B BYJU'S

Grade 10 Mathematics Chapter Notes

CONTENTS

S. No.	Chapter	Page Number
1	Real Numbers	1
2	Polynomials	6
3	Pair of Linear Equations in Two Variables	13
4	Quadratic Equations	21
5	Arithmetic Progressions	27
6	Triangles	35
7	Coordinate Geometry	46
8	Introduction to Trigonometry	53
9	Some Applications of Trigonometry	62
10	Circles	68
11	Areas Related To Circles	76
12	Surface Areas and Volumes	85
13	Statistics	95
14	Probability	103

BBYJU'S

CHAPTER NOTES

Real Numbers

B

1. Tundamental Theorem of Anilhmetic

2. Innational Numbens

$4 / 7$
 2
 5.23

$\sqrt{5}$

1. Fundamental Theohem of Ahithmetic

Every composite number can be expressed as a product of primes, and this factorisation is unique (apart from the order).

The prime factorisation of the number 8190 is:

$$
8190=2^{1} \times 3^{2} \times 5^{1} \times 7^{1} \times 13^{1}
$$

4.1 Theorem Based on Fundamental Theorem of Avithmetic

If a prime number p divides a^{2}, then p divides a, where a is a positive integer.

Let us consider, $p=3, a=9$ 3 divides q?
3 divides 9 .

4.2 Relation between HCF and LCM

For any two positive integers a and b.

2. Ihhational Numbers

A number' s ' is called irrational if it cannot be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Prove that, $\sqrt{ } 2$ is irrational.

Proof: By using method of contradiction

Assume $\sqrt{2}$ is a rational number.

$$
\begin{gathered}
\sqrt{2}=\frac{a}{b} \quad(a \text { and } b \text { are co-primes and } b \neq 0) \\
\quad \Rightarrow b \sqrt{2}=a
\end{gathered}
$$

Squaring both the sides

$$
\begin{gathered}
(b \sqrt{2})^{2}=a^{2} \\
\Rightarrow 2 b^{2}=a^{2}(a \text { is an even number })
\end{gathered}
$$

Let $a=2 k$ (k is an integer)

$$
2 b^{2}=4 k^{2}
$$

$$
\Rightarrow b^{2}=2 k^{2} \quad(b \text { is an even number })
$$

$\therefore a$ and b have 2 as a common factor.
But this contradicts the fact that a and b are co-primes. This contradiction has arisen because of our incorrect assumption that $\sqrt{2}$ is rational.

Hence $\sqrt{2}$ is irrational.

Mind Map

Tundamental Theonem of Snithmetic

Men-terminating o
nen-repeating

MATHEMATIC Q

BBYJU'S

CHAPTER NOTES

Polynomials

1. Polynomials and terms related to it
2. Special Types of Polynomials
3. Value of a Polynomial at a Point
4. Zenoes of a Polynomial
5. Relationship between Zeroes and Coefficients of a Polynomial

Polynomials

"Ooly means Many

"Momiads means tenams

So, polynomials means many terms

Definition of a Polynomial

An algebraic expression in which the variable(s) is/are raised to non-negative integral exponents is called a polynomial.

Standand Form of a Polynomial in x of Degree n
An algebraic expression of the form

$$
p(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

where $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$ are real numbers and $a_{n} \neq 0$,
is the standard form of a polynomial in x of degree n.

Terms Related to Polynomials

The Degree of a Polynomial $p(x)$ is the highest exponent to which x is raised.

The Value of a Polynomial $p(x)$ at $\mathrm{x}=\mathrm{k}$ is obtained by replacing $\mathrm{x}=\mathrm{k}$ in the polynomial expression.

A real number ' a ' is a Zero of a Polynomial $p(x)$ if $p(a)=0$.

Special Types of Polynomials

Relationship between Zeroes and Coefficients of a Polynomial

Quadratic Polynomial

General form:

$$
p(x)=a x^{2}+b x+c
$$

$$
\text { Sum of zeroes }=\alpha+\beta=\frac{-b}{a}
$$

$$
\text { Product of zeroes }=\alpha \beta=\frac{c}{a}
$$

Cubic Polynomial

General form: $p(x)=a x^{3}+b x^{2}+c x+d$

$$
\text { Sum of zeroes }=\alpha+\beta+\gamma=\frac{-b}{a}
$$

Sum of product of zeroes
taken two at a time $=\alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}$
Product of zeroes $=\alpha \beta \gamma=\frac{-d}{a}$

Mind Map

BBYJU'S

CHAPTER NOTES

Pail of Lineal Equations in Two Variables

1. General Form of a Linear Equation
2. Types of Pairs of Linear Equations
3. Methods of Solving Pairs of Linear Equations

1. Linear Equations in Two Vahiables

Generenal Form

Coefficients

$$
a x+b y+c=0
$$

where, a and b are non-zeno real numbers

Pain of Linear Equations in Two Variables

Consider two different equations in x and y,

$$
\begin{aligned}
& 2 x+7 y+5=0 \\
& 8 x+3 y+3=0
\end{aligned}
$$

These two combined are known as pair of linear equations in two variables.

