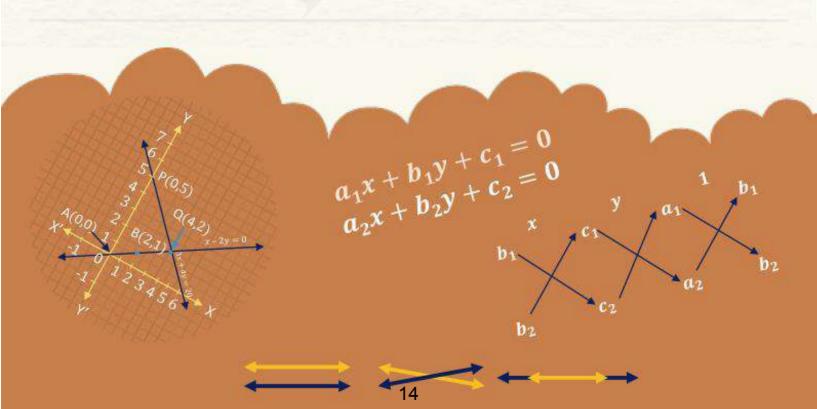


Grade 10 Mathematics Chapter Notes

Pair of Linear Equations in Two Variables



- 1. General Form of a Linear Equation
- 2. Types of Pairs of Linear Equations
- 3. Methods of Solving Pairs of Linear Equations

1. Linear Equations in Two Variables:

General Form

Coefficients
$$ax + by + c = 0$$
 Variables

where, a and b are non-zero real numbers

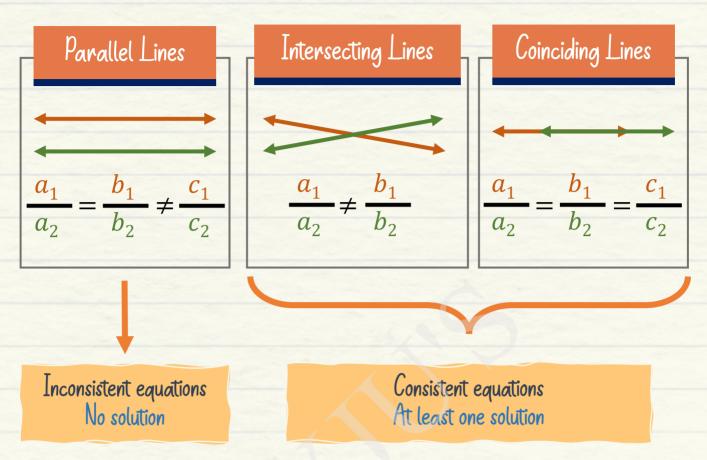
Pair of Linear Equations in Two Variables

Consider two different equations in x and y,

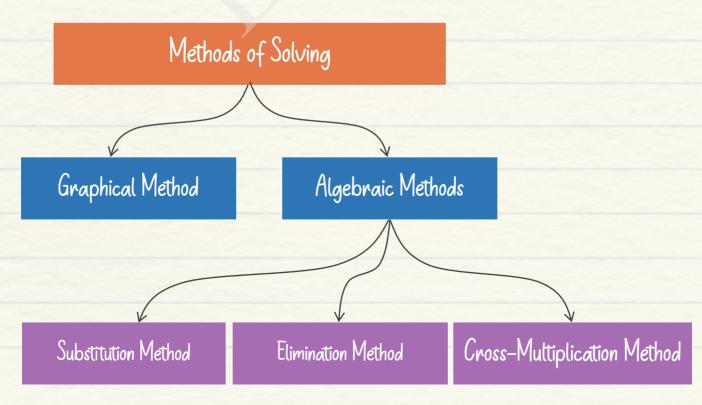
$$2x + 7y + 5 = 0$$

$$8x + 3y + 3 = 0$$

These two combined are known as pair of linear equations in two variables.


