B BYJU'S

Grade 10 Mathematics
 Exam Important Questions

Areas Related to Circles

Topic : Exam Important Questions

1. To warn ships for underwater rocks, a lighthouse spreads a red coloured light over a sector of angle 80° to a distance of 16.5 km . Find the area of the sea over which the ships are warned.
(Use $\pi=3.14$)
[2 Marks]
Distance over which light spread i.e. radius, $r=16.5 \mathrm{~km}$
Angle made by the sector $=80^{\circ}$
Area of the sector making angle θ
$=\left(\frac{\theta}{360^{\circ}}\right) \times \pi r^{2}$
[0.5 Marks]
Area of the sea over which the ships are warned
$=$ Area of the sector
$=\left(\frac{80^{\circ}}{360^{\circ}}\right) \times \pi r^{2} \mathrm{~km}^{2}$
[0.5 Marks]
$=\frac{2}{9} \times 3.14 \times(16.5)^{2} \mathrm{~km}^{2}$
$=189.97 \mathrm{~km}^{2}$
[1 Mark]
[Area of sector of a circle]

Areas Related to Circles

2. Find the area of the minor segment of a circle of radius 14 cm , when the angle of the corresponding sector is 60°.
[3 marks]

Areas Related to Circles

Given that , radius of circle $(r)=14 \mathrm{~cm}$
Angle of the corresponding sector. i.e central angle $(\theta)=60^{\circ}$
\because In \triangle AOB
$O A=O B=$ Radius of circle
$\therefore \Delta \mathrm{AOB}$ is isosceles.
$\Rightarrow \angle O A B=\angle O B A=\theta \quad$ (0.5 marks)
Now, in \triangle OAB
$\angle A O B+\angle O A B+\angle O B A=180^{\circ}$
[Since, sum of interior angles of any triangle is 180°]
$\Rightarrow 60^{\circ}+\theta+\theta=180^{\circ} \quad$ [given, $\left.\angle A O B=60^{\circ}\right]$
$\Rightarrow 2 \theta=120^{\circ}$
$\Rightarrow \theta=60^{\circ}$
i.e $\angle A O B=\angle O B A=60^{\circ}=\angle A O B$

Since, all angles of $\triangle A O B$ are equal to 60°. So, $\triangle A O B$ is an equilateral triangle.

Also, area of $\triangle A O B$
$=\frac{\sqrt{3}}{4} \times(14)^{2}$
$\left[\because\right.$ Area of an equilateral triangle $\left.=\frac{\sqrt{3}}{4}(\text { side })^{2}\right]$
$=\frac{\sqrt{3}}{4} \times 196$
$=49 \sqrt{3} \mathrm{~cm}^{2}$
Area of sector OBAO
$=\frac{\pi r^{2}}{360^{\circ}} \times \theta$
$=\frac{22}{7} \times \frac{14 \times 14}{360} \times 60^{\circ}$
$=\frac{22 \times 2 \times 14}{6}$
$=\frac{22 \times 14}{3}$
$=\frac{308}{3} \mathrm{~cm}^{2}$
\therefore The area of the minor segment
= Area of sector OBAO - Area of the equilateral triangle
$=\left(\frac{308}{3}-49 \sqrt{3}\right) \mathrm{cm}^{2}$
(0.5 marks)
[Area of segment of a circle]

Areas Related to Circles

3. Sides of a triangular field are $15 \mathrm{~m}, 16 \mathrm{~m}$ and 17 m . With the three corners of the field a cow, a buffalo and a horse are tied separately with ropes of length 7 m each to graze in the field.
Find the area of the field which cannot be grazed by the three animals.
[5 Marks]

Solution:

Given that, a triangular field with the three corners of the filed a cow, a buffalo an a horse are tied separately with ropes. So, each animal grazed the filed in each corner of triangular field as a sectorial form.