General Form of Pair of Linear Equations in Two Variables

$$
\begin{aligned}
& a_{1} x+b_{1} y+c_{1}=0 \\
& a_{2} x+b_{2} y+c_{2}=0
\end{aligned}
$$

2. Types of Pails of Lincar Equations

Inconsistent equations No solution

Consistent equations
At least one solution

3. Methods of Soluing Paihs of lincar Equations

Methods of Solving

Graphical Method

Substitution Method
Elimination Method
Cross-Multiplication Method

3.1 Ghaphical Method

$$
2 x-1 y=-1, \quad 3 x+2 y=9
$$

Find points to construct lines on a graph paper for the two given equations
To construct a line, we need at least two point of the line, we find the value subsituting values of x and y in the two equations.

$$
2 x-1 y=-1
$$

$$
3 x+2 y=9
$$

x	0	$-\frac{1}{2}$	1
y	1	0	3

x	0	3	1
y	$\frac{9}{2}$	0	3

The x-coordinate and the y-coordinate
of the point at which the two lines
intersect is the solution(s) of the pain of two line on a graph and mark the points at which they intersect.
equations.

3.2 Substitution Method

$$
x+y=4, x-y=2
$$

Take one of the equations and move 'y] to LHS and the rest to RHS to get the value of ' y ' in terms of ' x '.

$$
y=4-x
$$

Substitue the obtained value of 'g' 'in the other equation to get the numerical value of ' x '.

$$
\begin{gathered}
x-y=2 \\
x-(4-x)=2 \\
2 x-4=2 \\
x=3
\end{gathered}
$$

Now, substitute the obtained value of 'x' in either of the equations to get the value of ' y '.

$$
\begin{gathered}
x+y=4 \\
3+y=4 \\
y=1
\end{gathered}
$$

3.3 Elimination Method

Equalise the coefficients of the variable to be eliminated by multiplying every term of the equation with the same number.

Substitute the value of the now known variable into the simpler equation to get the value of the other variable. We know that,

$$
x=4
$$

And, $3 x+2 y=18$
$\Rightarrow 3 \times 4+2 y=18$
$\Rightarrow 12+2=18$
$\Rightarrow 2 y=6$
$\Rightarrow y=3$

From the above, $\mathrm{x}=4$ and $\mathrm{y}=3$.
Therefore, $(4,3)$ is the solution of the simultaneous equations
" $3 \mathrm{x}+2 \mathrm{y}=18$ " and
$" 5 x+4 y=32 "$.
$5 x+4 y=32$
2
Pick the variable which will be easier to eliminate.

$+3 x$	$+2 y$	$=$	+18
$+5 x$	$+4 y$	$=$	+32

4

Subtract the second equation from the first equation by reversing all the signs.

$+6 x$	$+4 y$	$=$	+36
$-5 x$	$-4 y$	$=$	-32
$+x$	$+0 y$	$=$	+4

$\begin{array}{r}\text { Verify the values obtained for } \\ x \text { and } y \text { by putting them } \\ \text { in the given equations }\end{array}$
$\begin{array}{r}3 x+2 y=18, \\ \text { HS } \\ =3 x+2 y \\ =3 \times 4+2 \times 3 \\ \\ \text { RUS }\end{array}$
$\begin{array}{r}\text { LBS } \\ =5 x+4 y=32 \\ \\ =\end{array}$
RUS

Mind Map

MATHEMATICQ

B BYJU'S

CHAPTER NOTES

Quadhatic Equations

Topics

1. Standard Form of Quadratic Equations
2. Methods to Solve
3. Zeroes, Roots and Solutions
4. Nature of Roots

$$
\begin{aligned}
& a x^{2}+b x+c=0 \\
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

22

Standatid Form

Important Terms

Zeroes are for quadratic polynomial $P(x)$
$\mathrm{P}(x)=(x-2)(x-2)$ Zeroes, $x=2$ \& 2

Roots are for quadratic equation

Solutions

Quadratic equation having equal and identical roots will have a unique solution.

$$
(x-2)(x-2)=0
$$

$x=2$ is the solution of the given equation

Methods to Solue

Ouadiatic Equations

Factorization

> General form:
> $\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0$.

1. Solit the middle term.
$9 x^{2}-3 x-2=0$.
Product of split terms $=\left(\begin{array}{ll}a & \times \\ c\end{array}\right)$
$9 x^{2}-6 x+3 x-2=0$.

