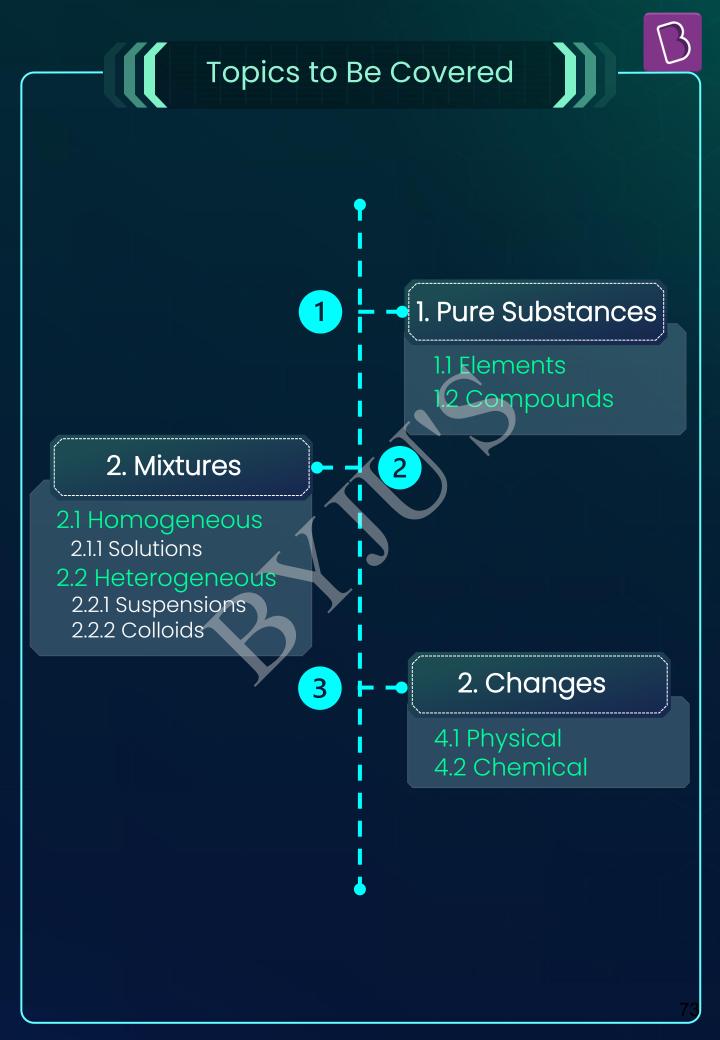


Grade 09 Science Chapter Notes



Chapter Notes

Is Matter around Us Pure?

Grade 09

MIND MAP

A form of matter having an invariant chemical composition and properties that are constant throughout the sample.

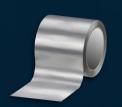
Types of Pure Substances

1.1 Elements

- Pure fundamental substances.
- They cannot be broken down further by chemical reactions.
- Example: Iron, sulphur, and more.

1.2 Compounds

- Substances composed of two or more elements.
- They can be broken down further by chemical reactions.
- Example: Iron sulphide, water, and more



1. Pure Substances

Classification of Elements

Metals

Eg: Aluminium

Metalloids

Eg: Silicon

Non-metals

Eg: Sulphur

- Lustrous
- Malleable
- Ductile
- Sonorous
- Hard
- Good conductor

Have intermediate properties between those of metals and non-metals.

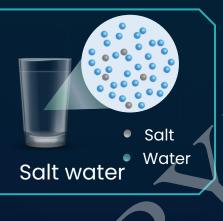
- Non-lustrous
- Nonmalleable
- Non-ductile
- Non-sonorous
- Soft
- Poor conductor

Exceptions

Sodium Soft

Mercury Liquid at room temperature

lodine Lustrous



Graphite Conductivity

Mixtures are formed by physical combination of two or more pure substances. A mixture has a variable composition. The constituents can be separated easily by physical methods.

Examples:

Types of Mixtures

Homogeneous

 Such mixtures will have uniform composition.

Heterogeneous

 Such mixtures will have non-uniform composition.

2.1 Homogeneous Mixtures

Homogeneous mixtures will have a uniform distribution of components.
Components of homogeneous mixture cannot be distinguished.

2.1.1 Solution

A solution is a homogeneous mixture of two or more components in which the constituents are not visible to the naked eye (due to very small particle size, which is less than 1 nm).

- The components of a solution include the solute (minor quantity) and the solvent (major quantity).
- The solute particles cannot be separated from the mixture by the process of filtration, and they won't settle down also.

Tyndall effect: It is the phenomenon by which the path of the light becomes visible in a mixture due to scattering of light by the particles.

Due to small particle size, solutions do not show Tyndall effect

Types of Solution

Saturated

At any particular temperature, a solution that has dissolved as much solute as it is capable of dissolving, is said to be a saturated solution.

2 Unsaturated

If the amount of solute contained in a solution is less than the saturation level, it is called an unsaturated solution.

3 Supersaturated

A supersaturated solution is one in which more solute is dissolved than is necessary to make a saturated solution.

Concentration of a Solution

Concentration of a solution is the amount of solute present in a given amount of solution.

Depending upon the amount of solute present in a solution, we can refer it as a dilute or concentrated solution.