Radius of each sector $=(r)=7 \mathrm{~m}$

[1 mark]
Now, area of sector with $\angle C$
$=\frac{\angle C}{360^{\circ}} \times \pi r^{2}=\frac{\angle C}{360^{\circ}} \times \pi \times(7)^{2} \mathrm{~m}^{2}$
Area of the sector with $\angle B$
$=\frac{\angle B}{360^{\circ}} \times \pi r^{2}=\frac{\angle B}{360^{\circ}} \times \pi \times(7)^{2} m^{2}$
And area of the sector with $\angle H$
$=\frac{\angle H}{360^{\circ}} \times \pi r^{2}=\frac{\angle H}{360^{\circ}} \times \pi \times(7)^{2} \mathrm{~m}^{2}$
[1 Mark]
Therefore, sum of the areas (in cm^{2}) of the three sectors.
$\angle C=\frac{\angle C}{360^{\circ}} \times \pi \times(7)^{2}+\frac{\angle B}{360^{\circ}} \times \pi \times(7)^{2}+\frac{\angle H}{360^{\circ}} \times \pi \times(7)^{2}$
$=\frac{\angle C+\angle B+\angle H}{360^{\circ}} \times \pi \times 49$
$=\frac{180^{\circ}}{360^{\circ}} \times \frac{22}{7} \times 49=11 \times 7=77 \mathrm{~cm}^{2}$
[1 Mark]
Given that, sides of triangle are $a=15, b=16$ and $c=17$
Now, semi-perimeter of triangle $S=\frac{a+b+c}{2}$
$\Rightarrow=\frac{15+16+17}{2}=\frac{48}{2}=24$

Areas Related to Circles

\therefore Area of trianglularf ield $=\sqrt{s(s-a)(s-b)(s-c)} \quad[$ by Heron's formula]
$=\sqrt{24 \times 9 \times 8 \times 7}$
$=\sqrt{64 \times 9 \times 21}$
$=8 \times 3 \sqrt{21}=24 \sqrt{21} \mathrm{~m}^{2}$
[1 Mark]
So, area of the field which cannot be grazed by the three animals.
=Area of triangular field - Area of each sectorial field
$=24 \sqrt{21}-77 m^{2}$
Hence, the required area of the filed which can not be grazed by the three animals is $(24 \sqrt{21}-77) m^{2}$.
[1 Mark]

Areas Related to Circles

4.

The area of an equilateral triangle $A B C$ is $17320.5 \mathrm{~cm}^{2}$. With each vertex of the triangle as centre, a circle is drawn with radius equal to half the length of the side of the triangle (see Fig. 12.28). Find the area of the shaded region.
(Use $\pi=3.14$ and $\sqrt{3}=1.73205$)

Fig. 12.28
(5 Marks)

ABC is an equilateral triangle.
$\therefore \angle A=\angle B=\angle C=60^{\circ}$
There are three sectors each making 60°.
Area of equilateral Δ
$=\frac{\sqrt{3}}{4} \times(\text { side })^{2}$
Area of $\triangle A B C=17320.5 \mathrm{~cm}^{2}$
$\Rightarrow \frac{\sqrt{3}}{4} \times(\text { side })^{2}=17320.5 \quad$ [2 Mark]
$\Rightarrow(\text { side })^{2}=17320.5 \times \frac{4}{1.73205}$
$\Rightarrow(\text { side })^{2}=4 \times 10^{4}$
\Rightarrow side $=200 \mathrm{~cm}$
Radius of the circles
$=\frac{200}{2} \mathrm{~cm}=100 \mathrm{~cm}$
Area of the sector making angle θ
$=\left(\frac{\theta}{360^{\circ}}\right) \times \pi r^{2}$
Area of the sector
$=\left(\frac{60^{\circ}}{360^{\circ}}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=\frac{1}{6} \times 3.14 \times(100)^{2} \mathrm{~cm}^{2}$
$=\frac{15700}{3} \mathrm{~cm}^{2}$ [1 Mark]
Area of 3 sectors
$=3 \times \frac{15700}{3}=15700 \mathrm{~cm}^{2}$ [1 Mark]
Area of the shaded region = Area of equilateral triangle ABC - Area of 3 sectors $=17320.5 \mathrm{~cm}^{2}-15700 \mathrm{~cm}^{2}=1620.5 \mathrm{~cm}^{2}$ [1 Mark]

Areas Related to Circles

5.