2. Factorize the equation $\ggg 3 x(3 x-2)+1(3 x-2)=0$.

$$
(3 x-2)(3 x+1)=0 .
$$

3. Equate each facton to $0 \ggg(3 x-2)(3 x+1)=0$
$x=\frac{2}{3}$ or $x=-\frac{2}{3}$

Quadratic Formula

$$
\begin{gathered}
\mathrm{a} x^{2}+\mathrm{b} x+\mathrm{c}=0 \\
\operatorname{Roots}(x)=\frac{-b \pm \sqrt{b^{2}-4 \mathrm{ac}}}{2 \mathrm{a}} \\
\text { i.e. } \\
x=\frac{-b+\sqrt{b^{2}-4 \mathrm{a} c}}{2 \mathrm{a}} \text { or } \quad x=\frac{-b-\sqrt{b^{2}-4 \mathrm{a} c}}{2 \mathrm{a}}
\end{gathered}
$$

where, $b^{2}-4 a c \geq 0$

Quadratic formula is used where factorization method is difficult to apply.

Nature of Roots

$$
\text { Discriminant }(D)=" b^{2}-4 a c \text { " . }
$$

MATHEMATICS

BBYJU'S

CHAPTER NOTES

Ahithmetic Progicessions

Topics

1. Arithmetic progression
2. Types of an Arithmetic $P_{\text {regression }}$
3. General form of an AP
4. nt Term of an AP
5. Sum of first n terms of an AP
6. Arithmetic mean

1. Arithmetic Progressions

Definition

An arithmetic progression is a sequence of numbers in which each term is obtained by adding a fixed number to the preceding term. except the first term.

The common difference can be

2.Types of an Ahithmetic

 Phoghession
Anithmeic Progression

Ex: Muttiples of 3 till 30.

Ex: All multiples of 3 .

3. Genchal Form of an AP

A sequence of the form

* $a, a+d, a+2 d, a+3 d, a+4 d$ and so on, where a is the first term and d is the common difference.

4. $n^{\text {th }}$ Term of an AP

where a is the first term,
d is the common difference
n is the number of terms in the sequence and a_{n} is the nth term.

5. Sum of first n Tchms in an AP

(When first term (a) and common difference (d) are known)

(When finstterm (a) and lasterm (I are known)
where n is the number of terms in the sequence and S_{n} is the sum of first n terms

b. Arithmetic Mean

If a, b and c are in $A P$, then,
b is the arithmetiz2mean of a and c.

Important formulac

$\mathrm{n}^{\text {th }}$ Term of an AP	$a_{n}=a+(n-\mathbf{1}) d$
Sum of finst n terms in an AP (Where first term (a) and common difference (d) are known)	$S_{n}=\frac{n}{\mathbf{2}}\{\mathbf{2} a+(n-\mathbf{1}) d\}$
Sum of first n terms in an AP (Where first term (a) and last term (l) are known)	$S_{n}=\frac{n}{\mathbf{2}}(a+l)$
Arithmetic Mean (b) (a, b and c are in AP)	$b=\frac{a+c}{\mathbf{2}}$

TipsIPoints to be Rememberied

While solving questions containing consecutive terms, following assumptions can be made to simplify:

NUMBER OF TERMS

While solving questions containing consecutive terms, following			
assumptions can be made to simplify:			
NUMBER OF TERMS	CONSECUTIVE	FIRST	COMMON
3	TERMS	TERM	DIFFERENCE
4	$(a-d), a,(a+d)$	$(a-d)$	d
5	$(a-3 d),(a-d),(a+d),(a+3 d)$	$(a-3 d)$	$2 d$

MATHEMATICQ

BBYJU'S

CHAPTER NOTES

Thiangles

Similar Triangles

,$\ldots \rightarrow$ Same Shape
Similar Triangles

- \rightarrow Different on Same size

Relation between Conresponding Sides and Angles

*Two triangles are similar, if

* Their corresponding angles are equal.

$$
\begin{aligned}
& \angle A=\angle P \\
& \angle B=\angle Q \\
& \angle C=\angle R
\end{aligned}
$$

* Their corresponding sides are in the same ratio.
$\frac{A B}{P Q}=\frac{B C}{Q R}=\frac{C A}{R P}=k$

Critchia for Similarity of Thiangles

Side-Side-Side (SSS)

Corresponding sides are proportional.

$$
\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CA}}{\mathrm{RP}}
$$

Angle-Angle-Angle (AAA) / Angle-Angle (AA)

* Corresponding angles are equal.
- Triangles are similar even if a pair of corresponding angles are equal.

Side-Angle-Side (SAS)

* Pair of adjacent corresponding sides are proportional and one angle is equal.
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{2}{3}$

$\angle B=\angle Q$

Ratio of Aheas of Similar Thiangles

Ratio of Area of Similar Triangles

$$
\frac{\operatorname{Area}(\triangle \mathrm{ABC})}{\operatorname{Area}(\triangle \mathrm{PQR})}=\left(\frac{\mathrm{AB}}{\mathrm{PQ}}\right)^{2}=\left(\frac{\mathrm{BC}}{\mathrm{QR}}\right)^{2}=\left(\frac{\mathrm{CA}}{\mathrm{RP}}\right)^{2}
$$

Properties of Right-Angled Triangles
Similarity of triangles when a perpendicular is drawn from the vertitex of the right angle.

$$
\Delta \mathrm{ABC} \sim \triangle \mathrm{ADC} \sim \triangle \mathrm{ADB}(\mathrm{AA} \text { Similarity) }
$$

All the three triangles have:

* A right-angle.
* A common angle.

