B BYJU'S

Grade 10 Mathematics
 Exam Important Questions

Triangles

Topic : Exam Important Questions
1.

The perimeters of two similar triangles $A B C$ and $P Q R$ are 32 cm and 24 cm respectively. If $P Q=12 \mathrm{~cm}$, find $A B$.
(2 marks)
Solution:
Given,
$\triangle A B C \sim \triangle P Q R$
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{A C}{P R}=\frac{A B+B C+A C}{P Q+Q R+P R}$
(Corresponding sides are proportional)
$\Rightarrow \frac{A B+B C+A C}{P Q+Q R+P R}=\frac{A B}{P Q}$
$\Rightarrow \frac{\text { Perimeter of } \mathrm{ABC}}{\text { Perimeter of } \mathrm{PQR}}=\frac{A B}{P Q}$
$\Rightarrow \frac{32}{24}=\frac{A B}{12}$
$\Rightarrow A B=\frac{32}{24} \times 12=16 \mathrm{~cm} \quad$ (1 mark)
2. One triangle has side measures 4,5 , and 8 . Another has side lengths 8,10 , and 14. Are these triangles similar? Justify your answer. [2 Marks]

Two triangles are similar if and only if their side lengths are proportional.
In this case, two of the sides are proportional, leading us to a scale factor of 2. (1 Mark)

However, with the last side, $8 \times 2=16$ which is not our side length.
Thus, these pair of sides are not proportional and therefore our triangles cannot be similar. (1 Mark)

Triangles

3. The sides of $\Delta \mathrm{ABC}$ are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm . Find the perimeter of the larger triangle which is similar to $\Delta \mathrm{ABC}$ if the ratio of corresponding sides is 2 .

[2 Marks]

Solution:
Let's assume the triangle similar to $\Delta \mathrm{ABC}$ to be $\Delta \mathrm{XYZ}$.
Given that the ratio of corresponding sides is 2 .
So, $\frac{X Y}{A B}=\frac{Y Z}{B C}=\frac{X Z}{A C}=2$
The sides of $\Delta \mathrm{ABC}$ are $6 \mathrm{~cm}, 8 \mathrm{~cm}$ and 10 cm .
Hence,
$\Rightarrow \frac{X Y}{6}=\frac{Y Z}{8}=\frac{X Z}{10}=2 \quad[1 \mathrm{Mark}]$
$\Rightarrow X Y=12 \mathrm{~cm}, Y Z=16 \mathrm{~cm}$ and $X Z=20 \mathrm{~cm}$.
The perimeter of $\triangle \mathrm{XYZ}$ is
$X Y+Y Z+X Z=12+16+20=48 \mathrm{~cm} \quad[1 \mathrm{Mark}]$

Triangles

4.

In figure, $D E \| A C$ and $D C \| A P$. Prove that $\frac{B E}{B C}=\frac{B C}{C P}$.

(3 Marks)
In $\triangle B P A$, we have
DC \| AP [Given]
\therefore By basic prportionality theorem, we have
$\frac{B C}{C P}=\frac{B D}{D A}$
(1Mark)
In $\triangle B C A$, we have
DE \|AC
[Given]
\therefore By basic proportionality theorem, we have
$\frac{B E}{B C}=\frac{B D}{D A}$ (1Mark)

From (i) and (ii), we get

$$
\begin{equation*}
\frac{B C}{C P}=\frac{B E}{B C} \text { or } \frac{B E}{B C}=\frac{B C}{C P} \tag{1Mark}
\end{equation*}
$$

Triangles

5.

The side $B C$ of a $\triangle A B C$ is bisected at D; O is any point in $A D . B O$ and $C O$ produced meet $A C$ and $A B$ in E and F respectively and $A D$ is produced to X so that O is the mid-point of $O X$. Prove that $A O: A X=A F: A B$ and show that $F E$ $\| B C$.

[3 Marks]

Triangles

Solution:

In order to solve this question, we will do a construction.
We join BX and CX.

