Grade 09 Mathematics Chapter Notes # B BYJU'S Classes **CHAPTER NOTES** Heron's Formula Grade 09 ## **Topics to be Covered** # 1. Basic Formula for Area of a Triangle - 1.1 Area of an EquilateralTriangle - 1.2 Area of an IsoscelesTriangle - 1.3 Area of Right-angled Triangle 2. Heron's Formula for Area of a Triangle #### 1. Basic Formula for Area of a Triangle Area of Triangle = $$\frac{1}{2} \times \text{Base} \times \text{Height}$$ #### 1.1 Area of an equilateral triangle Let $\triangle ABC$ be an equilateral triangle having side of length 'a'. Perpendicular AD divides base BC into two equal parts. Now, by Pythagoras theorem in right triangle $AD\mathcal{C}$ $$AC^2 = AD^2 + DC^2$$ $$\Rightarrow a^2 = AD^2 + \left(\frac{a}{2}\right)^2$$ $$\Rightarrow$$ AD $=\frac{\sqrt{3}a}{2}$ Then area of $\triangle ABC$ $$=\frac{1}{2} \times \text{Base} \times \text{Height}$$ $$=\frac{1}{2} \times BC \times AD$$ $$= \frac{1}{2} \times a \times \frac{\sqrt{3}a}{2} = \frac{\sqrt{3}}{4}a^2$$ #### 1. Basic Formula for Area of a Triangle #### 1.2. Area of an isosceles triangle Let ΔLMN be an isosceles triangle with equal sides 'a' and base 'b'. Perpendicular LP divides base MN into two equal parts. Now, by Pythagoras theorem in right triangle LPN $$LN^2 = LP^2 + PN^2$$ $$\Rightarrow a^2 = LP^2 + \left(\frac{b}{2}\right)^2$$ $$\Rightarrow LP = \frac{1}{2}\sqrt{4a^2 - b^2}$$ Then area of Δ LMN $$=\frac{1}{2}\times$$ Base \times Height $$=\frac{1}{2} \times MN \times LP$$ $$= \frac{1}{2} \times b \times \frac{1}{2} \sqrt{4a^2 - b^2}$$ $$=\frac{b}{4}\sqrt{4a^2-b^2}$$ Area of an isosceles triangle $$=\frac{b}{4}\sqrt{4a^2-b^2}$$ #### 1. Basic Formula for Area of a Triangle #### 1.3 Area of right-angled triangle Let Δ PQR be a right-angled triangle with sides a,b and c. Area of ΔPQR $$=\frac{1}{2}\times$$ Base \times Height $$= \frac{1}{2} \times QR \times PQ$$ $$= \frac{1}{2} \times b \times a$$ $$=\frac{1}{2} \times b \times a$$ Area of a right–angled triangle $$=\frac{1}{2}\times$$ product of its perpendicular sides #### 2. Heron's Formula for Area of Triangle Area of triangle $$=\sqrt{s(s-a)(s-b)(s-c)}$$ $s= rac{a+b+c}{2}$ where, s is semi-perimeter a, b and c are sides of triangle. Heron's formula is useful for all triangles or mostly when length of all sides of a triangle are given but height is not given or is difficult to calculate. ## **Mind Map**