B BYJU'S

Grade 10 Mathematics
 Exam Important Questions

Topic : Exam Important Questions

1. The lengths of 40 leaves of a plant are measured correct to the nearest millimeter, and the data obtained is represented in the following table:

Length (in mm $)$	Number of leaves f_{i}
$118-126$	3
$127-135$	5
$136-144$	9
$145-153$	12
$154-162$	5
$163-171$	4
$172-180$	2

Find the median length of the leaves. (5 marks)

The given data does not have continuous class intervals. We can observe that difference between two class intervals is 1 . So, we have to add and subtract $\frac{1}{2}=0.5$ from upper-class limits and lower class limits respectively.

Now, continuous class intervals with respective cumulative frequencies can be represented as below:

Length (in mm $)$	Number of leaves f_{i}	Cumulative frequency
$117.5-126.5$	3	3
$126.5-135.5$	5	$3+5=8$
$135.5-144.5$	9	$8+9=17$
$144.5-153.5$	12	$17+12=29$
$153.5-162.5$	5	$29+5=34$
$162.5-171.5$	4	$34+4=38$
$171.5-180.5$	2	$38+2=40$

(2 marks)
From the table, we observe that cumulative frequency just greater then $\frac{n}{2}\left(i . e . \frac{40}{2}=20\right)$ is 29 , belonging to class interval 144.5-153.5.

Median class $=144.5-153.5$ \qquad (1 mark)

Lower limit l of median class $=144.5$
Class size $h=9$
Frequency f of median class $=12$
Cumulative frequency $c f$ of class preceding median class $=17$, Median $=l+\left(\frac{\frac{n}{2} c_{f}}{f}\right) \times h$

$$
\begin{aligned}
& =144.5+\left(\frac{20-17}{12}\right) \times 9 \\
& =144.5+\frac{9}{4}=146.75
\end{aligned}
$$

So, median length of leaves is 146.75 mm . \qquad (2 marks)

Statistics

2. Identify the modal class, the upper limit of the modal class and the lower limit of the modal class for the given data.

Age (in years)	$5-15$	$15-25$	$25-35$	$35-45$	$45-55$	$55-65$
Number of patients	6	11	21	23	14	5

[2 Marks]
The class with the maximum frequency is the modal class.
For the given data, class 35-45 has the highest frequency of 23 .
So, $35-45$ is the modal class.
[1 Mark]
The lower limit of the modal class is 35 and the upper limit is 45 . [1 Mark]
3.

The following table gives the distribution of the life time of 400 neon lamps:

Life time (in hours)	Number of lamps
$1500-2000$	14
$2000-2500$	56
$2500-3000$	60
$3000-3500$	86
$3500-4000$	74
$4000-4500$	62
$4500-5000$	48

Find the median life time of a lamp.
(5 Marks)
We can find the cumulative frequencies with their respective class intervals as below:

Life time	Number of lamps $\left(f_{i}\right)$	Cumulative frequency
$1500-2000$	14	14
$2000-2500$	56	$14+56=70$
$2500-3000$	60	$70+60=130$
$3000-3500$	86	$130+86=216$
$3500-4000$	74	$216+74=290$
$4000-4500$	62	$290+62=352$
$4500-5000$	48	$352+48=400$
Total (n)	400	

(1 Mark)
Now, we may observe that cumulative frequency just greater than $\frac{n}{2}\left(i . e ., \frac{400}{2}=200\right)$ is 216 belonging to class interval 3000-3500.

Median class $=3000-3500$
Lower limit l of median class $=3000$
Frequency f of median class $=86$
Cumulative frequency c_{f} of class preceding median class $=130$ Class size $h=500$ \qquad 2 marks)

Median $=l+\left(\frac{\frac{n}{2} c_{f}}{f}\right) \times h$
$=3000 \times\left(\frac{200-130}{86}\right) \times 500$
$=3000+\frac{70 \times 500}{86}$
$=3000+406.98$
$=3406.98$
So, median life time of lamps is 3406.98 hours. \qquad (2 marks)
4.

If the median of the distribution given below is 28.5 , find the values of x and y.

Class interval	Frequency
$0-10$	5
$10-20$	x
$20-30$	20
$30-40$	15
$40-50$	y
$50-60$	5
Total	60

(5 Marks)

We may find the cumulative frequency for the given data as following:

Class interval	Frequency	Cumulative frequency
$0-10$	5	5
$10-20$	x	$5+x$
$20-30$	20	$25+x$
$30-40$	15	$40+x$
$40-50$	y	$40+x+y$
$50-60$	5	$45+x+y$
$\operatorname{Total}(n)$	60	

(1 Mark)
It is clear that, $\mathrm{n}=60$
$45+x+y=60$
$x+y=15(1)$
Median of data is given as 28.5 which lies in interval 20-30.
So, median class $=20-30$
Lower limit l of median class $=20$
Cumulative frequency c_{f} of class preceding the median class $=5+\mathrm{x}$
Frequency f of median class $=20$
Class size $h=10$ \qquad (2 marks)

Now, median $=l+\left(\frac{\frac{n}{2} c f}{f}\right) \times h$
$28.5=20+\left[\frac{\frac{60}{2}(5+x)}{20}\right] \times 10$
$8.5=\left(\frac{25-x}{2}\right)$
$17=25-x$
$x=8$
From equation (1)
$8+y=15$
$y=7$
Hence, values of x and y are 8 and 7 respectively. \qquad (2 marks)

Statistics

A survey was conducted on 20 families in a locality by a group of students. What will be the mode of the data?