A calf is tied with a rope of length 6 m at the corner of a square grassy lawn of side 20 m . If the length of the rope is increased by 5.5 m , find the increase in area of the grassy lawn in which the calf can graze.
(3 Marks)

Areas Related to Circles

Given: A calf is tied with a rope of length 6 m at the corner of a square grassy lawn of side 20 m .

So, radius of quadrant DPQD $(r)=$ length of rope $=6 \mathrm{~m}$
Therefore,

Area of sector $D P Q D=\frac{\pi r^{2} \theta}{360^{0}}$
$=\frac{3.14 \times(6)^{2} \times 90^{0}}{360^{0}}$
$=0.785 \times 36=28.26 \mathrm{~m}^{2}$
(1 Mark)
Now, if the length of the rope is increased by 5.5 m
So, total length of the rope $(R)=6+5.5=11.5 \mathrm{~m}$

Area of sector $D R S D=\frac{\pi R^{2} \theta}{360^{0}}$
$=\frac{3.14 \times(11.5)^{2} \times 90^{0}}{360^{0}}$
$=0.785 \times 132.25=103.81625 \mathrm{~m}^{2}$
(1 Mark)
Therefore,
Increased area $=$ Area of sector DRSD - Area of sector DPQD
$=103.81625-28.26$
$=75.55625 \mathrm{~m}^{2}$

Areas Related to Circles

$=75.56 \mathrm{~m}^{2}$
Hence, the increase in area of the grassy lawn is $75.56 \mathrm{~m}^{2}$.
(1 Mark)
6. A sector is cut from a circle of radius 21 cm . The angle of the sector is 150°. Find the length of the arc and the area of the sector.
[2 Marks]
Solution:

Length of the arc:
$=2 \pi r \times \frac{\theta}{360^{\circ}}$
$=2 \times \frac{22}{7} \times 21 \times \frac{150^{\circ}}{360^{\circ}}$
$=55 \mathrm{~cm}$
[1 Mark]
Area of the sector:
$=\pi r^{2} \times \frac{\theta}{360^{\circ}}$
$=\frac{22}{7} \times 21 \times 21 \times \frac{150^{\circ}}{360^{\circ}}$
$=577.5 \mathrm{~cm}^{2}$
[1 Mark]

Areas Related to Circles

7. In the figure given, the radius of the circle is 15 cm . The angle subtended by the chord AB at the centre O is 60°. Find the area of the major and minor segments. [3 marks]

Areas Related to Circles

Radius of the circle $=15 \mathrm{~cm}$
$\triangle A O B$ is an isosceles triangle as two sides are equal.
$\therefore \angle A=\angle B$
Now, sum of all angles of triangle $=180^{\circ}$
$\Rightarrow \angle A+\angle B+\angle O=180^{\circ}$
$\Rightarrow 2 \angle A=180^{\circ}-60^{\circ}$
$\Rightarrow \angle A=\frac{120^{\circ}}{2}$
$\Rightarrow \angle A=60^{\circ}$
(0.5 marks)

Hence, the triangle is equilateral as $\angle A=\angle B=\angle C=60^{\circ}$
$\therefore O A=O B=A B=15 \mathrm{~cm}$
Area of equilateral $\triangle A O B=\frac{\sqrt{3}}{4} \times(O A)^{2}$
$=\frac{\sqrt{3}}{4} \times 15^{2}$
$=\left(225 \frac{\sqrt{3}}{4}\right) \mathrm{cm}^{2}=97.3 \mathrm{~cm}^{2}$
(0.5 marks)

