## B BYJU'S

## Grade 10 Mathematics <br> Exam Important Questions



1. Ravi bought 4 aquariums each of size $(x+2) \times x \times x$. How much water is required to fill all the aquariums?

The aquariums are of cuboid shape, so:
The volume of a cuboid $=1 \times b \times h$
Now, given that the size of the aquarium is $(x+2) \times x \times x$
So, the volume will be $\mathrm{x}^{3}+2 \mathrm{x}^{2}$
So, the total amount of water filled in all the 4 aquariums $=$ $4\left(\mathrm{x}^{3}+2 \mathrm{x}^{2}\right)$
$=4 \mathrm{x}^{3}+8 \mathrm{x}^{2}$
2. How many zeroes does the given graph $y=p(x)$ have?


If we look closely, we see that the graph $p(x)$ is cutting the $x$-axis at one point only. So, the number of zeroes of graph y is 1 .
3. Find the number of zeroes of the following quadratic polynomials.


The zeroes of a polynomial are the points where the graph intersects the x -axis.
In the first graph, the curve doesn't intersect the x-axis, therefore, the number of zeroes of the polynomial is 0 .

In the second graph, the curve intersects the x-axis at two points, therefore, the number of zeroes of a polynomial is 2 .
4. Find the zeroes of quadratic polynomial $3 \mathrm{x}^{2}-\mathrm{x}-4$ and verify the relationship between the zeroes and the coefficients.

Given the polynomial is,
$3 x^{2}-x-4$
It can be solved as ,
$3 \mathrm{x}^{2}+3 \mathrm{x}-4 \mathrm{x}-4=0$
$3 \mathrm{x}(\mathrm{x}+1)-4(\mathrm{x}+1)=0$
$(3 x-4)(x+1)=0$
Therefore, $\mathrm{x}=\frac{4}{3}$ and $\mathrm{x}=-1$
Therefore, the zeroes of a polynomial are $\frac{4}{3}$ and -1
Verifying the sum of the roots:
$\alpha+\beta=\frac{-\mathrm{b}}{\mathrm{a}}$
$-1+\frac{4}{3}=\frac{- \text { coefficient of } \mathrm{x}}{\text { coefficient of } \mathrm{x}^{2}}$
$\frac{1}{3}=\frac{1}{3}$
Verifying the product of roots:
$\alpha \beta=\frac{c}{a}$
$(-1)\left(\frac{4}{3}\right)=\frac{- \text { constant term }}{\text { coefficient of } \mathrm{x}^{2}}$
$-\frac{4}{3}=-\frac{4}{3}$
5. The product of zeroes of $P(x)=6 x^{2}-3-7 x$ is $\qquad$ .
( A. $\frac{-7}{6}$
(x) B. $\frac{1}{2}$C. $-\frac{1}{2}$
$\times$
D. -2

If we rearrage the terms according to the standard form:
$P(x)=6 x^{2}-7 x-3$
Product of zeroes $=\frac{c}{a}=-\frac{3}{6}=-\frac{1}{2}$
6. Find the quadratic polynomial, sum, and product of whose zeroes are $\mathbf{- 3}$ and $\mathbf{2}$ respectively.

Let the zeroes be $\alpha$ and $\beta$.
According to the question
$\alpha+\beta=-3$
$\alpha \beta=2$
The quadratic polynomial whose sum and product of the zeroes are given by :
$\mathrm{x}^{2}-(\alpha+\beta) \mathrm{x}+\alpha \beta$
Then, the product of the polynomial will be:
$\mathrm{x}^{2}-(-3) \mathrm{x}+2$
$=x^{2}+3 \mathrm{x}+2$
Hence, the quadratic polynomial is $x^{2}+3 x+2$.
7. If -2 is a zero of the polynomial $3 \mathrm{x}^{2}+4 \mathrm{x}+2 \mathrm{k}$ then find the value of $k$.
A. -2
x B. 7
$\times$ C. 2
$\times$
D. -7

Correct option is A.
For the polynomial equation $3 \mathrm{x}^{2}+4 \mathrm{x}+\mathrm{k}$ one zero is -2 .
Putting the value of $x=-2$
We get, $3(2)^{2}+4(2)+2 \mathrm{k}=0$

$$
\begin{aligned}
& 12-8+2 \mathrm{k}=0 \\
& 4+2 \mathrm{k}=0 \\
& \mathrm{k}=-\frac{4}{2}=-2
\end{aligned}
$$

8. If $\alpha$ and $\beta$ are the zeroes of the polynomial $p(x)=2 x^{2}+5 x+k$ satisfying the relation $\alpha^{2}+\beta^{2}+\alpha \beta=\frac{21}{4}$, then find the value of $\boldsymbol{k}$.
( A. $k=1$
B. $\mathrm{k}=2$
$\times$
C. $\mathrm{k}=-2$
$\times$
D. $\mathrm{k}=4$

Let $\alpha$ and $\beta$ be the zeroes of the polynomial.
Then, $\alpha+\beta=-\frac{5}{2}$
$\alpha \beta=\frac{\mathrm{k}}{2}$
$(\alpha+\beta)^{2}=\left(\frac{-5}{2}\right)^{2}$
$\alpha^{2}+\beta^{2}+\alpha \beta+\alpha \beta=\frac{25}{4}$
$\frac{21}{4}+\frac{\mathrm{k}}{2}=\frac{25}{4}$
$\frac{\mathrm{k}}{2}=\frac{25}{4}-\frac{21}{4}=\frac{4}{4}=1$
$\mathrm{k}=2$
9. Which among the following cubic polynomials has three zeroes?
$\times \quad \mathrm{A}$.

B.


Option B is the correct answer.
The zeroes of the polynomial are the points where graph intersects the $x$-axis.
In the given graph, the curve in the option $B$ intersects the $x$-axis at three points, therefore, the number of zeroes of a polynomial representing curve in option $B$ is 3 .

