. Chords and their properties

2.1 Angle subtended by a chord at the centre.

Theorem: Equal chords of a circle subtend equal angles at the centre.

Converse: If the angles subtended by the chords of a circle at the centre are equal, then the chords are equal.

$$PQ = RS$$

∠POQ = ∠ROS

2. Chords and their properties

2.2 Perpendicular Bisector of a Chord.

Theorem: The perpendicular from the centre of a circle to a chord bisects the chord.

Converse: If a line drawn from the centre of a circle bisects the chord, then the line is perpendicular to that chord.

OC ⊥ AB

AC = BC

2.3 Chords and their distances

Theorem: Chords of equal length are at equal distance from the centre of the circle.

Converse: Chords equidistant from the centre of a circle are equal in length.

OP = OQ

AB = CD

3. Angle Subtended by an Arc

3.1 Angle Subtended by an Arc of a Circle.

The angle subtended by an arc at the centre 'O' is twice angle subtended by it on the remaining arc of the circle.

$$\angle BOC$$
 = 2 \times $\angle BAC$

3.2 Angle Subtended in the Same Segment of a Circle

Angles subtended by an arc in the same segment are equal.

3.3 Concyclic Points.

If a line segment BC, joining two points, subtends equal angles at two other points A & D, lying on the same side of the line then these, the four points lie on a circle (i.e. they are concyclic).

The points A, B, C and D lie on the circle.

4. Cyclic Quadrilateral

Theorem:

The pairs of opposite angles of a cyclic quadrilateral are supplementary.

Mind Map