Basic Proportionality Theorem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

Proof:

Area of $\triangle \mathrm{APQ}=\frac{1}{2} \times \mathrm{AP} \times \mathrm{QN}$
Area of $\triangle \mathrm{PBQ}=\frac{1}{2} \times \mathrm{PB} \times \mathrm{QN}$
Area of $\triangle \mathrm{APQ}=\frac{1}{2} \times \mathrm{AQ} \times \mathrm{PM}$
Area of $\triangle \mathrm{QCP}=\frac{1}{2} \times \mathrm{QC} \times \mathrm{PM}$
Now,
1
$\frac{\text { Area of } \triangle \mathrm{APQ}}{\text { Area of } \triangle \mathrm{PBQ}}=\frac{\frac{1}{2} \times \mathrm{AP} \times \mathrm{QN}}{\frac{1}{2} \times \mathrm{PB} \times \mathrm{QN}}=\frac{\mathrm{AP}}{\mathrm{PB}}$
Similarly.

$$
\begin{equation*}
\frac{1}{2} \times P B \times Q N \tag{1}
\end{equation*}
$$

$\frac{\text { Area of } \triangle \mathrm{APQ}}{\text { Area of } \triangle \mathrm{QCP}}=\frac{\frac{1}{2} \times \mathrm{AQ} \times \mathrm{PM}}{\frac{1}{2} \times \mathrm{QC} \times \mathrm{PM}}=\frac{\mathrm{AQ}}{\mathrm{QC}}$
The triangles drawn between the same parallel lines and on the same base have equal areas.
\therefore Area of $\triangle \mathrm{PBQ}=$ Area of $\triangle \mathrm{QCP}$
From (1), (2) and (3)
$\frac{A P}{P B}=\frac{A Q}{Q C}$

Conuctise of Basic

Proportionality Theorem

If a line divides any two sides of a triangle in the same ratio, then the line is parallel to the third side.

Proof:

$$
\text { If } \frac{A D}{D B}=\frac{A E}{E C} \text {, then } D E \| B C \text {. }
$$

Suppose a line $D E$, intersects the two sides of a triangle $A B$ and $A C$ at D and E, such that;
$\frac{\mathrm{AD}}{\mathrm{DB}}=\frac{\mathrm{AE}}{\mathrm{EC}}$

Assume DE is not parallel to BC. Now, draw a line DE' parallel to BC. Hence, by Basic Proportionality Theorem,

$$
\begin{equation*}
\frac{A D}{D B}=\frac{A E^{\prime}}{E^{\prime} C} . \tag{2}
\end{equation*}
$$

From eq. 1 and 2, we get
$\frac{\mathrm{AE}}{\mathrm{EC}}=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}}$
Adding 1 on both the sides
$\frac{\mathrm{AE}}{\mathrm{EC}}+1=\frac{\mathrm{AE}^{\prime}}{\mathrm{E}^{\prime} \mathrm{C}}+1 \Longrightarrow \frac{\mathrm{AE}+\mathrm{EC}}{\mathrm{EC}}=\frac{\mathrm{AE}^{\prime}+\mathrm{E}^{\prime} \mathrm{C}}{\mathrm{E}^{\prime} \mathrm{C}}$
$\frac{\mathrm{AC}}{\mathrm{EC}}=\frac{\mathrm{AC}}{\mathrm{E}^{\prime} \mathrm{C}}$ MhO $\mathrm{S}, \mathrm{EC}=\mathrm{E}^{\prime} \mathrm{C}$
This is possible only when E and E^{\prime} coincides.
But DE' || BC
$\therefore \quad \mathrm{DE} \| \mathrm{BC}$.

Properties of

Right -Angled Triangles

Pythagoras Theorem

In a vight-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides.

Proof:

$\triangle \mathrm{ADB} \sim \triangle \mathrm{ABC}$
$\left.\therefore \frac{\mathrm{AD}}{\mathrm{AB}}=\frac{\mathrm{AB}}{\mathrm{AC}} \begin{array}{c}\text { (corresponding sides of } \\ \text { similar triangles) }\end{array}\right)$
$\mathrm{AB}^{2}=\mathrm{AD} \times \mathrm{AC} \ldots \ldots \ldots \ldots$ (1)

Also, $\triangle \mathrm{ADC} \sim \triangle \mathrm{ABC}$
$\therefore \frac{\mathrm{CD}}{\mathrm{BC}}=\frac{\mathrm{BC}}{\mathrm{AC}}$ (corresponding sides of similar triangles)
$\mathrm{BC}^{2}=\mathrm{CD} \times \mathrm{AC}$
$(1)+(2)$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AD} \times \mathrm{AC}+\mathrm{CD} \times \mathrm{AC}$
$\mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}(\mathrm{AD}+\mathrm{CD})$
Since, $A D+C D=A C$
$\therefore \mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}$

Convense of Pythagonas Theorem

If the square of the length of the longest side of a triangle is equal to the sum of the squares of the other two sides, then the triangle is a right triangle.

