B BYJU'S

Grade 07: Maths Exam Important Questions

B BYJU'S

The Triangle and Its Properties

The Triangle and Its Properties

Topic : Exam Important Questions

1. Find the value of x in the given figure.

[2 marks]
A. 10 cm
x
B. 8 cm
x
C. 6 cm
\times
D. 20 cm

By applying Pythagoras' property:
$x^{2}=(6 \mathrm{~cm})^{2}+(8 \mathrm{~cm})^{2}$
$\Rightarrow x^{2}=100 \mathrm{~cm}^{2}$
$\Rightarrow x=10 \mathrm{~cm}$
[2 marks]

The Triangle and Its Properties

2. A $15 m$ long ladder reached a window $12 m$ high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.

[2 marks]
Let the distance of the foot of the ladder from the wall be a.
Now applying Pythagoras' property:
$(a)^{2}+(12 m)^{2}=(15 m)^{2}$
[0.5 mark]
$(a)^{2}+(12 m)^{2}=(15 m)^{2}$
$\Rightarrow a^{2}=225 m^{2}-144 m^{2}$
$\Rightarrow a^{2}=81 m^{2}$
$\Rightarrow a=9 m$
[1.5 marks]
Hence, the distance of the foot of the ladder from the wall is 9 m .

The Triangle and Its Properties

3. A tree is broken at a height of $5 m$ from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.

[3 marks]
Let, the length of the broken part (inclined to the ground) be x.
[0.5 mark]
Applying Pythagoras' theorem in the triangle formed,
$\Rightarrow(5 m)^{2}+(12 m)^{2}=x^{2} \Rightarrow 25 m^{2}+144 m^{2}=x^{2}$
$\Rightarrow x^{2}=169 \mathrm{~m}^{2}$
$\Rightarrow x=13 \mathrm{~m}$
[1.5 marks]
Hence, the original height of the tree
$=5 m+13 m=18 \boldsymbol{m}$
[1 mark]

The Triangle and Its Properties

4. Which of the following can be the sides of a right-angled triangle?
(i) $2.5 \mathrm{~cm}, 6.5 \mathrm{~cm}, 6 \mathrm{~cm}$
(ii) $2 \mathrm{~cm}, 2 \mathrm{~cm}, 5 \mathrm{~cm}$

In the case of right-angled triangles, identify the right angles.
[4 marks]
(i) The sides of a right-angled triangle always follow Pythagoras' property. [0.5 mark]
Now, $(2.5 \mathrm{~cm})^{2}+(6 \mathrm{~cm})^{2}$

$$
=6.25 \mathrm{~cm}^{2}+36 \mathrm{~cm}^{2}
$$

$$
=42.25 \mathrm{~cm}^{2}
$$

$$
=(6.5 \mathrm{~cm})^{2}
$$

So, $(2.5 \mathrm{~cm})^{2}+(6 \mathrm{~cm})^{2}=(6.5 \mathrm{~cm})^{2}$
Hence, these are the sides of a right-angled triangles.
The length of the hypotenuse is 6.5 cm .
[1.5 marks]
(ii) The sides of a right-angled triangle always follow Pythagoras' property. [0.5 mark]

$$
\text { Now, } \begin{aligned}
& (2 \mathrm{~cm})^{2}+(2 \mathrm{~cm})^{2} \\
& =4 \mathrm{~cm}^{2}+4 \mathrm{~cm}^{2} \\
= & 8 \mathrm{~cm}^{2} \\
= & (4 \sqrt{ } 2 \mathrm{~cm})^{2}
\end{aligned}
$$

So, $(2.5 \mathrm{~cm})^{2}+(6 \mathrm{~cm})^{2}=(4 \sqrt{ } 2 \mathrm{~cm})^{2} \neq 5 \mathrm{~cm}$
Hence, these are not the sides of a right-angled triangles.
[1.5 marks]

The Triangle and Its Properties

5. The diagonals of a rhombus measure 16 cm and 30 cm . Find its perimeter. [4 marks]

Given: Diagonals AC $=30 \mathrm{~cm}$ and $\mathrm{DB}=16 \mathrm{~cm}$.
Since the diagonals of the rhombus bisect at right angle to each other.

Therefore, $O D=\frac{D B}{2}=\frac{16}{2}=8 \mathrm{~cm}$
And, $O C=\frac{A C}{2}=\frac{30}{2}=15 \mathrm{~cm}$
[1 mark]
Now, in right angle triangle DOC,
$(D C)^{2}=(O D)^{2}+(O C)^{2}$
$\left.\Rightarrow(D C)^{2}=(8)^{2}+\right)(15)^{2}$
$\Rightarrow(D C)^{2}=64+225=289$
$\Rightarrow D C=\sqrt{289}=17 \mathrm{~cm}$
[2 marks]
Perimeter of rhombus $=4 \times$ side
$=4 \times 17=68 \mathrm{~cm}$
Thus, the perimeter of rhombus is 68 cm .
[1 mark]

The Triangle and Its Properties

6. $A M$ is the median of triangle $A B C$. Is $A B+B C+C A>2 A M$?

