B BYJU'S

Grade 10 Mathematics
 Exam Important Questions

Circles

Topic : Exam Important Questions

1. In the given figure, AT is a tangent to the circle with centre O such that $\mathrm{OT}=4$ cm and $\angle O T A=30^{\circ}$. Then , AT is equal to ? [2 Marks]

Join OA.
We know that, the tangent at any point of a circle is perpendicular to the radius trough the point of contact.

$\therefore \angle O A T=90^{\circ} \quad[1 \mathrm{Mark}]$
In $\triangle O A T, \operatorname{Cos} 30^{\circ}=\frac{A T}{O T}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{A T}{4}$
$\Rightarrow A T=2 \sqrt{3} \mathrm{~cm}$
[1 Mark]

Circles

2. At one end A of a diameter $A B$ of a circle of radius 5 cm , tangent $X A Y$ is drawn to the circle. Find the length of the chord CD which is parallel to $X Y$ and at a distance of 8 cm from A. [3 marks]

First draw a circle of radius 5 cm having centre O. A tangent $X Y$ is drawn at point A

A Chord CD is drawn which is parallel to XY and at a distance of 8 cm from A.

Now, $\angle O A Y=90^{\circ}$
[Tangent at any point of a circle is perpendicular to the radius through the point of contact]
$\angle O A Y+\angle O E D=180^{\circ}\left[\right.$ sum of cointerior angle is $\left.180^{\circ}\right]$
$\Rightarrow \angle O E D=90^{\circ}$
-- (1 Mark)
Also, $A E=8 \mathrm{~cm}$.
Join OC
Now, in right angled $\triangle O E C$.,
$O C^{2}=O E^{2}+E C^{2}[$ by Pythagoras theorem $]$
$\Rightarrow E C^{2}=O C^{2}-O E^{2}$
$=5^{2}-3^{2}$
$[\because O C=$ radius $=5 \mathrm{~cm}, O E=A E-A O=8-5=3 \mathrm{~cm}]$
$=25-9=16$
$\Rightarrow E C=4 \mathrm{~cm}$
Hence, length of chord CD $=2 C E=2 \times 4=8 \mathrm{~cm}$
[Since perpendicular from centre to the chord bisects the chord]
-- (1 Mark)

Circles

3. If tangents PA and PB from a point P to a circle with centre O are inclined to each other at an angle of 80°, then find the value of $\angle P O A$. [3 marks]

Circles

OA and OB are radii of the circle to the tangents PA and PB respectively. The line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
$\therefore O A \perp P A$ and $O B \perp P B$

$$
\angle O B P=\angle O A P=90^{\circ}
$$

In quadrilateral AOBP,
Sum of all interior angles $=360^{\circ}$
$\angle A O B+\angle O B P+\angle O A P+\angle A P B=360^{\circ}$

Now,
In Δ OPB and Δ OPA,
$\mathrm{AP}=\mathrm{BP}$ (Tangents from a point are equal)
$\mathrm{OA}=\mathrm{OB}$ (Radii of the circle)
$\mathrm{OP}=\mathrm{OP}$ (Common side)
$\therefore O P B \cong \triangle O P A$ (by SSS congruence condition)
-- (1 Mark)
Thus, $\angle P O B=\angle P O A$

$$
\angle A O B=\angle P O B+\angle P O A
$$

$\Rightarrow 2 \angle P O A=\angle A O B$
$\Rightarrow \angle P O A=100^{\circ} / 2=50^{\circ}$
$\angle P O A=100^{\circ} / 2=50^{\circ}$
-- (1 Mark)

Circles

4. Prove that the perpendicular at the point of contact to the tangent to a circle passes through the centre.

[3 Marks]

Let $A B$ be the tangent to the circle at point P
with centre O.
We have to prove that PQ passes through the point O .
Suppose that PQ doesn't pass through point O. Join OP.
Through O, draw a straight line $C D$ parallel to the tangent $A B$.
$P Q$ intersect $C D$ at R and also intersect $A B$ at P.
As, $C D \| A B, P Q$ is the line of intersection,
$\angle \mathrm{ORP}=\angle \mathrm{RPA}$ (Alternate interior angles)
[1 Mark]
but also,
$\angle R P A=90^{\circ}(P Q \perp A B)$
$\Rightarrow \angle O R P=90^{\circ}$
$\angle R O P+\angle O P A=180^{\circ}$ (Co-interior angles)
$\Rightarrow \angle R O P+90^{\circ}=180^{\circ}$
$\Rightarrow \angle R O P=90^{\circ}$

$$
[1 \text { Mark }]
$$

Thus, the Δ ORP has 2 right angles i.e., $\angle \mathrm{ORP}$ and $\angle \mathrm{ROP}$ which is not possible.
Hence, our supposition is wrong.
$\therefore \mathrm{PQ}$ passes through the point O .
[1 Mark]

Circles

5. In the given figure, if TP and TQ are the two tangents to a circle with centre O so that $\angle \mathrm{POQ}=110^{\circ}, \angle \mathrm{PTQ}$ is equal to

[3 Marks]

OP and $O Q$ are radii of the circle to the tangents TP and TQ respectively. Since, the line drawn from the centre of the circle to the tangent is perpendicular to the tangent.
[1 Mark]
$\therefore \mathrm{OP} \perp \mathrm{TP}$ and $\mathrm{OQ} \perp \mathrm{TQ}$.
$\angle O P T=\angle O Q T=90^{\circ}$
In quadrilateral POQT,
Sum of all interior angles $=360^{\circ}$
$\angle P T Q+\angle O P T+\angle P O Q+\angle O Q T=360^{\circ}$
[1 Mark]
$\Rightarrow \angle P T Q+90^{\circ}+110^{\circ}+90^{\circ}=360^{\circ}$
$\Rightarrow \angle P T Q=70^{\circ}$
$\angle P T Q$ is equal to 70°
[1 Mark]