Proof:

Construct another triangle, $\triangle E G F$, such as $\mathrm{AC}=\mathrm{EG}$ and $\mathrm{BC}=\mathrm{FG}$.

In $\triangle E G F$, by Pythagoras Theorem:
$\mathrm{EF}^{2}=\mathrm{EG}^{2}+\mathrm{FG}^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}$

In $\triangle A B C$, by Pythagoras Theorem:
$\mathrm{AB}^{2}=\mathrm{AC}^{2}+\mathrm{BC}^{2}=\mathrm{b}^{2}+\mathrm{a}^{2}$

From (1) and (2)
$E F^{2}=\mathrm{AB}^{2}$
$\mathrm{EF}=\mathrm{AB}$
$\Rightarrow \triangle \mathrm{ACB} \cong \triangle \mathrm{EGF}$ (By SSS)

$\Rightarrow \angle \mathrm{C}$ is right angle
$\therefore \triangle \mathrm{ABC}$ is a right triangle.

Impohtant Theohems and Fohmulac

Similarity of Twiangles

Pythagoras Theorem

- In a right-angled triangle, the square of the hypotenuse side is equal to the sum of squares of the other two sides.
an

Basic Proporitionality Theovem

If a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, then the other two sides are divided in the same ratio.

MATHEMATICS

BBYJU'S

CHAPTER NOTES

Coondinate Gcomethy

1. Fundamentals
2. Distance Formula
3. Section Formula
3.1 Mid-Point Formula

Fundamentals

Distance Formula

Steps to Derive

Using Pythagoras theorem:

$$
\mathrm{PQ}=\sqrt{(\mathrm{PR})^{2}+(Q \mathrm{R})^{2}}
$$

Now, $P R=\left(x_{2}-x_{1}\right)$ and $Q R=\left(y_{2}-y_{1}\right)$

$$
\text { Distance, } P Q=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}
$$

Section Formula

Steps to Derive

$\triangle P R M \sim \triangle M S Q$ (Similar triangles)
$\frac{P M}{M Q}=\frac{P R}{M S}=\frac{R M}{S Q}$
$\frac{m_{1}}{m_{2}}=\frac{x-x_{1}}{x_{2}-x}=\frac{y-y_{1}}{y_{2}-y}$
On solving for x and y separately:

$$
M(x, y)=\left(\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}}, \frac{m_{1} y_{2}+m_{2} y_{1}}{m_{1}+m_{2}}\right)
$$

Mid Point Formula

Steps to Derive

Section Formula

$$
\mathrm{M}(\mathrm{x}, \mathrm{y})=\left(\frac{\mathrm{m}_{1} \mathrm{x}_{2}+\mathrm{m}_{2} \mathrm{x}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}, \frac{\mathrm{~m}_{1} \mathrm{y}_{2}+\mathrm{m}_{2} \mathrm{y}_{1}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}\right)
$$

M is the mid point, so $m_{1}: m_{2}=1: 1$

$$
\begin{aligned}
& \therefore m_{1}=1 \text { and } m_{2}=1 \\
& \qquad \\
& \qquad M(\mathbf{x}, \mathbf{y})=\left(\frac{\mathbf{x}_{1}+\mathbf{x}_{2}}{2}, \frac{\mathbf{y}_{1}+\mathbf{y}_{2}}{2}\right)
\end{aligned}
$$

MATHEMATICQ

BBYJU'S

CHAPTER NOTES

Introduction to Thigonomethy

Thigonomethic Ratios

Thigonometric Ratios of Standard Angles

* With just the values of $\sin \boldsymbol{\theta}$, we can calculate all other trigonometric ratios for standard angles.