It is given that, $\mathrm{BD}=\mathrm{CD}$ and $\mathrm{OD}=\mathrm{DX}$

Thus, BC and OX bisect each other.
\Rightarrow OBXC is a parallelogram.
$\Rightarrow B X \| C O$ and $C X \| B O$
$\Rightarrow B X \| C F$ and $C X \| B E$
Then, $B X \| O F$ and $C X \| O E$
In $\triangle A B X$, we have
$B X \| O F$
$\Rightarrow \frac{A O}{A X}=\frac{A F}{A B} \ldots(i)$
(1Mark)
In $\triangle \mathrm{ACX}$, we have
$C X \| O E$
$\Rightarrow \frac{A O}{A X}=\frac{A E}{A C} \ldots(i i)$
From equations (i), (ii), we get
$\frac{A F}{A B}=\frac{A E}{A C}$
Thus, E and F are points on $A B$ and $A C$ such that they divide $A B$ and $A C$ respectively in the same ratio.

Therefore, by the converse of Thale's Theorem or Basic Proportionality Theorem, FE || BC.
(1 Mark)

Triangles: Criteria for Similarity -3

6. In the right -angles triangle $Q P R, P M$ is an altitude. Given that $Q R=8 \mathrm{~cm}$ and $M Q=3.5 \mathrm{~cm}$, calculate the value of $P R$.

(2 Marks)

We have
$\angle \mathrm{QPR}=\angle \mathrm{PMR}=90^{\circ}$
$\angle \mathrm{PRQ}=\angle \mathrm{PRM}$ (common)
$\triangle \mathrm{PQR} \sim \triangle \mathrm{MPR}$ (AA similarity) (1 mark)
$\therefore \frac{Q R}{P R}=\frac{P R}{M R}$
$P R^{2}=8 \times 4.5=36$
(1 mark)
$P R=6 \mathrm{~cm}$

Triangles

7.

In the given figure, if $\angle A D E=\angle B$, show that $\triangle A D E \sim \triangle A B C$. If $\mathrm{AD}=3.8$ $\mathrm{cm}, \mathrm{AE}=3.6 \mathrm{~cm}, \mathrm{BE}=2.1 \mathrm{~cm}$ and $\mathrm{BC}=4.2 \mathrm{~cm}$, find $D E$.

(2 Marks)
Solution:
In $\triangle A D E$ and $\triangle A B C$,
$\angle A=\angle A$ (Common angle)
$\angle A D E=\angle B$ (Given)
So by AA similarity, triangles are similar. (1 mark)
By CPCT,
$\frac{A D}{A B}=\frac{D E}{B C}$
$\frac{3.8}{3.6+2.1}=\frac{D E}{4.2}$
$D E=\frac{3.8 \times 4.2}{5.7}=2.8 \mathrm{~cm}$
(1 mark)

Triangles

8.

Two triangles $A B C$ and $P Q R$ are such that $A B=3 \mathrm{~cm}, A C=6 \mathrm{~cm}, \angle A=70^{\circ}, P R=9$ $\mathrm{cm}, \angle P=70^{\circ}$, and $P Q=4.5 \mathrm{~cm}$. Show that $\triangle A B C \sim \triangle P Q R$ and state the similarity criterion.
[2 Marks]
Given: $A B=3 \mathrm{~cm}, A C=6 \mathrm{~cm}, \angle A=70^{\circ}, P R=9 \mathrm{~cm}, \angle P=70^{\circ}, P Q=4.5$ cm.
$\frac{A B}{P Q}=\frac{A C}{P R}$
$\frac{3}{4.5}=\frac{6}{9}$
Therefore, $\frac{1}{1.5}=\frac{1}{1.5} \quad$ (1 mark)
$\angle A=\angle P=70^{\circ}$
$\therefore \Delta \mathrm{ABC} \sim \Delta \mathrm{PQR}$ (By SAS similarity) (1 mark)

