B BYJU'S

Grade 09 Science Chapter Notes

B BYJU'S Classes

Chapter Notes

Motion
Class 9

1. Understanding motion

- Rest and motion
- Distance \& displacement
- Speed \& Velocity
- Acceleration

3. Equations of motion

- First equation
- Second equation
- Third equation

4. Motion in 2D

- Uniform Circular Motion

MIND MAP

1. Understanding Motion

1.1 Rest and Motion

- Rest is when position of an object doesn't change w.r.t the observer

Motion

- Motion is when position of an object changes w.r.t.the observer

Frame of reference

- State of motion or rest depends on the observer

- Passengers are at rest

1.2 Distance and Displacement

Distance

Displacement

- The complete length of the path between any two points is called distance
$A B+B C+C D+D E+E F$
- Distance has magnitude but no direction

Scalar quantity

- Distance can be only positive
- Displacement is the shortest/minimum length between any two points

AF

- Displacement has both magnitude and direction

Vector quantity

- Displacement can be positive, negative, zero

1.3 Speed and Velocity

Speed

- Speed is the rate of change of distance.

- SI unit: m/s

$$
\text { - Average speed }=\frac{\text { Totai distance }}{\text { Total time }}
$$

- Scalar quantity - Only magnitude

Velocity

- Velocity is rate of change of displacement
- SI unit: m/s

$$
\text { - Average Velocity }=\frac{\text { Total displacement }}{\text { Total time }}
$$

- Vector quantity - Both magnitude and direction

1.4 Uniform and Non-uniform motion

Uniform Motion

- When object travels equal distances in equal intervals of time
- Speed is constant

Non-uniform Motion

- When object travels unequal distances in equal intervals of time
- Speed is changing

1.5 Acceleration

Acceleration

- Acceleration is rate of change of velocity
- SI unit: $m s^{-2}$
- Acceleration $=$

Change in velocity
Time

$$
a=\frac{v-u}{t}
$$

Positive Acceleration

- Increase in velocity with time

Negative Acceleration

- Decrease in velocity with time

2. Visualizing Motion

2.1 Slope of a Graph

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Distance - Time Graph

Slope $=\frac{d_{2}-d_{1}}{t_{2}-t_{1}}$
Slope $=\frac{\text { distance }}{\text { time }}$

Slope (m) of the distance - time graph gives speed.

2.2 Displacement-Time Graph

NOTE:

Slope of distance-time graph can never be negative. During motion, distance covered will either be constant or will increase but it never decreases.

The slope of the displacement - time graph represents of an object.

The slope of the displacement - time graph represents velocity of an object since velocity is change in displacement per unit time.

2.3. Velocity-Time Graph

Slope $=\frac{\text { change in velocity }(\Delta \mathrm{v})}{\text { change in time }(\Delta \mathrm{t})}=\operatorname{acceleration}\left(\mathrm{m} / \mathrm{s}^{2}\right)$

Slope is zero \Rightarrow zero acceleration
Slope is negative \rightarrow Negative acceleration
Slope is positive $\boldsymbol{\rightarrow}$ Positive acceleration

2.4. Area under Velocity-Time Graph

- Area under v-t graph gives displacement

Displacement

- Velocity $(\mathrm{v})=$ time

Displacement $(\mathrm{s})=(\mathrm{v}) \times(\mathrm{t})$

3. Equations of Motion

3.1 First Equation of Motion

Time (s)
v Final velocity
u Initial velocity
a Acceleration
t Time taken

Slope of v-t graph gives us acceleration a

$$
\begin{aligned}
& \text { Slope }(a)=\frac{\text { Change in velocity }}{\text { Time taken }} \\
& \qquad \begin{aligned}
a & =\frac{v-u}{t} \\
\mathrm{~V} & =\mathrm{u}+\mathrm{at}
\end{aligned}
\end{aligned}
$$

3.2 Second Equation of Motion

v Final velocity
u Initial velocity
a Acceleration
s Displacement
t Time taken

Area $(s)=(O D \times D C)+\left(\frac{1}{2} \times B C \times A C\right)$
Area $(s)=(u \times t)+\frac{1}{2} \times(v-u) \times t$
We know v = u + at or, v-u=at
By substituting $\mathrm{v}-\mathrm{u}=\mathrm{at}$,
we get, $\quad s=u t+\frac{1}{2} a t^{2}$

3.3 Third Equation of Motion


```
\[
\begin{aligned}
& \mathrm{s}=\text { Area under trapezium } O A B D \\
& \mathrm{~s}=\frac{1}{2}(\text { Sum of parallel sides })(\text { Height }) \\
& \mathrm{s}=\frac{1}{2}(v+u)(t)
\end{aligned}
\]
```

We know $v=u+a t$ or $t=(v-u) / t$

$$
\begin{gathered}
\mathrm{s}=\frac{1}{2}(v+u) \frac{(v-u)}{a} \longmapsto 2 \mathrm{as}=v^{2}-u^{2} \\
\mathrm{v}^{2}=\mathrm{u}^{2}+2 \mathrm{as}
\end{gathered}
$$

4. Motion in 2D

4.1 Uniform Circular Motion

- Speed is constant
- Velocity changes
- Uniform Circular motion is an accelerated motion.
- Velocity is directed tangentially at all points.

$$
\text { Speed }=v=\frac{2 \pi r}{T}
$$

Formula Sheet