Thigonomethic Ratios of Standahd Angles

Phoof of Thigonomethic Identities

In a right-Angled Triangle $\triangle \mathrm{ABC}$
In $\triangle \mathrm{ABC}$ we know that

$$
\begin{aligned}
& \sin \theta=\frac{a}{c} \ldots \ldots1 \\
& \cos \theta=\frac{b}{c} \ldots \ldots2
\end{aligned}
$$

By Pythagoras Theorem,

$$
\mathrm{a}^{2}+\mathrm{b}^{2}=\mathrm{c}^{2}
$$

Dividing both sides by cª

$$
\begin{aligned}
& \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=\frac{c^{2}}{c^{2}} \\
& \frac{a^{2}}{c^{2}}+\frac{b^{2}}{c^{2}}=1
\end{aligned}
$$

From 1 and 2.

$$
\sin ^{2} \boldsymbol{\theta}+\cos ^{2} \boldsymbol{\theta}=\mathbf{1}
$$

Proof of $1+\tan ^{2} \theta=\sec ^{2} \theta$

We know that

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Dividing both the sides by $\operatorname{Cos}^{2} \theta$

$$
\frac{\sin ^{2} \theta}{\cos ^{2} \theta}+\frac{\cos ^{2} \theta}{\cos ^{2} \theta}=\frac{1}{\cos ^{2} \theta}
$$

$\tan ^{2} \theta+1=\sec ^{2} \theta$

$P_{\text {roof of }} 1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

We know that

$$
\sin ^{2} \theta+\cos ^{2} \theta=1
$$

Dividing both the sides by $\sin ^{2} \theta$

$$
\frac{\sin ^{2} \theta}{\sin ^{2} \theta}+\frac{\cos ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}
$$

$1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$

Thice Basic Thigonomethic Identities

1	2	
$\sin ^{2} \theta+\cos ^{2} \theta=1$ $\sin ^{2} \theta=1-\cos ^{2} \theta$ $\cos ^{2} \theta=1-\sin ^{2} \theta$	$\sec ^{2} \theta-\tan ^{2} \theta=1$ $1+\tan ^{2} \theta=\sec ^{2} \theta$ $\sec ^{2} \theta-1=\tan ^{2} \theta$	$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$ $1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$ $\operatorname{cosec}^{2} \theta-1=\cot ^{2} \theta$

MATHEMATICS

BBYJU'S

CHAPTER NOTES

Some Applications of Trigonometry

1. Basic Terminologies
2. Assumptions made while solving
3. Trigonometric Ratios of Some Common Angles
4. Method of Solving Questions

1. Basic Terminologies

Line of Sight

The line drawn from the eyes of an observer to a point on the object viewed.

If the object to be viewed is straight ahead, then the line of sight is the same as the horizontal level.

Angle of Elevation

The angle formed by the line of sight with the horizontal when the point being
 viewed is above the horizontal level.

Angle of Elevation of 0

Angle of Depression
 Look Below

The angle formed by the line of sight with the horizontal when the point being viewed is below the horizontal level.

2. Assumptions Made While Solving

The angle of elevation of the top of the
Qutub Minar, 73 m away from is base is 45°.

Steps to Draw the figure:

Step 1
Represent the 3D object by a vertical line.

Step 2
Represent the observer as a point object.

Step 3
Label the angle, height, and distance.

3. Thigonometric Ratios of Some Common Angles

4. Method of Solving Questions

An observer 1.5 m tall is 28.5 m away from A
a chimney. The angle of elevation of the top of the chimney from her eyes is 45°. What is the height of the chimney?

Steps to Draw the figure:

C B

Step 1
Draw the figure correctly.
Step 2
Identify the unknown length.
$\mathrm{AB}=$?

Step 3
Use the relevant trigonometric ratios to find these lengths.

$$
\begin{aligned}
\tan 45^{\circ} & =\frac{\mathrm{AE}}{\mathrm{DE}} \\
1 & =\frac{\mathrm{AE}}{28.5}
\end{aligned}
$$

$$
\mathrm{AE}=28.5 \mathrm{~m}
$$

MATHEMATICQ

BBYJU'S

CHAPTER NOTES

Cincles

1. Lines related to a Circle
2. Tangents and Secants
3. Number of Tangents
4. Theorems related to a Tangent
5. Important Conollaries

Circles

Lines related to Circle
\qquad
Line outside the circle

No. of Tangents

For any point on the circumference of a circle,
No. oftangents $=1$

No. of tangents from an external pointto circle $=2$

Theorems related to Tangert

Theorem 1

Tangents and Radius

Theorem 2
Tangents from external point

1: Tangents and Radius

$$
\begin{aligned}
& \text { Theonem :- The tangent } \\
& \text { at any point of the circle } \\
& \text { is perpendiculan to the } \\
& \text { radius through the } \\
& \text { point of contact. } \\
& \text { Hence, } P Q \perp O A
\end{aligned}
$$

2: Tangents from external point

Important Corollaries

For C_{1} and C_{2} being concentric circles,

* $O P$ is perpendicular bisector of $A B$
* $A P=P B$

$P A$ and $P B$ are 2 tangents drawn from an external point P to a circle with centre at 0 ,

$$
\begin{aligned}
* \angle A P B & =2 \angle B A O \\
* \angle P A B & =\angle P B A=\left(90^{\circ}-\frac{x}{2}\right)
\end{aligned}
$$

* x and y are supplementary ie. $x+y=180^{\circ}$
 external point

MATHEMATICQ

BBYJU'S

CHAPTER NOTES

Aheas Related to Cincle

1. Area of secton
2. Area of segment
3. Area of combined plane figures

Sector
A sector of a circle is the portion of an area enclosed by two radii and an arc.

