B BYJU'S

Grade 10 Mathematics
 Exam Important Questions

Topic : Exam Important Questions

1. Solve:
$2 x-3 y=2, x+2 y=8$
using the method of substitution.
[3 marks]
Given,
$2 x-3 y=2 \ldots$ (1)
$x+2 y=8$
From (2), we have,
$x=8-2 y$
(1mark)
Substituting this value of x in (1), we have,
$2(8-2 y)-3 y=2$
i.e., $16-4 y-3 y=2 \Longrightarrow 7 y=14$
$\Longrightarrow y=2$
Now, $x=8-2 y \Longrightarrow x=8-2(2)=4$
Thus, $x=4$ and $y=2$
(1mark)

Pair of Linear Equations in Two Variables

2.

Abdul travelled 300 km by train and 200 km by taxi taking 5 hours 30 minutes.But, if he travels 260 km by train and 240 km by taxi,he takes 6 minutes longer.Find the speed of the train and that of the taxi.
(3 Marks)
Let the speed of the train and taxi be $x \mathrm{~km} / \mathrm{hr}$ and $\mathrm{y} \mathrm{km} / \mathrm{hr}$ respectively.
Now,
time taken by train to cover $300 \mathrm{~km}=\frac{300}{x}$ hours
and time taken by taxi to cover $200 \mathrm{~km}=\frac{200}{y}$ hours
also
total time taken $=5$ hours 30 minutes
$=5 \frac{1}{2}$ hours $=\frac{11}{2}$ hours
$\Rightarrow \frac{300}{x}+\frac{200}{y}=\frac{11}{2}$
$\Rightarrow \frac{600}{x}+\frac{400}{y}=11----(1)$
(1Mark)
also, time taken by train to cover $260 \mathrm{~km}=\frac{260}{x}$ hours
time taken by taxi to cover $240 \mathrm{~km}=\frac{240}{y}$ hours
and total time taken $=5$ hours 30 minutes +6 minutes
$=5$ hours 36 minutes $=5 \frac{5}{3}$ hours $=\frac{28}{5}$
$\Rightarrow \frac{260}{x}+\frac{240}{y}=\frac{28}{5}$
$\Rightarrow \frac{325}{x}+\frac{300}{y}=7---(2)$
Putting $\frac{1}{x}=u$ and $\frac{1}{y}=v$ in (1) and (2) we get
$600 u+400 v=11----(3)$
$325 u+300 v=7----(4)$
Solving (3) and (4)
$u=\frac{1}{100}$
$v=\frac{1}{80}$
$x=100$ and $y=80$
Hence the speed of the train is $100 \mathrm{~km} / \mathrm{hr}$
and the speed of the taxi is $80 \mathrm{~km} / \mathrm{hr}$
3.

Solve the given equations by elimination method. (3 marks)
$3 x-5 y=4$
$9 x=2 y+7$
$3 x-5 y=4$.
$9 x=2 y+7$
$9 x-2 y=7$.....(2)
(0.5 mark)

On multiplying equation (1) by 3 , we get
$9 x-15 y=12$.
(0.5 mark)

On subtracting (2) from (3), we get
$-13 y=5$
$\Rightarrow y=\frac{-5}{13}$
(1mark)

On substituting the value of y in (2), we get
$9 x=2 y+7$
$\Rightarrow x=\frac{7+2 y}{9}$
$\Rightarrow x=\frac{7-\frac{10}{13}}{9}=\frac{81}{13 \times 9}$
$\Rightarrow x=\frac{9}{13}$
So, $x=\frac{9}{13}$ and $y=\frac{-5}{13}$ is the solution of the given pair of linear equations in two variables. (1 mark)

Pair of Linear Equations in Two Variables

4. Do the following pair of linear equations have no solution? Justify your answer.
$2 x+4 y=3$ and $12 y+6 x=6$

[2 Marks]

[Graphical Method of Solution of a Pair of Linear Equations]
Condition for no solution $\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
[1 Mark]
$2 \mathrm{x}+4 \mathrm{y}=3$ and $12 \mathrm{y}+6 \mathrm{x}=6$
$a_{1}=2, b_{1}=4, c_{1}=-3$
$a_{2}=6, b_{2}=12, c_{2}=-6$
$\frac{a_{1}}{a_{2}}=\frac{2}{6}=\frac{1}{3}, \frac{b_{1}}{b_{2}}=\frac{4}{12}=\frac{1}{3}, \frac{c_{1}}{c_{2}}=\frac{-3}{-6}=\frac{1}{2}$
$\frac{a_{1}}{a_{2}}=\frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}$
Hence, the given pair of linear equations has no solution.
[1 Mark]

Pair of Linear Equations in Two Variables

5.

