Grade 10 Mathematics Exam Important Questions Topic: Exam Important Questions - 1. In a \triangle ABC, right angled at B, AB=24 cm, BC=7 cm. Determine - (i) sin A, cos A - (ii) sin C, cos C - [3 Marks] In \triangle ABC, Using Pythagoras theorem, we have $$AC^2 = AB^2 + BC^2$$ $$= (24 \ cm)^2 + (7 \ cm)^2$$ $$= 576 \ cm^2 + 49 \ cm^2$$ $$= 625 \ cm^2$$ So, $AC=25\ cm$ (1 mark) Now, (i) $$\sin A = \frac{BC}{AC} = \frac{7}{25}$$ (0.5 mark) $$\cos A = \frac{AB}{AC} = \frac{24}{25} (0.5 \text{ mark})$$ $$(ii) \sin C = \frac{AB}{AC} = \frac{24}{25} (0.5 \text{ mark})$$ $$\cos C = \frac{BC}{AC} = \frac{7}{25}$$ (0.5 mark) 2. If cot $$\theta=\frac{1}{\sqrt{3}}$$ show that $\frac{1-cos^2\theta}{2-sin^2\theta}=\frac{3}{5}$ [2 Marks] $$Cot x = \frac{1}{\sqrt{3}}$$ x = 60 degrees $$cos(x) = cos 60 = \frac{1}{2}$$ $sin x = sin 60 = \frac{\sqrt{3}}{2}$ (1 mark) $$1 - \cos^2 x = 1 - \frac{1}{4} = \frac{3}{4}$$ $$2 - \sin^2 x = 2 - \frac{3}{4} = \frac{5}{4}$$ 1 - $$\cos^2 x = 1 - \frac{1}{4} = \frac{3}{4}$$ 2 - $\sin^2 x = 2 - \frac{3}{4} = \frac{5}{4}$ $\frac{1 - \cos^2 \theta}{2 - \sin^2 \theta} = \frac{3}{5}$ (1 mark) # BYJU'S The Learning App # **Introduction to Trigonometry** 3. From the figure, determine the value of $sin^2\theta$ + $cos^2\theta$ [3 Marks] [Trigonometric Ratios] Solution: Given, AB = 29 units and BC = 21 units By pythagoras theorem, $$AB^2 = AC^2 + BC^2$$ $29^2 = AC^2 + 21^2$ $29^2 = AC^2 + 21^2$ $841 = AC^2 + 441$ $841 - 441 = AC^2$ $400 = AC^2$ $AC=20 \ units$ Now, $$sin\ \theta=\frac{AC}{AB}=\frac{20}{29}$$ $sin^2\theta=(\frac{20}{29})^2.....$ (i) $$cos~ heta= rac{BC}{AB}= rac{21}{29} \ cos^2 heta=(rac{21}{29})^2.....$$ (ii) [1 Mark] [1 Mark] (i) + (ii) $$sin^2\theta + cos^2\theta = \frac{20^2 + 21^2}{29^2} = \frac{400 + 441}{841} = \frac{841}{841} = 1$$ $$\therefore sin^2\theta + cos^2\theta = 1$$ [1 Mark] 4. If $$\sec A = \frac{5}{4}$$, verify that $\frac{3\sin A - 4\sin^3 A}{4\cos^3 A - 3\cos A} = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$ [3 Marks] We have,sec $A= rac{5}{4}$ $$\Rightarrow cosA = rac{4}{5} \left[rac{Base}{Hypotenuse} ight]$$ By pythagoras theorem, $$(Perpendicular)^2 = (Hypotenuse)^2 - (Base)^2$$ $$\Rightarrow$$ Perpendicular = $\sqrt{25-16}$ Then, $$\sin A = \frac{Perpendicular}{Hypotenuse} = \frac{3}{5}$$ $$tan A = \frac{Perpendicular}{Base} = \frac{3}{4}$$ (1 mark) Now, we will prove that $$\frac{3\sin A - 4\sin^3 A}{4\cos^3 A - 3\cos A} = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$ LHS = $$\frac{3 \sin A - 4 \sin^3 A}{4 \cos^3 A - 3 \cos A}$$ $$=\frac{3\times\frac{3}{5}-4(\frac{3}{5})^3}{4(\frac{4}{5})^3-3\times\frac{4}{5}}$$ $$\begin{array}{r} 9 \\ \hline 5 \\ \hline 125 \\ \hline 256 \\ \hline 125 \\ \hline 5 \\ \hline 5 \\ \hline 125 125 \\$$ $$=\frac{\frac{225-108}{125}}{\frac{256-300}{125}}$$ $$=\frac{117}{125} \times \frac{125}{-44}$$ $$= \frac{117}{-44}$$ (1 mark) $$\mathsf{RHS} = \frac{3\tan A - \tan^3 A}{1 - 3\tan^2 A}$$ $$=\frac{3\times\frac{3}{4}-(\frac{3}{4})^3}{1-3(\frac{3}{4})^2}$$ $$=\frac{\frac{9}{4} - \frac{27}{64}}{1 - \frac{27}{13}}$$ $$= \frac{\frac{117}{64}}{\frac{-11}{64}}$$ $$\therefore LHS = RHS$$ (1 mark) 5. Evaluate the following: $$sin60^{\circ}cos30^{\circ} + sin30^{\circ}cos60^{\circ}$$ [2 Marks] [Trigonometric Ratios of Specific Angles] Solution: $$egin{aligned} sin60^{\circ}cos30^{\circ} + sin30^{\circ}cos60^{\circ} \ &= (rac{\sqrt{3}}{2} imes rac{\sqrt{3}}{2}) + (rac{1}{2} imes rac{1}{2}) \end{aligned}$$ [1 mark] $$= \frac{3}{4} + \frac{1}{4} \\ = \frac{4}{4} = 1$$ [1 mark] 6. Without using trigonometric tables, evaluate: $$(i)cos~48^{\circ}-sin~42^{\circ}$$ $$(ii)cosec~31^{\circ}-sec~59^{\circ}$$ $$(iii)cot\ 34^{\circ}-tan\ 56^{\circ}$$ $$(iv)cos^2$$ $13^{\circ}-sin^2$ 77° $$(i)cos~48^{\circ}-sin~42^{\circ}=cos(90^{\circ}-42^{\circ})-sin~42^{\circ}$$ $$=sin~42^{\circ}-sin~42^{\circ}=0$$ $$[\because cos(90^{\circ} - \theta) = sin \theta]$$ (1 mark) $$(ii)cosec\ 31^\circ-sec\ 59^\circ=cosec(90^\circ-59^\circ)-sec\ 59^\circ$$ $$= sec 59^{\circ} - sec 59^{\circ} = 0$$ $$[\because cosec(90^{\circ} - \theta) = sec \theta]$$ (1 mark) $$(iii)cot~34^{\circ}-tan~56^{\circ}=cot(90^{\circ}-56^{\circ})-tan~56^{\circ}$$ $$=tan\ 56^{\circ}-tan\ 56^{\circ}=0$$ $$[\because cot(90^{\circ} - \theta) = tan \theta]$$ (1 mark) $$(iv)cos^2~13^\circ - sin^2~77^\circ = cos^2~(90^\circ - 77^\circ) - sin^2~77^\circ$$ $$= sin^2 \ 77^{\circ} - sin^2 \ 77^{\circ} = 0$$ $$[\because cos(90^{\circ} - \theta) = sin \theta]$$ (1 mark) # BYJU'S The Learning App # **Introduction to Trigonometry** 7. In a \triangle ABC, right-angled at C, if tan A= $\frac{1}{\sqrt{3}}$, then find the value of (sinA)(sinB) + (cosA)(cosB). [3 Marks] [Trigonometric Ratios of Specific Angles] Solution: ## Step 1: - First we need to determine the values of angles A and B and determine the value of their sine and cosine. - We are given that $\tan A = \frac{1}{\sqrt{3}}$ and $\tan \theta$ is $\frac{1}{\sqrt{3}}$ for $\theta = 30^{\circ}$. Therefore, $\angle A = 30^{\circ}$ - Also by angle sum property of a triangle, $$\angle A + \angle B + \angle C = 180^{\circ}$$ [1 Mark] Substituting $\angle A = 30^{\circ}$ and $\angle C = 90^{\circ}$, We get $\angle B = 60^{\circ}$ - Now, therefore, - Sin A = $\sin 30^{\circ} = \frac{1}{2}$ - Sin B = $\sin 60^{\circ} = \frac{\sqrt{3}}{2}$ - Cos A = Cos 30° = $\frac{\sqrt{3}}{2}$ - Cos B = Cos $60^{\circ} = \frac{1}{2}$ [1 Mark] ### Step 2: - For the final step, we need to substitute the corresponding values in the given expression. - The given expression is sinA sinB + cosA cosB. On substituting the respective values, we get $$= \frac{1}{2} \times \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \times \frac{1}{2}$$ $$= \frac{2\sqrt{3}}{4}$$ $$= \frac{\sqrt{3}}{2}$$ [1 Mark] 8. If $tan2A=cot(A-18^{\circ})$, where 2A is an acute angle, find the value of A. [2 marks] $$tan2A = cot(A-18^{\circ})$$ $\Rightarrow