Major Arc Minor Minor Arc Sector

Major

Area of minor sector
Area of major sector

$$
\frac{\theta}{360^{\circ}} \times \pi r^{2}
$$

$$
\frac{360^{\circ}-\theta}{360^{\circ}} \times \pi r^{2}
$$

Central angle θ must be in degrees. If θ is given in radians, multiply it with $\frac{180^{\circ}}{\pi}$ to convert in degrees.

Length of Ane

Major Arc $\leftarrow, ~$

Minor Ane

$$
\text { Length of minor arc }=\frac{\theta}{360^{\circ}} \times 2 \pi r
$$

Length of major arc $=\frac{360^{\circ}-\theta}{360^{\circ}} \times 2 \pi r$

2. Area of Segment

Segment

A segment of a circle can be defined as a region bounded by a chord and a corresponding arc lying between the chords endpoints.

Segment corresponding to major arc called major segment.

Segment corresponding to minor arc called minor segment.

Anear of Segment

When θ is given in degrees,
Area of a segment $=\left(\frac{1}{2}\right) \times r^{2} \times\left[\left(\frac{\pi}{180^{\circ}}\right) \theta-\sin \theta\right]$
When θ is given in radians,
Area of a segment $=\left(\frac{1}{2}\right) \times r^{2}[\theta-\sin \theta]$

Area of major segment $=$ Area of sector $O A Q B+$ Area of $\triangle O A B$

Area of minor segment= Area of the sector $O A P B$ - Area of $\triangle O A B$

Genchal formula
Areas of shaded region $=$ Area of entire figure - Area of non shaded region

Example

$=$ Area of semicircle - (Area of sector ABEC - Area of $\triangle A B C)$

Find the alien of the track.

(2)5 Methodology

Step 1
Simplify the given figure into known standard shapes.

Step 2

Apply the
= Area of rectangle $A B F E+$ Area of rectangle $H G C D$
formula of area

+ Area of the sidetracks on each shape.

Step 3

To find the area of the required region, add on subtract the areas of the standard figures as pen the requirement.

$=$ Area of rectangle $A B F E+$ Area of rectangle $H G C D$
$+$
(Area of semicircle with diameten $A D$ - Area of semicircle with diameten EH)

$+$

(Area of semicircle with diameter BC - Area of semicircle with diameter FG)

Mind Map

Area of combined plane shapes

Areas Related to Circle

Segments

MATHEMATICS

BBYJU'S

CHAPTER NOTES

Sunface Atreas

and

Volumes

Topics to be Coveried

- 1. Formulae of Solids

2. Combination of Solids

- 3. Surface Area of Combined Solids

4. Volume of Combined Solids
5. Conversion of Solids
6. Fohmulac of Solids

Here are surface areas and volumes of few solids before we look at combined solids.

Cube

1. Formulae of Solids

Sphenic

$4 \pi r^{2} \quad$: Curved surface area

$$
\frac{4}{2} \pi r^{3}
$$

:Volume
Curved surface area: $\quad 2 \pi \boldsymbol{r}^{2}$
Total surface area:
$3 \pi r^{2}$
Volume:

$$
\frac{2}{3} \pi r^{3}
$$

Cone
:Total surface

2. Combination of Solids

Shapes that are formed by combining two or more solids.

3. Surface Athea of Combination of Solids

It is the sum of the surface areas of individual solid"s visible portion, in the given combined solid.

3. Suriface Alicea of Combination of Solids

4. Volume of

Combination of Solids

It is the sum of the volumes of solids that are being combined, and subtraction of the volumes of the solids that are being removed.

Volume

Volume of cuboid \&

Volume of hemisphere

$$
\mathrm{lbh}+\frac{2}{{ }_{92}} \pi r^{3}
$$

4. Volume of

Combination of Solids

Volume
Volume of the shape

$$
\left\{\begin{array}{c}
\varepsilon \\
\text { Volume of Cylinder } \\
+ \text { Volume of hemisphere } \\
\text { - Volume of cone }
\end{array}\right\}
$$

Mind Map

MATHEMATIC Q

BBYJU'S

CHAPTER NOTES

Statistics

Mean of Grouped Data

Mean

Mean is a measure of central tendency which gives the average of a data.