Angle subtended at the centre by minor segment $=60^{\circ}$
Area of the sector making angle $\theta=\left(\frac{\theta}{360^{\circ}}\right) \times \pi r^{2}$
Area of minor sector making angle $60^{\circ}=\left(\frac{60^{\circ}}{360^{\circ}}\right) \times \pi r^{2} \mathrm{~cm}^{2}=$
$\left(\frac{1}{6}\right) \times 15^{2} \pi \mathrm{~cm}^{2}=\frac{225}{6} \pi \mathrm{~cm}^{2}=\left(\frac{225}{6}\right) \times 3.14 \mathrm{~cm}^{2}=117.75 \mathrm{~cm}^{2} \quad$ (0.5 marks)
Area of the minor segment= Area of minor sector - Area of equilateral $\triangle A O B$ $=117.75 \mathrm{~cm}^{2}-97.3 \mathrm{~cm}^{2}=20.4 \mathrm{~cm}^{2} \quad$ (0.5 marks)

Angle made by major sector $=360^{\circ}-60^{\circ}=300^{\circ}$
Area of the sector making angle 300°
$=\left(\frac{300^{\circ}}{360^{\circ}}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=\left(\frac{5}{6}\right) \times 15^{2} \pi \mathrm{~cm}^{2}=\frac{1125}{6} \pi \mathrm{~cm}^{2}$
$=\left(\frac{1125}{6}\right) \times 3.14 \mathrm{~cm}^{2}=588.75 \mathrm{~cm}^{2} \quad$ (0.5 marks)
Area of major segment
$=$ Area of major sector + Area of equilateral $\triangle A O B$
$=588.75 \mathrm{~cm}^{2}+97.3 \mathrm{~cm}^{2}=686.05 \mathrm{~cm}^{2}$
(0.5 marks)
[Area of segment of a circle]
8. A chord of a circle of radius 12 cm subtends an angle of 120° at the center. Find the area of the corresponding segment of the circle. (Use
$\pi=3.14$ and $\sqrt{3}=1.73$)

Radius of the circle, $r=12 \mathrm{~cm}$
Draw a perpendicular $O D$ to chord $A B$. It will bisect $A B$.
$\angle A=180^{\circ}-\left(90^{\circ}+60^{\circ}\right)=30^{\circ}$
$\cos \theta^{\circ}=\frac{\text { Base }}{\text { Hypotenuse }}$
$\cos 30^{\circ}=\frac{A D}{O A}$
$\Rightarrow \frac{\sqrt{3}}{2}=\frac{A D}{12}$
$\Rightarrow A D=6 \sqrt{3} \mathrm{~cm}$
(0.5 marks)
$\Rightarrow A B=2 \times A D=12 \sqrt{3} \mathrm{~cm}$
$\sin 30^{\circ}=\frac{O D}{O A}$
$\Rightarrow \frac{1}{2}=\frac{O D}{12}$
$\Rightarrow O D=6 \mathrm{~cm}$
(0.5 marks)

Area of $\triangle A O B=\frac{1}{2} \times$ base \times height
$=\frac{1}{2} \times 12 \sqrt{3} \times 6=36 \sqrt{3} \mathrm{~cm}$
$=36 \times 1.73=62.28 \mathrm{~cm}^{2} \quad$ (0.5 marks)

Angle made by Minor sector $=120^{\circ}$
Area of the sector making angle θ
$=\left(\frac{\theta}{360^{\circ}}\right) \times \pi r^{2}$
Area of the sector making angle 120°
$=\left(\frac{120^{\circ}}{360^{\circ}}\right) \times \pi r^{2} \mathrm{~cm}^{2}$
$=\left(\frac{1}{3}\right) \times 12^{2} \pi \mathrm{~cm}^{2}=\frac{144}{3} \pi \mathrm{~cm}^{2}$
$=48 \times 3.14 \mathrm{~cm}^{2}=150.72 \mathrm{~cm}^{2}$
(0.5 marks)
\therefore Area of the corresponding Minor segment = Area of the Minor sector - Area of
$\triangle A O B$
$=150.72 \mathrm{~cm}^{2}-62.28 \mathrm{~cm}^{2}$
$=88.44 \mathrm{~cm}^{2}$
$109^{\text {(0.5 marks) }}$
9.