General Form of Pair of Linear Equations in Two Variables

$$a_1x + b_1y + c_1 = 0$$


$$a_2x + b_2y + c_2 = 0$$

2. Types of Pains of Linean Equations

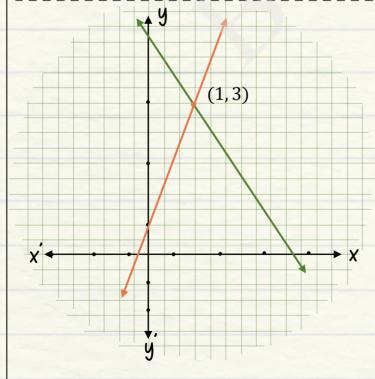
3. Methods of Solving Pains of Linear Equations

3.1 Graphical Method

$$2x - 1y = -1 \quad , \quad 3x + 2y = 9$$

Find points to construct lines on a graph paper for the two given equations

To construct a line, we need at least two point of the line, we find the value substituting values of x and y in the two equations.


$$2x - 1y = -1$$

x	0	$-\frac{1}{2}$	1	
у	1	0	3	

$$3x + 2y = 9$$

x	0	3	1
у	9 2	0	3

Draw the two line on a graph and mark the points at which they intersect.

The x-coordinate and the y-coordinate of the point at which the two lines intersect is the solution(s) of the pair of equations.

3.2 Substitution Method

$$x + y = 4$$
 , $x - y = 2$

Take one of the equations and move 'y' to LHS and the rest to RHS to get the value of 'y' in terms of 'x'.

$$y = 4 - x$$

Substitute the obtained value of 'y' in the other equation to get the numerical value of 'x'.

$$x - y = 2$$

$$x - (4 - x) = 2$$

$$2x - 4 = 2$$

$$x = 3$$

Now, substitute the obtained value of 'x' in either of the equations to get the value of 'y'.

$$x + y = 4$$
$$3 + y = 4$$
$$y = 1$$

3.3 Elimination Method:

$$3x + 2y = 18 \quad ,$$

$$5x + 4y = 32$$

Note down equations aligned to respective variables as shown.

+3x	+2y	II	+18
+5x	+4y	П	+32

Pick the variable which will be easier to eliminate.

+3 <i>x</i>	+2y	II	+18
+5 <i>x</i>	+4y		+32

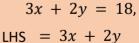
Equalise the coefficients of the variable to be eliminated by multiplying every term of the equation with the same number.

+3 <i>x</i> × 2	+2 <i>y</i> × 2	II	+18 × 2
+5 <i>x</i>	+4y		+32

Subtract the second equation from the first equation by reversing all the signs.

+6 <i>x</i>	+4y	Ш	+36
-5x	- 4 <i>y</i>	П	- 32
+x	+0 <i>y</i>	=	+4

Substitute the value of the now known variable into the simpler equation to get the value of the other variable.


We know that,

$$x = 4$$

And, $3x + 2y = 18$
 $\Rightarrow 3 \times 4 + 2y = 18$
 $\Rightarrow 12 + 2 = 18$
 $\Rightarrow 2y = 6$
 $\Rightarrow y = 3$

Verify the values obtained for x and y by putting them in the given equations

We know that,

$$x = 4$$

And, $3x + 2y = 18$
 $\Rightarrow 3 \times 4 + 2y = 18$
 $\Rightarrow 12 + 2 = 18$
 $\Rightarrow 2y = 6$
 $\Rightarrow y = 3$

$$= 3x + 2y$$
$$= 3 \times 4 + 2 \times 3$$

$$= RHS$$

$$5x + 4y = 32$$

LHS = $5x + 4y$
= $5 \times 4 + 4 \times 3$

"3x + 2y = 18" and 5x + 4y = 32".

From the above, x = 4 and y = 3.

Therefore, (4,3) is the solution of the

simultaneous equations

General Form of a Linear Equation Types of Pairs of Linear Equations

Pair of Linear Equations in Two Variables

Methods of Solving Pairs of Linear Equations

Graphical Method

Algebraic Method