Show graphically that each of the following given systems of equations is inconsistent,i.e., has no solution:
$x-2 y=6,3 x-6 y=0$
(3 Marks)

Pair of Linear Equations in Two Variables

We have, $x-2 y=6$ and $3 x-6 y=0$
Now $x-2 y=6$
$x=6+2 y$
When $\mathrm{y}=-2$ then, $\mathrm{x}=2$
When $y=-3$ then, $x=0$
Thus, we have the following table giving points on the line $x-2 y=6$

X	2	0
Y	-2	-3

(1 Mark)
Now, $3 x-6 y=0$
$x=2 y$
When $\mathrm{y}=0$, then $\mathrm{y}=0$
When $y=-1$, then $x=2$
Thus, we have the following table giving points on the line $3 x-6 y=0$

Graph of the equation $x-2 y=6$ and $3 x-6 y=0$

Clearly, two lines are parallel to each other. So, the two lines have no common point. 19

Pair of Linear Equations in Two Variables

6.

Solve each of the following systems of equations graphically:
$3 x+2 y=4,2 x-3 y=7$.
(2 Marks)
The system of the given equation is $3 x+2 y-4=0$ and $2 x-3 y-7=0$

(1 Mark)
Clearly, the two lines intersect at $P(2,-1)$
Hence $x=2$ and $y=-1$ is the solution of the given system of equations.
(1 Mark)
7. Draw the graphs of the equations $x-y+1=0$ and $3 x+2 y-12=0$. Determine the coordinates of the vertices of the triangle formed by these lines and the x-axis, and shade the triangular region.
(3 marks)
$x-y+1=0$
$\Rightarrow \mathrm{x}=\mathrm{y}-1$

x	0	1	2
y	1	2	3

(1Mark)
$3 \mathrm{x}+2 \mathrm{y}-12=0$
$\Rightarrow x=\frac{12-2 y}{3}$

x	4	2	0
y	0	3	6

(1Mark)
Graphical representation:

From the figure, it can be observed that these lines are intersecting each other at point $(2,3)$ and x-axis at $(-1,0)$ and $(4,0)$. Therefore, the vertices of the triangle are $(2,3)$, ($1,0)$, and (4, 0).

Pair of Linear Equations in Two Variables

8. Plot the graph of $y=5 x-5$
(3 marks)
In equation $\mathrm{y}=5 \mathrm{x}-5$,
if $x=0, y=-5 \quad$ (0.5 Marks)
if $y=0, x=1$
(0.5 Marks)
so the graph will be:

Pair of Linear Equations in Two Variables

9. Graphically, find the number of solution for the following pair of linear equations in two variables:
$6 x-3 y+10=0$
$2 x-y+9=0$
[3 marks]
The first equation is
$6 x-3 y+10=0$
$\Rightarrow 2 x-y+\frac{10}{3}=0$
$y=2 x+\frac{10}{3}$

x	0	$-\frac{5}{3}$
y	$\frac{10}{3}$	0
Points	A	B

(1 Mark)
And table for $2 x-y+9=0$

x	0	$-\frac{9}{2}$
$Y=2 x+9$	9	0
Points	C	D

(1 Mark)

Since, the given pair of linear equations in two variables represents two parallel lines. hence, no solution.
(1 Mark)

Pair of Linear Equations in Two Variables

10.

Draw the graphs of the equations $5 x-y=5$ and $3 x-y=3$. Determine the co-ordinates of the vertices of the triangle formed by these lines and the y axis.
(3 marks)
$5 \mathrm{x}-\mathrm{y}=5$
or, $y=5 x-5$
The solution table will be as follows.

x	0	1	2
y	-5	0	5

$3 x-y=3$
or, $y=3 x-3$

x	0	1	2
y	-3	0	3

The graphical representation of these lines will be as follows:

It can be observed that the required triangle triangle is $\triangle A C E$ formed by these lines and y axis.
The coordinates of vertices are $\mathrm{A}(1,0), \mathrm{C}(0,-3), \mathrm{E}(0,-5)$.

