

Grade 10: Science Chapter Notes

BYJU'S CHAPTER NOTES Heredity

3. Sex determination

Important terms

* Heredity

Transmission of characters from one generation to the next.

Chromosomes

Rod-like structures containing genetic information. They are visible at the time of cell division.

Gene

Functional segment of DNA that contains necessary information for synthesising proteins.

Alleles

Alternative forms of genes that occupy the same position on a particular chromosome.

Homozygous

The two alleles for a particular character are same (TT or tt).

Heterozygous

The two alleles for a particular character are different (Tt).

Dominant allele

In heterozygous condition, the allele which express itself physically.

Important terms

Recessive allele:

In heterozygous condition, the allele which remains unexpressed physically.

Phenotype

Expressed visible character which are genetically controlled (Tall, Dwarf).

🙀 Genotype

Genetic constitution of a character (TT, Ft, tt).

F1 Generation

Generation of hybrids produced from a cross between genetically different individuals.

F2 Generation

Generation of hybrids produced from a cross amongst individuals of F1 generation.

Sex Chromosomes

Chromosomes that determine whether the individual is male or female.

Autosomes

Chromosomes other than that of sex chromosomes.

1. Basics of Henedity

- Chromosomes present in the nucleus carry genetic information.
- Humans have 46 chromosomes.

Chromosomes exists in pairs, one coming from each parent. Carries information for a particular Eye colour Character Character. e.g. Eye colour gene Traits Blue colour Allele 1 Allele 2 Alleles: Alternative forms / variants of a gene

2. Mendel's Experiments

Gregor Johan Mendel

- ★ Father of genetics ★ Studied inheritance in pea plants
- Put forth 3 laws of inheritance

Why pea plants?

- ★ Smaller life cycle
- Many contrasting characters
- Bisexual flowers
- Can be cross-pollinated

ſ	7 contr						
	Height	Seed shape	Seed colour	Flower	Pod shape	P _{od} colour	Flower position
Dominant	20 Sept 10 Sep						
	Tall	Round	Yellow	Purple	Inflated	Green	Axial
cessive							
Rec	Short	Wrinkled	Green	White	Constricted	Yellow	Terminal

Monohybrid Cross

2.1. Monohybrid cross

When a cross is made considering a single character.

Phenotypic ratio in F2 generation: Tall: dwarf

3:1

Genotypic ratio in F_2 generation: TT : Tt : tt1: 2: 1

Dihybrid Cross

2.2. Dihybrid cross

When a cross is made considering two characters.

	YR	Υ _μ	yR	yr
YR	YYRR	YYnp	yY RR	yY nR
Υ _μ	YYRn	Υ Υ _{μμ}	yY Rn	yY mm
yR	YyRR	YynR	yyRR	yyrk
yr	YyRn	Yynn	yyRr	yyrr

Law of independent It states that the alleles of characters/traits segregate independently.

F2 generation

Phenotypic ratio in F2 generation:

9:3:3:1

3. Sex Determination

Sex determination

The process of determining the sex of an organism, based on the composition of the genetic material or environmental factors such as temperature.

Conclusion

In humans, the chances of offspring being male is 50% and being female is 50%