cot(90^{\circ}-2A) = cot(A-18^{\circ})$ (As tan A = cot (90° - A)) [1 mark] Equating angles, $$\Rightarrow 90^{\circ} - 2A = A - 18^{\circ}$$ $$\Rightarrow 108^{\circ} = 3A$$ $$\Rightarrow A = 36^{\circ}$$ [1 mark] 9. The length of a string between a kite and a point on the ground is 90 m. If the string makes an angle θ with the ground level such that $\tan \theta = 15/8$, how high will the kite be? [3 Marks] Here AB represents the height of the balloon from the ground. In the right triangle ABC the side which is opposite to angle θ is known as the opposite side (AB), the side which is opposite to 90° is called the hypotenuse side (AC) and the remaining side is called the adjacent side (BC). Now we need to find the length of the side AB. $$\tan \theta = \frac{15}{8}$$ $$\cot \theta = \frac{8}{15}$$ (1 Mark) csec θ = $$\sqrt{1 + cot^2 \theta}$$ csec θ = $$\sqrt{(1 + \frac{64}{225})}$$ $$\csc \theta = \sqrt{\frac{(225+64)}{225}}$$ $$\csc\theta = \sqrt{\frac{289}{225}}$$ $$\csc \theta = \frac{17}{15}$$ $$\sin \theta = \frac{15}{17}$$ $$\sin \theta = \frac{15}{17}$$ (1 Mark) But, $$\sin \theta = \frac{opposite\ side}{hypotenuse\ side} = \frac{AB}{AC}$$ $$\frac{AB}{AC} = \frac{15}{17}$$ $$\frac{AB}{90} = \frac{15}{17}$$ $$AB = 79.41$$ So, the height of the tower is 79.41 m. (1 Mark) 10. A kite is flying at a height of 65 m attached to a string. If the inclination of the string with the ground is 31° , find the length of the string if $\cos 59^{\circ} = 0.5150$. (3 Marks) # BYJU'S The Learning App # **Introduction to Trigonometry** Here AB represents the height of the kite. In the right triangle ABC the side which is opposite to angle 31° is known as the opposite side (AB), the side which is opposite to 90° is called the hypotenuse (AC) and the remaining side is called the adjacent side (BC). Now we need to find the length of the string AC. $sin\theta$ = opposite side/hypotenuse side We know that $\sin \theta = cos(90^{\circ} - \theta)$ Given $\cos 59^{\circ} = 0.5150$ (1 Mark) : Cos 59° = $$cos(90^{\circ} - 31^{\circ})$$ $$\sin 31^{\circ} = \frac{AB}{AC}$$ $$0.5150 = \frac{65}{AC}$$ (1 Mark) $$AC = \frac{65}{0.5150}$$ $$AC = 126.2 \text{ m}$$ Hence, the length of the string is 126.2 m. (1 Mark) 11. Evaluate: $$cosec 31^{\circ} - sec 59^{\circ}$$ [2 marks] $$cosec~31^{\circ}-sec~59^{\circ}$$ $$=cosec~(90^{\circ}-59^{\circ})-sec~59^{\circ}$$ $$=sec 59^{\circ}-sec 59^{\circ}=0$$ (As cosec ($$90^{\circ}$$ - A) = sec A) [2 marks] - 12. If $2 \sin^2 \theta \cos^2 \theta = 2$, then find the value of θ . - [2 marks] Given, $$2 \sin^2 \theta - \cos^2 \theta = 2$$ $$\Rightarrow 2 \ sin^2 \ heta - (1 - sin^2 \ heta) = 2$$ $$[\because sin^2 \ heta + cos^2 \ heta = 1]$$ $$\Rightarrow 2 \ sin^2 \ heta + sin^2 \ heta - 1 = 2$$ [1 mark] $$\Rightarrow 3 \ sin^2 \ heta = 3$$ $$\Rightarrow sin^2 \ heta = 1$$ $$[\because sin \ 90^\circ = 1]$$ $$\Rightarrow sin \; heta = 1 = sin \; 90^{\circ}$$ $$\Rightarrow heta = 90^\circ$$ [1 mark]