Age of family member	$0-20$	$20-40$	$40-60$	$60-80$	$80-100$
Number of students	7	8	2	2	1

[2 Marks]
We know,
Mode $=l+\left[\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}}\right] \times h$
[1 Mark]

Here, modal class is 20-40 since it is the class with the highest frequency.
$f_{1}=8, f_{0}=7, f_{2}=2, l=20, h=20$
\therefore Mode $=20+\left[\frac{8-7}{2 \times 8-7-2}\right] \times 20=22.86$
[1 Mark]
6. The following data shows monthly savings of 100 families. Calculate the mode of the given frequency distribution.

Monthly savings $($ Rs $)$	Number of families
$1000-2000$	14
$2000-3000$	15
$3000-4000$	21
$4000-5000$	27
$5000-6000$	25

[2 marks]
Modal class is 4000-5000 within
$f_{1}=27, f_{0}=21, f_{2}=25, \mathrm{I}=4000, \mathrm{~h}=1000$
Mode $=I+\frac{f_{1}-f_{0}}{2 f_{1}-f_{0}-f_{2}} \times h \ldots(1$ mark $)$
Mode $=4000+\frac{6}{8} \times 1000$

$$
=4750 \ldots \text { (} 1 \text { mark) }
$$

7.

The following distribution shows the daily pocket allowance of children of a locality. The mean pocket allowance is Rs.18. Find the missing frequency f.

Daily pocket allowance (in Rs)	$11-13$	$13-15$	$15-17$	$17-19$	$19-21$	$21-23$	$23-25$
Number of workers	7	6	9	13	f	5	4

[3 marks]
We may find class mark x_{i} for each interval by using the relation:
$x_{i}=\frac{\text { Upper class limit }+ \text { lower class limit }}{2}$
Given that mean pocket allowance $x_{i}=$ Rs. 18
Now taking 18 as assured mean a we may calculate d_{i} and $f_{i} d_{i}$ as following.

Daily pocket allowance (in Rs)	Number of workers f_{i}	Class mark x_{i}	$d_{i}=x_{i}-18$	$f_{i} d_{i}$
$11-13$	7	12	-6	-42
$13-15$	6	14	-4	-24
$15-17$	9	16	-2	-18
$17-19$	13	18	0	0
$19-21$	f	20	2	$2 f$
$21-23$	5	22	4	20
$23-25$	4	24	6	24
Total	$\sum f_{i}=44+f$			$2 f-40$

(1.5 marks)

From the table we may obtain:
$\sum f_{i}=44+f$
$\sum f_{i} d_{i}=2 f-40$
$\bar{x}=a+\frac{\sum f_{i} d_{i}}{\sum f_{i}}$
$18=18+\left(\frac{2 f-40}{44+f}\right)$
$2 f-40=0$
$2 f=40$
$f=20$
Hence, the missing frequency ' f ' is 20.
(1.5 marks)

A survey was conducted by a group of students as a part of their environment awareness programme, in which they collected the following data regarding the number of plants in 20 houses in a locality. Find the mean number of plants per house.

Number of plants	$0-2$	$2-4$	$4-6$	$6-8$	$8-10$	$10-12$	$12-14$
Number of Houses	1	2	1	5	6	2	3

(3 marks)

Let us find class marks $\left(x_{i}\right)$ for each interval by using the relation:
Class Mark $\left(\mathrm{x} _\mathrm{i}\right)=\frac{\text { Upper class limit }+ \text { lower class limit }}{2}$
Now we may compute x_{i} and $f_{i} x_{i}$ as following

Number of plants	Number of Houses $\left(f_{i}\right)$	x_{i}	$f_{i} x_{i}$
$0-2$	1	1	$1 \times 1=1$
$2-4$	2	3	$2 \times 3=6$
$4-6$	1	5	$1 \times 5=5$
$6-8$	5	7	$5 \times 7=35$
$8-10$	6	9	$6 \times 9=54$
$10-12$	2	11	$2 \times 11=22$
$12-14$	3	13	$3 \times 13=39$
Total	20		162

(2 marks)
From the table we may observe that:
$\operatorname{Mean}(\bar{x})=\frac{\sum f_{i} x_{i}}{\sum f_{i}}=\frac{162}{20}=8.1$
So, mean number of plants per house is 8.1. (1 mark)
We have used the direct method as values of class marks $\left(x_{i}\right)$ and f_{i} are small.
9.

The marks obtained by 40 students in class X of a certain school in a math paper of 50 marks total are presented in the table. Find the mean using direct method.

Class Interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Number of students	3	4	13	15	5

[3 Marks]
Class mark for first class interval $=5$
Similarly the class mark for each class interval can be found. Look at the table.

Class Interval	Number of students $\left(f_{i}\right)$	Classmark $\left(x_{i}\right)$	$f_{i} x_{i}$
$0-10$	3	5	15
$10-20$	4	15	60
$20-30$	13	25	325
$30-40$	15	35	525
$40-50$	5	45	225
Total	$\sum f_{i}=40$		$\sum f_{i} x_{i}=1150$

[2 Marks]
$\therefore M e a n=\frac{\sum f_{i} x_{i}}{\sum f_{i}}$
$=\frac{5 \times 3+15 \times 4+25 \times 13+35 \times 15+45 \times 5}{40}$
$=\frac{1150}{40}$
$=28.75$
[1 Mark]

Statistics

10.

Find the median
Find the mode of the following data.

x_{i}	10	14	18	21	25
f_{i}	10	15	7	9	9

[4 marks]
$\sum f_{i}=50$ i.e there are 50 observations.
So the median is the average of the $25^{\text {th }}$ and $26^{\text {th }}$ observations.
The $25^{\text {th }}$ observation is 14 and the $26^{\text {th }}$ observation is 18 .
Thus, the median is $\frac{(14+18)}{2}=16$.
[2 marks]

Mode of a given data is the number repeated more number of times. In the given data highest frequency (15)is for $x_{i}=14$.
\therefore mode $=14$
[2 marks]

