

Grade 10: Science Chapter Notes

Chemical Reactions and Equations

Chemical Reaction

- One or more participating substances transform to give new substances
- Involves a chemical change

Effects of Chemical Reaction

Chemical reactions involve one or more of the following:

Rusting of iron

Leaves in fall

2. Change in Odour

Cooked food

Spoiled fruit

3. Change in State

Formation of precipitate

Mixing potassium iodide and lead nitrate

Evolution of gas

Decomposition of lead nitrate on heating

4. Heat Transfer

Cooking of food

Endothermic:

Absorption of heat

Combustion

Exothermic:

Evolution of heat

Chemical Equation

Short-hand representation of a chemical reaction

Reactant 1 + Reactant 2 + ... - Product 1 + Product 2 + ...

1. Burning of magnesium in oxygen is represented as:

(Word equation)

$$Mg + O_2 \rightarrow MgO$$

(Skeleton equation)

2. Photosynthesis is represented as:

(Word equation)

$$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$$
 (Skeleton equation)

Balanced Chemical Equation

Total number of atoms of each element on the reactant side

Total number of atoms of each element on the product side

Skeletal Equation	Balanced Equation
$M_g + O_2 \longrightarrow M_g O$	$2Mg + O_2 \longrightarrow 2MgO$
$CO_2 + H_2O \rightarrow C_6H_{12}O_6 + O_2$	$6C0_2 + 6H_2O \rightarrow C_6H_{12}O_6 + 6O_2$

Skeleton Equation to Chemical Equation

Balance the equation

Mention reaction conditions above/below the arrow

Temperature Pressure Catalyst Light∕hv Heat∕ △

Mention physical state next to each formula

solid	(s)
liquid	(1)
gas	(g)
dilute	(dil.)
concentrated	(conc.)
aqueous	(aq.)
precipitate	(,)
gas evolved	(₁)

Mention energy transfer Endothermic:

Heat on reactant side

Exothermic:

Heat on product side

1. Photosynthesis 600_2 (g) + $6H_2$ 0

$$6CO_{2}(g) + 6H_{2}O(1) \xrightarrow{\text{light}} C_{6}H_{12}O_{6}(aq) + 6O_{2}(g)$$

2. Formation of Ammonia

$$N_2(g) + 3H_2(g) \xrightarrow{450^{\circ} C, 250 \text{ atm}} 2NH_3(g)$$

Types of Chemical Reactions

1. Combination Reaction

Two or more reactants give single product

2. Decomposition Reaction

Single reactant breaks down into two or more products

Heat/Light/
Electricity

A + B

Thermal
(in presence of heat)

$$2Pb(NO_3)_2$$
 (s)

 $4Pb(NO_3)_2$ (s)

 $4Pb(NO_3)_2$ (g) + $4NO_2$ (g) + $4NO_2$ (g)

Photolytic (in presence of light)

Electrolytic (in presence of electricity)

$$2AgCl(s) \xrightarrow{\text{Light}} 2Ag(s) + Cl_2(g)$$

Electricity $2H_20(l) \xrightarrow{\text{Electricity}} 2H_2(g) + O_2(g)$

3. Single displacement reaction

An element displaces another element from its compound

4. Double displacement reaction

Exchange of ions between the reacting compounds

$$2KI(aq) + Pb(NO_3)_2(aq) \longrightarrow 2KNO_3(aq) + PbI_2(s)$$

5. Redox (Reduction-Oxidation) reaction

Oxidation:Gain of oxygen, or loss of hydrogen

Reduction: Loss of oxygen, or gain of hydrogen

Always occur simultaneously

Redox

One reactant undergoes reduction while, the other undergoes oxidation

Loss of oxygen: Reduction $Z_{n0} + C \longrightarrow Z_{n} + C_{0}$ $Z_{n0} = Z_{n0} = Z_{n0}$ $Z_{n0} = Z_{n0} = Z_{n0} = Z_{n0}$ $Z_{n0} = Z_{n0} = Z_{n0$

Mind Map

Short-hand representation of chemical reactions using symbols and chemical formulae

Reactant -> Product

Chemical reaction

Types

- Formation of new substance
- Involves chemical change

Effects

1. Change in colour

2. Change in odour

Combination

A + B

Thermal Electrolytic Heat

Decomposition

Electricity

Photolytic

Single displacement

A + B C

3. Change in state

Double displacement

 $AB+CD \longrightarrow$

4. Heattransfer

Redox

One reactant undergoes reduction (addition of H or removal of 0) while the other undergoes oxidation (addition of 0 or removal of H)

Endothermic

Exothermic

