B BYJU'S

Grade 09 Mathematics Chapter Notes

B BYJU'S Classes

CHAPTER NOTES

Heron's Formula

Grade 09

Topics to be Covered

1. Basic Formula for Area of a Triangle

- 1.1 Area of an Equilateral

Triangle

- 1.2 Area of an Isosceles

Triangle

- 1.3 Area of Right-angled

Triangle
2. Heron's Formula for Area of a Triangle

1. Basic Formula for Area of a Triangle

Area of Triangle $=\frac{1}{2} \times$ Base \times Height
1.1 Area of an equilateral triangle

Let $\triangle A B C$ be an equilateral triangle having side of length ' a '.

Perpendicular AD divides base $B C$ into two equal parts.

Now, by Pythagoras theorem
 in right triangle $A D C$

$$
\begin{aligned}
& A C^{2}=A D^{2}+D C^{2} \\
& \Rightarrow a^{2}=A D^{2}+\left(\frac{a}{2}\right)^{2} \\
& \Rightarrow A D=\frac{\sqrt{3} a}{2}
\end{aligned}
$$

Then area of $\triangle \mathrm{ABC}$

$$
\begin{aligned}
& =\frac{1}{2} \times \text { Base } \times \text { Height } \\
& =\frac{1}{2} \times \mathrm{BC} \times \mathrm{AD}
\end{aligned}
$$

$$
=\frac{1}{2} \times a \times \frac{\sqrt{3} a}{2}=\frac{\sqrt{3}}{4} a^{2}
$$

1. Basic Formula for Area of a Triangle

1.2. Area of an isosceles triangle

Let $\triangle L M N$ be an isosceles triangle with equal sides ' a ' and base ' b '.
Perpendicular $L P$ divides base $M N$ into two equal parts.

Now, by Pythagoras theorem in right triangle LPN

$\mathrm{LN}^{2}=\mathrm{LP}^{2}+\mathrm{PN}^{2}$
$\Rightarrow a^{2}=L P^{2}+\left(\frac{b}{2}\right)^{2}$
$\Rightarrow L P=\frac{1}{2} \sqrt{4 a^{2}-b^{2}}$
Then area of $\triangle \mathrm{LMN}$
$=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times \mathrm{MN} \times \mathrm{LP}$
$=\frac{1}{2} \times b \times \frac{1}{2} \sqrt{4 a^{2}-b^{2}}$
$=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$

Area of an isosceles triangle $=\frac{b}{4} \sqrt{4 a^{2}-b^{2}}$

1. Basic Formula for Area of a Triangle

1.3 Area of right-angled triangle

Let $\triangle \mathrm{PQR}$ be a right-angled triangle with sides a, b and c.
Area of $\triangle \mathrm{PQR}$
$=\frac{1}{2} \times$ Base \times Height
$=\frac{1}{2} \times \mathrm{QR} \times \mathrm{PQ}$
$=\frac{1}{2} \times b \times a$

Area of a right-angled triangle

$$
=\frac{1}{2} \times \text { product of its perpendicular sides }
$$

2. Heron's Formula for Area of Triangle

where,
s is semi-perimeter
a, b and c are sides of triangle.
Heron's formula is useful for all triangles or mostly when length of all sides of a triangle are given but height is not given or is difficult to calculate.

Mind Map