[2 marks]
In $\triangle A B C$ we have two sub triangles $\triangle A B M$ and $\triangle A M C$.
So, in triangle $\triangle \mathrm{ABM}$ using the inequality of the triangle that the sum of any two sides is always greater than or equal to the third side.

We have, $A B+B M>A M$
[0.5 mark]
Using the same in $\triangle A M C, M C+C A>A M$
[0.5 mark]
Adding equation (1) and (2), We get
$A B+(B M+M C)+A C>2 A M$
$A B+B C+C A>2 A M$
Hence $A B+B C+C A>2 A M$ is proved to be true.
[1 mark]

The Triangle and Its Properties

7. The lengths of two sides of a triangle are 13 cm and 16 cm . The third side should lie between 'a' cm and 'b' cm for the triangle to be formed. What will be the value of $a+b$?
x A. 26
\times
B. 29
C. 32
\times
D. 35

The third side of a triangle must be greater than the difference between the other two sides.

That is, third side $>(16-13)$ which is 3 .
Also, the sum of lengths of any two sides of a triangle is always greater than the third side.

That is, third side $<(16+13)$ which is 29 .
Hence, $a+b=3+29=32$.
8. The lengths of two sides of a triangle are 6 cm and 8 cm . Between which two numbers can length of the third side fall?
[3 marks]
We know that the sum of two sides of a triangle is always greater than the third.

Therefore, third side has to be less than the sum of the two sides. The third side is thus, less than $8 \mathrm{~cm}+6 \mathrm{~cm}=14 \mathrm{~cm}$.
[1 mark]
The side cannot be less than the difference of the two sides. Thus, the third side has to be more than $8 \mathrm{~cm}-6 \mathrm{~cm}=2 \mathrm{~cm}$.
[1 mark]
The length of the third side could be any length greater than 2 and less than 14 cm .
[1 mark]

The Triangle and Its Properties

9. The sides AB and AC of $\triangle \mathrm{ABC}$ are produced to P and Q respectively.

The bisectors of exterior angle at B and C of $\triangle \mathrm{ABC}$ meet at O .
Prove that: $\angle B O C=90^{\circ}-\frac{1}{2} \angle A$.

The Triangle and Its Properties

Solution:
According to the given figure and question, we have:
$\angle C B P=180^{\circ}-\angle A B C$
(BO is the bisector of $\angle \mathrm{CBP}$)
$\angle C B O=\frac{1}{2} \angle C B P$
$\angle C B O=\frac{1}{2}\left(180^{\circ}-\angle A B C\right)$
$\angle C B O=90^{\circ}-\frac{1}{2} \angle A B C$

Similarly, $\angle B C Q=180^{\circ}-\angle A C B$
(CO is the bisector os $\angle \mathrm{BCQ}$)
$\angle B C O=\frac{1}{2} \angle B C Q$
$\angle B C O=\frac{1}{2}\left(180^{\circ}-\angle A C B\right)$
$\angle B C O=90^{\circ}-\frac{1}{2} \angle A C B$
$\angle B O C=180^{\circ}-(\angle C B O+\angle B C O)$
$\angle B O C=180^{\circ}-\left(90^{\circ}-\frac{1}{2} \angle A B C+90^{\circ}-\frac{1}{2} \angle A C B\right)$
$\angle B O C=180^{\circ}-180^{\circ}+\frac{1}{2} \angle A B C+\frac{1}{2} \angle A C B$
$\angle B O C=\frac{1}{2}(\angle A B C+\angle A C B)$
(We have : $180^{\circ}-\angle B A C=\angle A B C+\angle A C B$ by triangle property)
$\Rightarrow \angle B O C=\frac{1}{2}\left(180^{\circ}-\angle B A C\right)$
$\therefore \angle B O C=90^{\circ}-\frac{1}{2} \angle B A C$
Hence proved.

The Triangle and Its Properties

10.

Find the value of the unknowns x and y in the given triangle.

Using Exterior Angle Property of a triangle.
$\Rightarrow 50^{\circ}+x=120^{\circ}$
$\Rightarrow x=120^{\circ}-50^{\circ}$
$\Rightarrow x=70^{\circ} \quad$ [1 mark]
Using the angle sum property of a triangle.
$\Rightarrow 50^{\circ}+x+y=180^{\circ}$
$\Rightarrow y=180^{\circ}-50^{\circ}-70^{\circ}$
$\Rightarrow y=60^{\circ} \quad$ [1 mark]
11. Think and answer the following questions.
I) Can you think of a triangle in which two altitudes of the triangle are two of its sides?
$I I$) Will an altitude always lie in the interior of a triangle?
[2 marks]
Right-angled triangle is the triangle in which two altitudes of the triangle are two of its sides.
[1 mark]
No, altitude may lie in the interior or the exterior of a triangle.
[1 mark]