Dilution: The process of decreasing the concentration of a solute in a solution that is usually done by adding more solvent in it.

Ways of Expressing the Concentration of a Solution

1

Mass by mass percentage of a solution

Mass of solute

 \times 100

Mass of solution

2

Mass by volume percentage of a solution

Mass of solute

 \times 100

Volume of solution

3

Volume by volume percentage of a solution

Volume of solute

 \times 100

Volume of solution

2.2 Heterogeneous Mixtures

2.2.1 Suspension

A suspension is defined as a **heterogeneous** mixture in which the solid particles are solids are dispersed in liquids.

The particles of suspension:

- Are easily visible and distinguishable.
- Can be separated by filtration.
- Settle down when left undisturbed.

Suspensions in our daily life

Sand in water

Tea leaves in water

Chalk powder in water

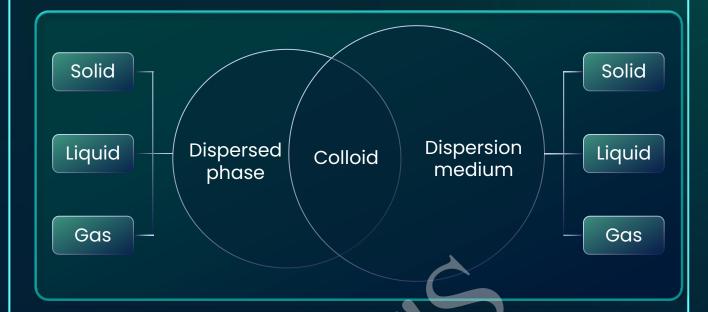
2.2.2 Colloids

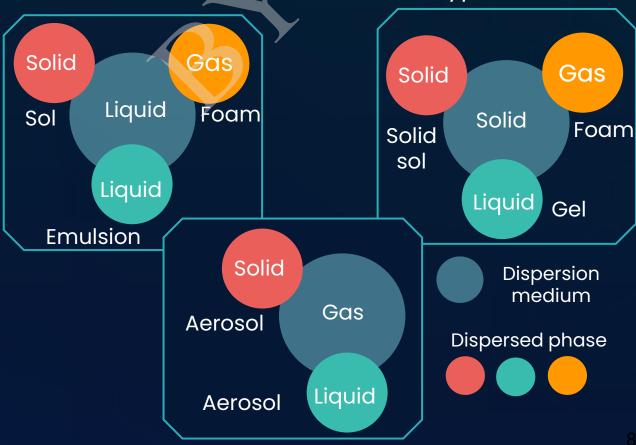
Colloids: A heterogeneous mixture in which the particles are uniformly spread throughout the solution. Hence it appears to be homogeneous.

The particles of colloids:

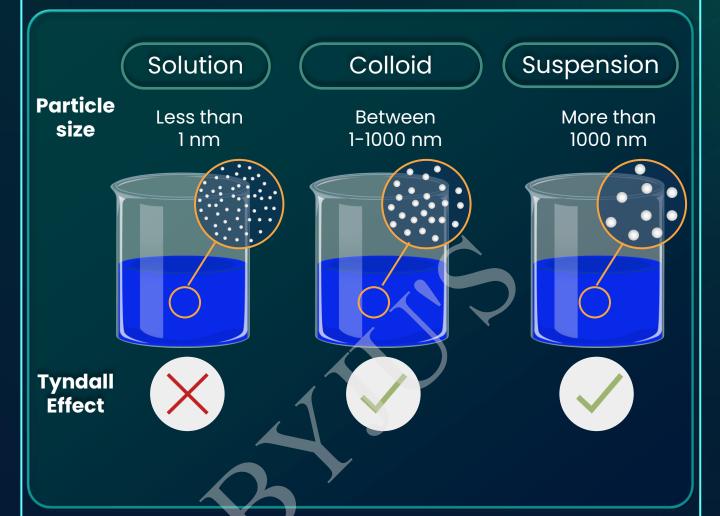
- Is too small to be individually seen by naked eyes.
- Are big enough to scatter a beam of light passing through it and make its path visible.
- Will not settle down when left undisturbed.

Colloids in our everyday life





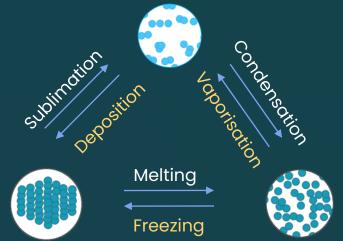
Components of a Colloid


Classification of Colloids

According to the state (solid, liquid, or gas) of the dispersing medium and the dispersed phase, colloids are classified into different types.

Comparison

3. Changes


3.1 Physical Change

A physical change is a change in which the physical properties such as size, state, shape, appearance, and more of a substance alters without changing its chemical nature.

Mostly, physical changes tend to be reversible.

Interconversion of states of matter is a physical change:

3. Changes

A chemical change is a change that brings change in the chemical properties, and we get new substances.

A chemical change is frequently harder to reverse than a physical change.

Burning of wood

Rotting of an apple

Formation of curd

During burning of a candle, both physical and chemical changes take place.

Burning wick (Chemical change)

Melting wax (Physical change)

