

Grade 09 Science Chapter Notes

Chapter Notes

BYJU'S Classes

Gravitation

Class IX

Topics

Mind Map

Every particle attracts every other particle in the universe

$$F = G \frac{m_1 \times m_2}{d^2}$$

Universal law of gravitation

·G' is a universal constant

Acceleration due to gravity

$$\Rightarrow g = \frac{G \times M}{m^2}$$

Weight, W = m.g

Floatation

Pressure inside a liquid

$$p_2 - p_1 = \rho g (h_2 - h_1)$$

Pascal's law

$$F_a/A_a = F_b/A_b$$

Archimedes' principle

$$F_B = m_{liquid\ displaced} \times g$$

1. Introduction

1.1 Universal law of gravitation

Every object in the Universe attracts every other object with a definite force.

$$F = G \frac{m_1 \times m_2}{d^2}$$

$$G = 6.67 \times 10^{-11} \, \text{Nm}^2 / \text{kg}^2$$

Gravity as a centripetal force

Gravitational pull prevents the object from flying out and instead keeps it moving at a uniform speed along a circular orbit

Why don't satellites fall into the earth?

- Satellites are always falling towards the Earth, but never reaching it.
- Satellites have high enough horizontal velocity so that they constantly miss the Earth.

1. Introduction

1.2 Kepler's law

(i) Law of orbits

The orbit of a planet is an ellipse with the Sun at one of the two foci.

(ii) Law of equal areas

A line segment joining the planet and the Sun sweeps out equal areas in equal intervals of time.

(iii) Law of periods

The square of a planet's orbital time-period is proportional to the cube of the length of the semi-major axis (R) of its orbit. $T^2 \propto R^3$

2. Acceleration Due to Gravity

2.1 Freefall and motion

$$g = \frac{G \times M}{r^2}$$

Independent of the mass of the object

$$g_{earth} = 9.8 \text{ m/s}^2$$

 $g_{moon} = 1.6 \text{ m/s}^2$

When upwards direction is taken as positive

$$\alpha = -g$$

1st equation

$$v = u - gt$$

3rd equation

$$v^2 = u^2 - 2gs$$

2.1 Mass and weight

Mass: Quantity of Matter

Does not depend on acceleration due to gravity.

Weight: Force of Attraction

Depends on acceleration due to gravity.

3. Thrust & Pressure

Thrust

- Force perpendicular to a surface
- SI unit is newton (N)
- Vector quantity

- Pressure = Thrust Area
- SI unit is pascal (Pa)
- Scalar quantity

3.1 Pressure inside a liquid

$$P_2 - P_1 = \rho g (h_2 - h_1)$$

 $(P_2 - P_1)$: pressure difference

p: density of liquid

g: acceleration due to gravity (h_2-h_1) : height difference

Increases with depth

Increases with density

3. Thrust & Pressure

3.2 Pascal's law

Pressure exerted anywhere in a confined liquid is transmitted equally and undiminished in all directions throughout the liquid.

4. Floatation

4.1 Archimedes' principle

An upward force experienced by an object immersed in liquid.

FB = Weight of liquid displaced

$$F_B = m_{liquid\ displaced} \times g$$

$$= \rho_l V_l g$$

4. Floatation

 $\rho_b = \rho_l$

Suspended body

 $\rho_b < \rho_l$

Floating body

$$\rho_b = \rho_l$$

Sinking body

$$\rho_b > \rho_l$$

 $\rho_b > \rho_l$

 ρ_b = Density of body ρ_l = Density of liquid

4.2 Relative density

Density of the body

Density of water

Mass of 100 cc = 100 g

Mass of 100 cc = 80 g

Relative Density = 0.8

Mass of 100 cc = 1360 g

Relative Density = 13.6

Formula Sheet

$$F = G \frac{m_1 x m_2}{r^2}$$

$$g = \frac{G \times M}{r^2}$$

$$v = u - gt$$

$$s = ut - \frac{1}{2} gt^2$$

$$v^2 = u^2 - 2gs$$

$$F_{g} = m_{liquid\ displaced} \times g$$

$$= \rho_{l} V_{l} g$$

R.D of a liquid =
$$\frac{\text{Density of the liquid}}{\text{Density of water}}$$