Direct Method

$$
\bar{x}=\frac{\Sigma f_{i} x_{i}}{\Sigma f_{i}} \quad \text { Class mark }\left(x_{i}\right)=\frac{\text { Upper Class Limit }+ \text { Lower Class Limit }}{2}
$$

Assumed Mean Method

An arbitrary mean ' a ' is chosen which is called 'assumed mean', somewhere in the middle of all the values of x.

$$
\bar{x}=a+\frac{\Sigma f_{i} d_{i}}{\Sigma f_{i}} \quad \text { Where } d_{i}=\left(x_{i}-\mathrm{a}\right)
$$

Step Deviation Method
$\bar{x}=a+\left(\frac{\Sigma f_{i} u_{i}}{\Sigma f_{i}}\right) \times h$
Where $u_{i}=\frac{d_{i}}{h}$ and h is class size of class interval

Cumulative Frequency

Cumulative frequency is the sum of all the frequencies up to the current point.
Less-than type cumulative frequency table

Marks	Number of students
$0-10$	5
$10-20$	3
$20-30$	4
$30-40$	3

Marks	Cumulative frequency
Less than 10	5
Less than 20	$5+3=8$
Less than 30	$8+4=12$
Less than 40	$12+3=15$

Move-than type cumulaitive frequency table

Marks	Number of students
$0-10$	5
$10-20$	3
$20-30$	4
$30-40$	3

Marks	Cumulative frequency
More than or equal to 0	5
More than or equal to 10	$15-5=10$
More than or equal to 20	$10-3=7$
More than or equal to 30	$7-4=3$

Graphical Representation of Cumulative frequency Distribution

Less than Ogive

To draw the graph of less than ogive, take the upper limits of the class interval and mark the respective less than frequency. Then, join the dots by a smooth curve.

More than Ogive

To draw the graph of more than ogive, take the lower limits of the class interval on the x-axis and mark the respective more than frequency. Then, join the dots by a smooth curve.

Let's say class interval $70-80$, the frequencies included in this interval are from $70 \leq f<80$.
which means the frequencies corresponding to 80 do not belong to this class interval.

Median of Ghouped Data

Algebraic Mathod

Median $=l+\left(\frac{\frac{n}{2}-c f}{f}\right) \times h$
1 = Lower limit of median class
$n=$ Number of observations
$f=$ Frequency of median class
of = Cumulative frequency of preceding class
$h=$ Class size

Graphical Method

Median can be obtained by either the less than type or more than type ogive. The given methodology is applicable for both, i.e. less than or more than ogive.

1. Find the middle point of total number of cumulative frequency of the given dataset and mark it as N on the y-axis.
2. From N, draw a line parallel to X axis to intersect the ogive at point A.
3. Drop a perpendicular from A on
 X axis. This value will represent the median.

Mode of Gnouped Data

$l=$ lower class limit of the modal class
$h=$ class interval size
$f_{1}=$ frequency of the modal class
$f_{0}=$ frequency of the preceding class
$f_{2}=$ frequency of the succeeding class

Empinical Formula

Mind Map

Empirical Formula
3 Median $=$ Mode +2 Mean

MATHEMATICQ

BBYJU'S

CHAPTER NOTES

PROBABILTY

1. Basic Terminology
2. Types of Probability

- 2.1 Theoretical Probability

3. Types of Events
4. Important Formulae
5. Basic Terminology

Random Experiment

- Has more than one possible outcomes.
- It is impossible to predict any outcome in advance.
- Examples:

Tossing a coin

Rolling a dice

Drawing a card from a well-shuffled deck

Outcome

- A possible result of an experiment on a trial.
- Examples:

Six outcomes for rolling a dice: 1, 2, 3, 4, 5, 6
Event

* A set of one or more outcomes for a random experiment.
- Example:
- Getting a tail when a coin is tossed.
- Getting an odd number when a dice is rolled.

2. Types of Probability

Types of Probability

2.1 Theoretical P Probability

$$
P(E)=\frac{\text { Number of favourable outcomes }}{\text { Total number of possible outcomes }}
$$

When a coin is tossed:

- The probability of getting a head is $\frac{1}{2}$

The probability of getting a tail is $\frac{1}{2}$

3. Types of Events

Elementary Event

- Has as only one outcome.
- Sum of all the elementary events for an experiment =1

Equally likely Event

- When all the outcomes of an experiment have the same chance of occurring.
- Example: Tossing a coin

Impossible Event

* $P(E)=0$.
- Example: Getting a 7 when rolling a die

Sure / Certain Event

- $P(E)=1$.
- Example: Christmas being celebrated on the 25 h of December

3. Types of Events

Complementary Events

IF E denotes happening of an event, then \bar{E} denotes NOT happening of that event.
E and $\overline{\boldsymbol{E}}$ are said to be complementary events.

- $\overline{\boldsymbol{E}}$ is the complement of \boldsymbol{E}.

$$
P(\bar{E})=1-P(E)
$$

For an event of getting a number less than four on rolling a dice:

1. Important Fohmulac

Theoretical Probability

$$
P(E)=\frac{\text { Number of favourable outcomes }}{\text { Total number of possible outcomes }}
$$

Probability of an evert

$$
\mathbf{0} \leq P(E) \leq \mathbf{1}
$$

For two complementary events, E and \bar{E},

$$
P(\bar{E})=1-P(E)
$$

Mind Map