Circles

6. In the given figure, QR is a common tangent to the given circles, touching externally at the point T. The tangent at T meets $Q R$ at P. If $P T=3.8 \mathrm{~cm}$ then the length of $Q R$ is

[2 Marks]

Lengths of the tangents drawn from an external point to a circle are equal.
$\therefore \mathrm{QP}=\mathrm{PT}=3.8 \mathrm{~cm}$
(0.5 marks)
$\mathrm{PR}=\mathrm{PT}=3.8 \mathrm{~cm}$
(ii) (0.5 marks)

From equations (i) and (ii):
$\mathrm{QP}=\mathrm{PR}=3.8 \mathrm{~cm}$
But, QR = QP + PR
$\therefore \mathrm{QR}=3.8+3.8$
$\mathrm{QR}=7.6 \mathrm{~cm} \quad$ (1 mark)

Circles

7.

In the given figure, O is the center of each one of two concentric circles of radii 4 cm and 6 cm respectively. PA and PB are tangents to outer and inner circle respectively. If $\mathrm{PA}=10 \mathrm{~cm}$, find the length of PB (up to two places of decimal). [2 marks]

Join AO, BO, PO

Given that $\mathrm{AO}=6 \mathrm{~cm}, \mathrm{PA}=10 \mathrm{~cm}, \mathrm{OB}=4 \mathrm{~cm}$
Applying Pythagoras theorem to $\triangle \mathrm{OAP}$
$P O^{2}=A O^{2}+P A^{2}$
$P O^{2}=36+100$
$P O^{2}=136$ (1 mark)
Applying Pythagoras theorem to $\triangle \mathrm{OBP}$

$$
P B^{2}=P O^{2}-B O^{2}
$$

$P B^{2}=136-4^{2}$
$P B^{2}=120$
$\mathrm{PB}=10.95$ (1 mark)

Circles

8. Write 'True' or 'False' and justify your answer in each of the following :
(i) The length of tangents from an external point P on a circle is always greater than the radius of the circle.
(ii) The length of tangents from an external point P on a circle with centre O is always less than OP.
(2 marks)
(i) False

Because the length of tangents from an external point P on a circle may or may not be greater than the radius of the circle.
(1 mark)
(ii) True

PT is a tangents drawn from external point P. Join OT
$\therefore O T \perp P T$
So, OPT is a right angled triangle formed
In right angled triangle, hypotenuse is always greater than any of the two sides of the triangle.
$\therefore \mathrm{OP}>\mathrm{PT}$
Or PT < OP

Circles

9. In the given figure, PA and PB are tangents from an external point P to a circle with centre O . LN touches the circle at M . Prove that $\mathrm{PL}+\mathrm{ML}=\mathrm{PN}+\mathrm{MN}$. [2 Marks]

$\mathrm{PA}=\mathrm{PB}$
[the tangents drawn from an external point to a circle are equal ----(1) (1 mark)
$P L+A L=P N+B N$
$A L=M L \& B N=M N \quad[$ same as (1)] (0.5 mark)
From above steps,
Thus, $\mathrm{PL}+\mathrm{ML}=\mathrm{PN}+\mathrm{MN} \quad$ (0.5 mark)
Hence, proved.

Circles

10. From a point P , two tangents PA and PB are drawn to a circle with centre O . If $\mathrm{OP}=$ diameter of the circle, show that $\triangle A P B$ is equilateral. [3 Marks]
$\angle \mathrm{OAP}=90^{\circ} \quad$ (PA and PB are the tangents to the circle.)

In \triangle OPA,
$\sin \angle \mathrm{OPA}=\frac{O A}{O P}=\frac{r}{2 r}$ [OP is the diameter $=2^{\star}$ radius]
$\sin \angle \mathrm{OPA}=\frac{1}{2}=\sin 30^{\circ}$
$\Rightarrow \angle \mathrm{OPA}=30^{\circ}$
[1 Mark]
Similarly, $\angle \mathrm{OPB}=30^{\circ}$.
$\angle \mathrm{APB}=\angle \mathrm{OPA}+\angle \mathrm{OPB}=30^{\circ}+30^{\circ}=60^{\circ}$
[0.5 Marks]

In $\triangle \mathrm{PAB}$,
$\mathrm{PA}=\mathrm{PB} \quad$ (tangents from an external point to the circle)
$\Rightarrow \angle P A B=\angle P B A$ \qquad (1) (angles opp. to equal sides are equal)
[0.5 Marks]
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PBA}+\angle \mathrm{APB}=180^{\circ} \quad$ [Angle sum property]
$\Rightarrow \angle \mathrm{PAB}+\angle \mathrm{PAB}=180^{\circ}-60^{\circ}=120^{\circ} \quad$ [Using (1)]
$\Rightarrow 2 \angle \mathrm{PAB}=120^{\circ}$
$\Rightarrow \angle \mathrm{PAB}=60^{\circ}$
[0.5 Marks]

From (1) and (2)
$\angle \mathrm{PAB}=\angle \mathrm{PBA}=\angle \mathrm{APB}=60^{\circ}$ (all angles are equal in an equilateral triangle)
[0.5 Marks]
$\triangle \mathrm{PAB}$ is an equilateral triangle.