In the given figure, O is the centre of the circle with $A C=24 \mathrm{~cm}, A B=7 \mathrm{~cm}$ and $\triangle \mathrm{BOD}=90^{\circ}$. Find the area of shaded region. [Use $\pi=3.14$]

(3 Marks)
In right triangle $A B C$
$B C^{2}=A B^{2}+A C^{2}$
$=7^{2}+24^{2}$
$=49+576$
$=625$
$\therefore B C^{2}=625$
$\Rightarrow B C=25$
(1 mark)
Now, $\angle C O D+\angle B O D=180^{\circ}$ (Linear pair angles)
$\Rightarrow \angle C O D=180^{\circ}-90^{\circ}=90^{\circ}$
(1 mark)
Now, the area of the shaded region = Area of the sector having the central angle $360^{\circ}-90^{\circ}$ - Area of triangle ABC
$=\frac{270^{\circ}}{360^{\circ}} \times \pi\left(\frac{B C}{2}\right)^{2}-\frac{1}{2} \times A B \times A C$
$=\frac{3}{4} \times 3.14\left(\frac{25}{2}\right)^{2}-\frac{1}{2} \times 7 \times 24$
$=367.97-84=283.97 \mathrm{~cm}^{2}$
(1 mark)
Hence, the area of the shaded region is $283.97 \mathrm{~cm}^{2}$
10. In the given figure, $P Q$ and $A B$ are respectively the arcs of two concentric circles of radii 7 cm and 3.5 cm with centre O . If $\angle P O Q=30^{\circ}$, find the area of the shaded region.

[3 Marks]
Solution:
$\angle A O B=30^{\circ}$
Smaller Radius OC (r) $=7 \mathrm{~cm}$
Bigger Radius OB(R)=3.5cm
Angle made by sectors of both concentric circles $\theta=30^{\circ}$
Area of the larger sector $\mathrm{AOB}=\frac{30^{\circ}}{360^{\circ}} \times \pi R^{2} \mathrm{~cm}^{2}$
$=\frac{1}{12} \times \frac{22}{7} \times 7^{2}$
$=12.83 \mathrm{~cm}^{2}$
[1 Mark]
Area of the smaller sector $\mathrm{COD}=\frac{30^{\circ}}{360^{\circ}} \times \pi r^{2} \mathrm{~cm}^{2}$
$=\frac{1}{12} \times \frac{22}{7} \times(3.5)^{2} \mathrm{~cm}^{2}$
$=3.20 \mathrm{~cm}^{2}$
[1 Mark]

Area of shaded region= area of sector AOB - area of sector COD
Area of the shaded region $=69.621 \mathrm{~cm}^{2}$
[1 Mark]

Areas Related to Circles

11.

Find the area of a shaded region in the Fig. where a circular arc of radius 7 cm has been drawn with vertex A of an equilateral triangle $A B C$ of side 14 cm as centre. (Use $p i=\frac{22}{7}$ and $\sqrt{3}=1.73$)

[2 Marks]
Solution:

In equilateral traingle all the angles are of 60°
$\therefore \angle B A C=60^{\circ}$
Area of the shaded region $=($ Area of triangle $A B C-$ Area of sector having central angle 60°) + Area of sector having central angle ($360^{\circ}-60^{\circ}$)
[1 Mark]
$=\frac{3 \frac{1}{2}}{4} \times A B^{2}-\frac{60^{0}}{360} \times \frac{\pi}{7^{2}}+\frac{300^{0}}{360} \times \frac{\pi}{7^{2}}$
$=\frac{3 \frac{1}{2}}{4} \times 14^{2}-\frac{1}{6} \times \frac{22}{7 \times 7^{2}}+\frac{5}{6} \times \frac{22}{7 \times 7^{2}}$
$=84.77-25.67+128.35$
$=187.45 \mathrm{~cm}^{2}$

Hence, the area of shaded region is $187.45 \mathrm{~cm}^{2}$
[1 Mark]

